Numerical Methods in Economacs
MIT Press, 1998

Notes for Chapter 5: Nonlinear Equations

October 7, 2007



Nonlinear Equations

e T'wo forms of equations: zeros and fixed points of f : R" — R"

— A zero of f is any x such that f(x) =0
— A fized point of f is any x such that f(x) = z.
— Note: x is a fixed point of f(z) iff it is a zero of f(z) — .

e [xistence of solutions is examined in Brouwer’s theorem and its extensions.

e Examples

— Arrow-Debreu general equilibrium: find a price at which excess demand is zero
— Nash equilibrium of games with continuous strategies
— Transition paths of deterministic dynamic systems

— Approximate policy functions in nonlinear dynamic problems



One-Dimensional Problems: Bisection
e Suppose that f(a) <0 < f (D)
e Step 1: Pick a point ¢ € (a, b)

—1If f(c) =0, stop
—1If f(¢) <0, reduce interval to (c, )
—If f (¢) > 0, reduce interval to (a, c)

e Repeat

f(x)




One-Dimensional Problems: Newton’s Method

e Given guess x;, compute linear approximation

f @)= f (@) + [ (z) (x — xn)

and let x;,1 be zero of linear approximation:

(5.2.1)

e Graph of Newton’s method:

f(x)

e Convergence: Suppose f is C? and f(z*) = 0. If zg is close to z*, f'(x*) # 0, and | f"(z*)/ f'(z*))] <
00, then (5.2.1) converges to z* quadratically; that is,

i —a| 1 |f" ()

<00 . (5.2.2)



Pathological Examples

e Newton’s method works well when it works, but it can fail.

1/3,—22

e Example: f(x)=x"""¢

— Unique zero of f is at x = 0.

— Newton’s method is

Toi1 = Tn (1 ’ ) (5.2.4)

1 —6a2
which has two pathologies.
* For x,, small, (5.2.4) reduces to x,.1 = —2x,; hence, (5.2.4) converges to 0 only if zo = 0 is
the initial guess.

+ For x,, large, (5.2.4) becomes x,41 = ,,(1 + =), which diverges, but will eventually satisfy

n

stopping rule at some large z,,.
— Divergence due to f”(0)/f(0) = oo

. _ 2 . .
— “Convergence” arises because e”* factor squashes f at large z; in some sense, since f(+o00) = 0.



e Example:

convergence to a cycle:




A General Equilibrium Example

e Demand function is

Z mp 1—n;)

e Three equilibria:. (0.5, 0.5), (0.1129, 0.8871), (0.8871, 0.1129).

e Reduce to a one-variable problem by p, = 1 — p;, producing

(5.2.6)

e Notice: Newton’s method may send p negative.



Secant Method

e Problem: f’(x) may be costly.

e Solution: secant method approximates f’(xj) with secant of f between ) and zj_1:

f(g) (2 — 2p-1)
fxr) — fzp1)

e Convergence: If f(z*) =0, f'(z*) # 0, and f”(x) is continuous near x*, then (5.3.1) converges at
rate (1 + +/5)/2, that is

(5.3.1)

L+l = Tk —

Ty — 27|
|z — x*’(1+\/5)/2

lim sup < 00 (5.3.3)

k—o0



Multivariate Equations: Gauss-Jacobi Algorithm

e Suppose f: R" — R", and we want to solve f(x) = 0:

fl(ajla Lo, + -, xn): 07
: (5.4.1)
fn(ajla X2y =, ajn): 0.
e Gauss-Jacobi method.
— Given kth iterate, 2¥, use equation 7 to compute xf“:
f1<xlf+17 55]57 xl§7 T .flf'f;) - 07
o0k ktl ik k
Xy, T y Lgy =, T :Oa
f < 1 2 3 n) (542)
fn<xlf7 xlga R x];z—la x§+1): 0.

— Gauss-Jacobi repeatedly solves n equations in one unknown.
— Gauss-Jacobi is affected by the indexing scheme.

« Otherwise, there are n(n — 1)/2 different Gauss-Jacobi schemes.
* Sometimes there is a natural scheme implying diagonal dominance (or, gross substitutes)

x Strategy: choose indexing which makes Jacobian nearly diagonal



Multivariate Equations: Gauss-Seidel Algorithm

e Gauss-Jacobi: use new guess of z;, z¥'!
values, zF 1.

k+1

e Gauss-Seidel: use new guess, ;" ",as soon as it is available.

e Formal definition: construct z**! componentwise by solving
1 (. k+1 k k _
f ( ZL’Z,.CCS,"',ZL’n) _07
k;+1 Rk k _
f(l y Lo 73337"'7'7%) — Y
n—1 k;+1 b+l okl kY
f ( Ty Ty Ty X )_07
n k;+1 k41 k+1  k+1y _
f ( y 7y oy Tp—1y Ty )_ 0.

e Both indexing and ordering matter in GS.

— Back-substitution on triangular system is GS

— Strategy: choose indexing and ordering which makes Jacobian nearly triangular

, only after we have computed the entire vector of new

(5.4.4)



e Features of Gaussian methods:

— Each step in GJ or GS is a nonlinear equation

x Usually solved by some iterative method.

+ Economize on effort at each iteration with loose stopping rule.
— Can apply extrapolation and acceleration methods
— Can apply ideas at block level - “block GJ, block GS”
* Find groups of variables and orderings such that Jacobian is nearly block diagonal or block

triangular.

+ Fxample: in {apples, oranges, cheddar cheese, swiss cheese} problem, put cheeses in one
block, fruit in the other, and use Newton to solve blocks

— Convergence is at best linear

+ Discussion of convergence in chapter 3 applies here.

+ Key fact: for any 2" = G(2*) the spectral radius of G,(z*) is asymptotic linear rate of
convergence.



Fixed-Point Iteration

e The simplest iterative method for solving = = f(x) is

xk—i—l _ f(.fk)

(5.4.8)

called fixed-point iteration; also known as successive approrimation, successive substitution, or

function iteration.
e Method is sensitive to transformations: Consider
P —x—1=0
— Rewrite as x = (x + 1)'/3; then the iteration
Tri1 = (z + 1)V3.

converges to a solution of (5.3.3) if zy = 1.

— Rewrite (5.3.3) as z = 23 — 1; then the iteration
LTr+1 = l’z —1
diverges to —oo if xg = 1.
e Naive implementations of the fixed-point iteration approach often fail.

e However, most algorithms have the form x;,., = f(xy).

e Aim: construct fixed-point iteration which works.

(5.3.3)

(5.3.4)

(5.3.5)



Contraction Mapping Case of Function Iteration

e For a special class of functions, fixed-point iteration will work well.

o A differentiable contraction map on D is any C! f : D — R" defined on a closed, bounded, convex
set D C R" such that

— f(D) C D, and
— maxzep || J(2) ||o< 1, J(x) is Jacobian of f.

o (Contraction mapping theorem) If f is a differentiable contraction map on D, then

— x = f(x) has a unique solution, z* € D;
— g = f(2%) converges to z*; and

— there is a sequence €, — 0 such that

| 2" = 2™ oo < (I J(@) lloo +er) | 27 — 2" [l

o If f(z*) = x*, f is Lipschitz at z*, and p(J(z*)) < 1, then for 2° close to z*, "™ = f(z") is

convergent.



Stopping Rule Problems for Multivariate Systems

e Use ideas from chapter 1

e First, use a rule for stopping.

— If we want || ¥ — 2* ||< €, we continue until || 5T — z* ||< (1 — B)e where 8 = p(G,(z*)).

— Sometimes we know (3, as with some contraction mappings
1/L
A e
| zh—L — zh+1 |

e Second, check that f(x*) is close to zero.

— Otherwise, estimate 3 with

for some L.

— Require that || f(z*) ||< ¢ for some small 6.
— You should have each component of f small

— Be careful about units; check should be unit-free

e ¢ and € should not be less than square root of error in computing f.



Newton’s Method for Multivariate Equations

e Sequential linear approximations:

— Replace f with a linear approximation at z*

— Solve linear approximation for z**!

e Formally:

— Newton approx around z¥ is f(x) = f(z*) + J(2%) (z — 2*).

— Zero of approx is
" = — g2 f(2Y) (5.5.1)

e Convergence: If f(z*) = 0, det(J(z*)) # 0 and J(z) is Lipschitz near x*, then for 2" near z*, the
sequence defined by (5.5.1) satisfies

k4+1 .
T Kttt | (5.5.2)

% Tt =




e Problems with Newton method

— Jacobian, J (x), may be expensive to compute (but not if you use automatic differentiation)
— May not converge

— Should really be called the Newton-Raphson-Fourier-Simpson method
e Solutions

— Broyden approximates J ()
— Powell hybrid improves likelihood of convergence.

— Homotopy methods will converge



Secant Method (Broyden)

e Jacobian, J(z), is costly to compute

— Analytic expressions are difficult to compute

— Finite-difference approximations require n? evaluations of f.

e In R, we used the secant; can we do this for R"?

e Broyden method

— Start with initial Jacobian guess, Aj

— Use Ay, to compute the Newton step, s*: Aps* = —f(z")
— Set ¢! = 2k 4 Sk

— Choose Aj1 to be

* close to Ay
* consistent with secant equation f(z**1) — f(z%) = A 18"

« for any direction ¢ orthogonal to s*, want Aj.;q = Aq, i.e., no change in directions
orthogonal to Newton step



— Broyden update is

(yr — Ags®) (sF)7
(Sk>—|—8k

ye=f(@") — f(2")

— Stop iteration when f(z*) is close to zero, or when s* is small.

Ap1=Ap +

— Convergence: There exists € > 0 such that if || 2° — z* ||< € and || Ay — J(z*) ||< €, then the
Broyden method converges superlinearly.

— Key properties of Broyden versus Newton

+ Convergence asserted only z*, not A

* Need good initial guess for A

+ Each iteration of the Broyden method is cheap to compute

* Broyden method will need more iterations than Newton’s method.

x For large systems, Broyden dominates



Use Least Squares To Improve Chances of Convergence
e Nonlinear Equations as an optimization problem

— Any solution to f(x) = 0 is a global solution of

0= mgn Z fiz)* = SSR(x) (5.6.1)

— Benefits of (5.6.1)

x Can use optimization procedures
* Will always converge to something

x May give a good initial guess for any solver
— Problems with (5.6.1):

+ Hessian is generally ill-conditioned; roughly equals the square of the condition number of
J (x)

* (5.6.1) may have many local minima

e Powell’s Hybrid Method

— Do Newton, except check if Newton step reduces the value of SSR (x)
— If not, then switch to least squares

— Powell (1970) implemented procedure which avoids some conditioning problems of naive scheme.



Simple Continuation Method

e Continuation idea

— Suppose that we

* want to solve f(z;t*) =0

* know that z = z" solves f(x;t") =0
— If t* is near t°, use

x 2V as initial guess in solving f(z;t*) = 0.
+ Jacobian of f (x;¢") as initial guess for Jacobian of f (x;¢") - a hot start

— If t* is not close to ¢, construct sequence of problems f(z;t') =0, t' ~ t! ~ -

t=.5




e Continuation method often converges in problems where standard methods fail, but continuation

may fail.

e Continuation method is an approach to mass production of solutions

— Solve f(x;t) =0 - a fixed cost

— Solve t sequence - a small (hopefully) marginal cost



Homotopy Methods - Almost Sure Convergence

e Construct homotopy functions, H(z,t), H : R — R" H € C°(R"™), that continuously
deforms g into f:
H(z.0) = g(z). H(z,1) = f(a) (59.1)

— H(x,0) should be a simple function with a unique, obvious zero

— H(z,1) = f (z)

— Newton homotopy: H(z,t) = f(z) — (1 —t)f(z") for some 2.

— Fized-point homotopy: H(x,t) = (1 —t) (x — 2°) + ¢ f(z) for some 2°.
— Linear Homotopy: H(z,t) =tf(z)+ (1 —t)g(x)



e Examine the set
H™(0) = {(x,t) | H(z,t) = 0}

— Idea: trace out a path in H1(0) connecting zeros of H(x,0) to zeros of f(x) = H(x,1).

— Continuation will fail in the sense that there is no nearby solution at some values of ¢, but
homotopy aims at tracing out the path even as it turns down.

At

u(0)




e H1(0) may not be simple; may have

— turning points
— branch points
— extraneous components

t

t=1




e Parametric approach

— (z(s), t(s)) traces path in (z,t) as function of parameter s.

— Implicit differentiation of H(z(s),t(s)) = 0 w.r.t. s implies

ZHQ;Z )zi(s) + H(z(s), £(s))t'(s) = 0 (5.9.3)
— Define y(s) = (z(s), t(s)); y obeys
% (— )det(%l;[() ), i=1,--- ,n+1 (5.9.4)

— Garcia and Zangwill (1981) call (5.9.4) the basic differential equation.
— (5.9.4) is defined only if H, = (H,, H;) has full rank; i.e., H is regular



e Good homotopy choices: some basic theorems

— Suppose that f € C?, D compact with nonempty interior. Define
H(z,t) = (1 —t)(x — 2°) + tf(z).
If H is regular, and H(z,t) #0 for all 0 <t < 1 and = € 9D, then f has a zero at the end of
a path joining t = 0 and ¢t = 1 in H~*(0).
—IfB"={rc R"||z| <1} and f: B" — B"is C', then
H:B"x(0,1) x B*— R",
H(a,t,x) = (1 = t)(x —a) + Uz — f(z)),
is regular and for almost all a € B", H~1(0) is a smooth curve joining (0, a) to a fixed point of
fatt=1.

— There is an open and dense subset of C? functions, F, such that for f € F, H1(0) is a smooth
curve of H(z,t) =tf(x) — x.



e Simplicial methods (a.k.a. piecewise linear homotopy) are also useful.

e Practical adaptations

— H71(0) could have infinite length and oscillate as t — 1; not a major concern in practice
— Could try more natural homotopies

« Homotopy parameter could be taste parameters
+x Homotopy parameter could be an endowment parameter
* Economically intuitive homotopies may lack theory but be better in practice

— One often should switch to a Newton-style method after partially traversing H ! (0); homotopy
methods are only linearly convergent but should get close enough for Newton to work.



CGE Problems

e Assume

— m goods
— n agents
x utility of type 7 is u'(z), z € R™.
+ endowment of good j for type i is e"}.

e Strategy of economic theory:

— First, construct demand function for each agent given prices p € R™

d'(p) = argmax, u'(z) (5.10.1)

st. p-(z—e) =0, o
— Construct excess demand function: E(p) = > "(d'(p) — €').
— Equilibrium is p € R™ such that F(p) = 0.

— By degree zero homogeneity of d'(p), if F(p) = 0 then E(Ap) = 0 for any 0 # \ € R; find

equilibrium on unit simplex.

— To prove existence, construct g(p) on unit simplex

Sm_l =48 P ij =1
Jj=1

such that E(p*) < 0 at any fixed point p* of g(p).



e Computation: Fixed-Point Iteration Method

— Define

~ pj+max|[0, E; (p)]
9i(P) =17 > max [0, Ej (p)]

— Since g : S™ ! — S™~! is continuous, it has a fixed point.

(5.10.2)

— Could compute iteration p**! = g(pF).

— Easy if we have closed-form individual demand functions
— No need to compute Jacobians.

— Iterates stay in unit simplex.

— No assurance of convergence.



e Computation: F(p) =0 as a Zero Problem

— Send E(p) = 0 to a nonlinear equation solver.

— Must consider degree zero homogeneity of £/. Hence we solve is

Ei(p) =0,

E,-1(p)= 0,
> i pi =1
— Easy if we have closed-form individual demand functions
— Without closed-form expressions for d' (p), we compute d' (p) numerically.
+ Easy problem: concave objective with linear constraint
x However, numerical error in d’ (p) computation implies

- Brrors affect numerical approximation of Jacobians

- Errors in d' (p) means that convergence criterion for F (p) = 0 must be relatively loose



e Computation: First-Order Conditions and Market Balance

— Create large system with individuals’ first-order conditions and market equilibrium. In m-good,

n-agent model
x First-order condition

)
J

« Budget constraint for each agent

p-('—e)=0 ,i=1,---

x Market balance for goods 1 through m — 1,

n

Sl =0, =1

1=1

* Simplex condition for prices
> pi=1
J

x Unknowns are p, ', and X', =1,--- ,n.

— System is large, but has a sparse Jacobian

u('xz):ijZ? Z:177”7 jzla

(5.10.3)

(5.10.4)

(5.10.5)

(5.10.6)



e Computation: Negishi Method

— Key observations

*x Any competitive equilibrium maximizes social welfare

maXazl,a:Q,... Z?:l )‘Zuz (mz)7

8.t. S (e =) =0.

for some weights, \' >0,i=1,...,n.

(5.10.7)

+ Prices are proportional to marginal utilities since p;/p1 = u’;/uj
« Negishi approach to computing general equilibrium: Look for A s.t. solution to (5.10.7) is

equilibrium z



— Algorithm:
* For A vector, compute X (\) € R™*" that solves (5.10.7).
+ Compute prices in unit simplex implied by X ()
uy (XH(A)
J

x Compute, for each 7, excess wealth W;(\) = P()) - (¢! — X'(\)).
* P()\) are equilibrium prices iff W;(A) = 0
« Negishi approach solves the system

Wi\ =0, i=1,...,n (5.10.8)

for A, and then computes P(\) to get equilibrium prices.
— Negishi approach is very good if there are n < m

— Representative agent model is an example.



