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Nonlinear Equations

• Two forms of equations: zeros and fixed points of f : Rn → Rn

— A zero of f is any x such that f(x) = 0

— A fixed point of f is any x such that f(x) = x.

— Note: x is a fixed point of f(x) iff it is a zero of f(x)− x.
• Existence of solutions is examined in Brouwer’s theorem and its extensions.
• Examples
— Arrow-Debreu general equilibrium: find a price at which excess demand is zero

— Nash equilibrium of games with continuous strategies

— Transition paths of deterministic dynamic systems

— Approximate policy functions in nonlinear dynamic problems
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One-Dimensional Problems: Bisection

• Suppose that f (a) < 0 < f (b)
• Step 1: Pick a point c ∈ (a, b)
— If f (c) = 0, stop

— If f (c) < 0, reduce interval to (c, b)

— If f (c) > 0, reduce interval to (a, c)

• Repeat
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One-Dimensional Problems: Newton’s Method

• Given guess xk, compute linear approximation
f (x)

.
= f (xk) + f

0 (xk) (x− xk)
and let xk+1 be zero of linear approximation:

xk+1 = xk − f (xk)
f 0 (xk)

(5.2.1)

• Graph of Newton’s method:

• Convergence: Suppose f isC2 and f(x∗) = 0. If x0 is close to x∗, f 0(x∗) 6= 0, and |f 00(x∗)/f 0(x∗))| <
∞, then (5.2.1) converges to x∗ quadratically; that is,

lim sup
k→∞

|xk+1 − x∗|
|xk − x∗|2 =

1

2

|f 00(x∗)|
|f 0(x∗)| <∞ . (5.2.2)
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Pathological Examples

• Newton’s method works well when it works, but it can fail.
• Example: f(x) = x1/3e−x2.
— Unique zero of f is at x = 0.

— Newton’s method is
xn+1 = xn

µ
1− 3

1− 6x2n

¶
(5.2.4)

which has two pathologies.

∗ For xn small, (5.2.4) reduces to xn+1 = −2xn; hence, (5.2.4) converges to 0 only if x0 = 0 is
the initial guess.

∗ For xn large, (5.2.4) becomes xn+1 = xn(1 + 2
x2n
), which diverges, but will eventually satisfy

stopping rule at some large xn.

— Divergence due to f 00(0)/f 0(0) =∞
— “Convergence” arises because e−x

2
factor squashes f at large x; in some sense, since f(±∞) = 0.
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• Example: convergence to a cycle:
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A General Equilibrium Example

• Demand function is
dij(p)=θijI

ip
−ηi
j

θij≡ (aij)ηi
,

2X
`=1

(ai`)
ηip

(1−ηi)
`

• Three equilibria:. (0.5, 0.5), (0.1129, 0.8871), (0.8871, 0.1129).
• Reduce to a one-variable problem by p2 = 1− p1, producing

f(p1) ≡
2X
i=1

di1(p1, 1− p1)−
2X
i=1

ei1 = 0 (5.2.6)

• Notice: Newton’s method may send p negative.
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Secant Method

• Problem: f 0(x) may be costly.
• Solution: secant method approximates f 0(xk) with secant of f between xk and xk−1:

xk+1 = xk − f(xk) (xk − xk−1)
f(xk)− f(xk−1) (5.3.1)

• Convergence: If f(x∗) = 0, f 0(x∗) 6= 0, and f 00(x) is continuous near x∗, then (5.3.1) converges at
rate (1 +

√
5)/2, that is

lim sup
k→∞

|xk+1 − x∗|
|xk − x∗|(1+

√
5)/2

<∞ (5.3.3)
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Multivariate Equations: Gauss-Jacobi Algorithm

• Suppose f : Rn → Rn, and we want to solve f(x) = 0:

f 1(x1, x2, · · · , xn)= 0,
...

fn(x1, x2, · · · , xn)= 0.
(5.4.1)

• Gauss-Jacobi method.
— Given kth iterate, xk, use equation i to compute xk+1i :

f1(xk+11 , xk2, x
k
3, · · · , xkn) = 0,

f2(xk1, x
k+1
2 , xk3, · · · , xkn) = 0,

...
fn(xk1, x

k
2, · · · , xkn−1, xk+1n )= 0.

(5.4.2)

— Gauss-Jacobi repeatedly solves n equations in one unknown.

— Gauss-Jacobi is affected by the indexing scheme.

∗ Otherwise, there are n(n− 1)/2 different Gauss-Jacobi schemes.
∗ Sometimes there is a natural scheme implying diagonal dominance (or, gross substitutes)
∗ Strategy: choose indexing which makes Jacobian nearly diagonal
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Multivariate Equations: Gauss-Seidel Algorithm

• Gauss-Jacobi: use new guess of xi, xk+1i , only after we have computed the entire vector of new
values, xk+1.

• Gauss-Seidel: use new guess, xk+1i ,as soon as it is available.

• Formal definition: construct xk+1 componentwise by solving
f 1 (xk+11 , xk2, x

k
3, · · · , xkn) = 0,

f 2 (xk+11 , xk+12 , xk3, · · · , xkn) = 0,
...

fn−1 (xk+11 , · · · , xk+1n−2, x
k+1
n−1, x

k
n)= 0,

fn (xk+11 , · · · , xk+1n−2, x
k+1
n−1, x

k+1
n )= 0.

(5.4.4)

• Both indexing and ordering matter in GS.
— Back-substitution on triangular system is GS

— Strategy: choose indexing and ordering which makes Jacobian nearly triangular
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• Features of Gaussian methods:
— Each step in GJ or GS is a nonlinear equation

∗ Usually solved by some iterative method.
∗ Economize on effort at each iteration with loose stopping rule.

— Can apply extrapolation and acceleration methods

— Can apply ideas at block level - “block GJ, block GS”

∗ Find groups of variables and orderings such that Jacobian is nearly block diagonal or block
triangular.

∗ Example: in {apples, oranges, cheddar cheese, swiss cheese} problem, put cheeses in one
block, fruit in the other, and use Newton to solve blocks

— Convergence is at best linear

∗ Discussion of convergence in chapter 3 applies here.
∗ Key fact: for any xk+1 = G(xk) the spectral radius of Gx(x∗) is asymptotic linear rate of
convergence.
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Fixed-Point Iteration

• The simplest iterative method for solving x = f(x) is
xk+1 = f(xk) (5.4.8)

called fixed-point iteration; also known as successive approximation, successive substitution, or
function iteration.

• Method is sensitive to transformations: Consider
x3 − x− 1 = 0 (5.3.3)

— Rewrite as x = (x + 1)1/3; then the iteration

xk+1 = (xk + 1)
1/3. (5.3.4)

converges to a solution of (5.3.3) if x0 = 1.

— Rewrite (5.3.3) as x = x3 − 1; then the iteration
xk+1 = x

3
k − 1 (5.3.5)

diverges to −∞ if x0 = 1.

• Naive implementations of the fixed-point iteration approach often fail.
• However, most algorithms have the form xk+1 = f(xk).
• Aim: construct fixed-point iteration which works.
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Contraction Mapping Case of Function Iteration

• For a special class of functions, fixed-point iteration will work well.
• A differentiable contraction map on D is any C1 f : D→ Rn defined on a closed, bounded, convex
set D ⊂ Rn such that
— f(D) ⊂ D, and
— maxx∈D k J(x) k∞< 1, J(x) is Jacobian of f .

• (Contraction mapping theorem) If f is a differentiable contraction map on D, then
— x = f(x) has a unique solution, x∗ ∈ D;
— xk+1 = f(xk) converges to x∗; and

— there is a sequence ²k → 0 such that

k x∗ − xk+1 k∞ ≤ (k J(x∗) k∞ +²k) k x∗ − xk k∞
• If f(x∗) = x∗, f is Lipschitz at x∗, and ρ(J(x∗)) < 1, then for x0 close to x∗, xk+1 = f(xk) is
convergent.
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Stopping Rule Problems for Multivariate Systems

• Use ideas from chapter 1
• First, use a rule for stopping.
— If we want k xk − x∗ k< ², we continue until k xk+1 − xk k≤ (1− β)² where β = ρ(Gx(x

∗)).

— Sometimes we know β, as with some contraction mappings

— Otherwise, estimate β with

β̂ =

µ k xk − xk+1 k
k xk−L − xk+1 k

¶1/L
for some L.

• Second, check that f(xk) is close to zero.
— Require that k f(xk) k≤ δ for some small δ.

— You should have each component of f small

— Be careful about units; check should be unit-free

• δ and ² should not be less than square root of error in computing f .
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Newton’s Method for Multivariate Equations

• Sequential linear approximations:
— Replace f with a linear approximation at xk

— Solve linear approximation for xk+1

• Formally:
— Newton approx around xk is f(x) .= f(xk) + J(xk) (x− xk).
— Zero of approx is

xk+1 = xk − J(xk)−1 f(xk) (5.5.1)

• Convergence: If f(x∗) = 0, det(J(x∗)) 6= 0 and J(x) is Lipschitz near x∗, then for x0 near x∗, the
sequence defined by (5.5.1) satisfies

lim
k→∞

k xk+1 − x∗ k
k xk − x∗ k2 <∞ (5.5.2)
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• Problems with Newton method
— Jacobian, J (x), may be expensive to compute (but not if you use automatic differentiation)

— May not converge

— Should really be called the Newton-Raphson-Fourier-Simpson method

• Solutions
— Broyden approximates J (x)

— Powell hybrid improves likelihood of convergence.

— Homotopy methods will converge
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Secant Method (Broyden)

• Jacobian, J(x), is costly to compute
— Analytic expressions are difficult to compute

— Finite-difference approximations require n2 evaluations of f .

• In R, we used the secant; can we do this for Rn?
• Broyden method
— Start with initial Jacobian guess, A0

— Use Ak to compute the Newton step, sk: Aksk = −f(xk)
— Set xk+1 = xk + sk.

— Choose Ak+1 to be

∗ close to Ak
∗ consistent with secant equation f(xk+1)− f(xk) = Ak+1sk
∗ for any direction q orthogonal to sk, want Ak+1q = Akq, i.e., no change in directions
orthogonal to Newton step
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— Broyden update is

Ak+1=Ak +
(yk −Aksk) (sk)>

(sk)>sk

yk≡f(xk+1)− f(xk)

— Stop iteration when f(xk) is close to zero, or when sk is small.

— Convergence: There exists ² > 0 such that if k x0 − x∗ k< ² and k A0 − J(x∗) k< ², then the
Broyden method converges superlinearly.

— Key properties of Broyden versus Newton

∗ Convergence asserted only xk, not Ak
∗ Need good initial guess for A0
∗ Each iteration of the Broyden method is cheap to compute
∗ Broyden method will need more iterations than Newton’s method.
∗ For large systems, Broyden dominates
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Use Least Squares To Improve Chances of Convergence

• Nonlinear Equations as an optimization problem
— Any solution to f(x) = 0 is a global solution of

0 = min
x

nX
i=1

fi(x)2 ≡ SSR (x) (5.6.1)

— Benefits of (5.6.1)

∗ Can use optimization procedures
∗ Will always converge to something
∗ May give a good initial guess for any solver

— Problems with (5.6.1):

∗ Hessian is generally ill-conditioned; roughly equals the square of the condition number of
J (x)

∗ (5.6.1) may have many local minima
• Powell’s Hybrid Method
— Do Newton, except check if Newton step reduces the value of SSR (x)

— If not, then switch to least squares

— Powell (1970) implemented procedurewhich avoids some conditioning problems of naive scheme.
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Simple Continuation Method

• Continuation idea
— Suppose that we

∗ want to solve f(x; t∗) = 0
∗ know that x = x0 solves f(x; t0) = 0

— If t∗ is near t0, use

∗ x0 as initial guess in solving f(x; t∗) = 0.
∗ Jacobian of f ¡x; t0¢ as initial guess for Jacobian of f ¡x; t0¢ - a hot start

— If t∗ is not close to t0, construct sequence of problems f(x; ti) = 0, t0 ≈ t1 ≈ · · · ≈ tn ≈ t∗.
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• Continuation method often converges in problems where standard methods fail, but continuation
may fail.

• Continuation method is an approach to mass production of solutions
— Solve f(x; t0) = 0 - a fixed cost

— Solve t sequence - a small (hopefully) marginal cost
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Homotopy Methods - Almost Sure Convergence

• Construct homotopy functions, H(x, t), H : Rn+1 → Rn, H ∈ C0(Rn+1), that continuously
deforms g into f :

H(x, 0) = g(x), H(x, 1) = f(x) (5.9.1)

— H(x, 0) should be a simple function with a unique, obvious zero

— H(x, 1) = f (x)

— Newton homotopy: H(x, t) = f(x)− (1− t)f(x0) for some x0.
— Fixed-point homotopy: H(x, t) = (1− t) (x− x0) + tf(x) for some x0.
— Linear Homotopy: H(x, t) = tf(x) + (1− t) g(x)
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• Examine the set
H−1(0) = {(x, t) | H(x, t) = 0}

— Idea: trace out a path in H−1(0) connecting zeros of H(x, 0) to zeros of f(x) = H(x, 1).

— Continuation will fail in the sense that there is no nearby solution at some values of t, but
homotopy aims at tracing out the path even as it turns down.
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• H−1(0) may not be simple; may have
— turning points

— branch points

— extraneous components
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• Parametric approach
— (x(s), t(s)) traces path in (x, t) as function of parameter s.

— Implicit differentiation of H(x(s), t(s)) = 0 w.r.t. s implies
nX
i=1

Hxi(x(s), t(s))x
0
i(s) +Ht(x(s), t(s))t

0(s) = 0 (5.9.3)

— Define y(s) = (x(s), t(s)); y obeys

dyi
ds
= (−1)i det

µ
∂H

∂y
(y)−i

¶
, i = 1, · · · , n + 1 (5.9.4)

— Garcia and Zangwill (1981) call (5.9.4) the basic differential equation.

— (5.9.4) is defined only if Hy = (Hx,Ht) has full rank; i.e., H is regular
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• Good homotopy choices: some basic theorems
— Suppose that f ∈ C2, D compact with nonempty interior. Define

H(x, t) = (1− t)(x− x0) + tf(x).
If H is regular, and H(x, t) 6= 0 for all 0 ≤ t < 1 and x ∈ ∂D, then f has a zero at the end of
a path joining t = 0 and t = 1 in H−1(0).

— If Bn ≡ {x ∈ Rn | |x| < 1} and f : Bn → Bn is C1, then

H : Bn × (0, 1)×Bn → Rn,

H(a, t, x) = (1− t)(x− a) + t(x− f(x)),
is regular and for almost all a ∈ Bn, H−1(0) is a smooth curve joining (0, a) to a fixed point of
f at t = 1.

— There is an open and dense subset of C2 functions, F , such that for f ∈ F , H−1(0) is a smooth
curve of H(x, t) = tf(x)− x.
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• Simplicial methods (a.k.a. piecewise linear homotopy) are also useful.
• Practical adaptations
— H−1(0) could have infinite length and oscillate as t→ 1; not a major concern in practice

— Could try more natural homotopies

∗ Homotopy parameter could be taste parameters
∗ Homotopy parameter could be an endowment parameter
∗ Economically intuitive homotopies may lack theory but be better in practice

— One often should switch to a Newton-style method after partially traversingH−1 (0); homotopy
methods are only linearly convergent but should get close enough for Newton to work.
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CGE Problems

• Assume
— m goods

— n agents

∗ utility of type i is ui(x), x ∈ Rm.
∗ endowment of good j for type i is eij.

• Strategy of economic theory:
— First, construct demand function for each agent given prices p ∈ Rm

di(p) = argmaxx u
i(x)

s.t. p · (x− ei) = 0, (5.10.1)

— Construct excess demand function: E(p) =
Pn

i (d
i(p)− ei).

— Equilibrium is p ∈ Rm such that E(p) = 0.
— By degree zero homogeneity of di(p), if E(p) = 0 then E(λp) = 0 for any 0 6= λ ∈ R; find
equilibrium on unit simplex.

— To prove existence, construct g(p) on unit simplex

Sm−1 =

⎧⎨⎩p
¯̄̄̄
¯̄ mX
j=1

pj = 1

⎫⎬⎭
such that E(p∗) ≤ 0 at any fixed point p∗ of g(p).
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• Computation: Fixed-Point Iteration Method
— Define

gj(p) =
pj +max [0, Ej (p)]

1 +
Pm

j=1max [0, Ej (p)]
(5.10.2)

— Since g : Sm−1 → Sm−1 is continuous, it has a fixed point.

— Could compute iteration pk+1 = g(pk).

— Easy if we have closed-form individual demand functions

— No need to compute Jacobians.

— Iterates stay in unit simplex.

— No assurance of convergence.
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• Computation: E(p) = 0 as a Zero Problem
— Send E(p) = 0 to a nonlinear equation solver.

— Must consider degree zero homogeneity of E. Hence we solve is

E1(p) = 0,
...

Em−1(p)= 0,Pm
i=1 pi = 1.

— Easy if we have closed-form individual demand functions

— Without closed-form expressions for di (p), we compute di (p) numerically.

∗ Easy problem: concave objective with linear constraint
∗ However, numerical error in di (p) computation implies
· Errors affect numerical approximation of Jacobians
· Errors in di (p) means that convergence criterion for E (p) = 0 must be relatively loose
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• Computation: First-Order Conditions and Market Balance
— Create large systemwith individuals’ first-order conditions andmarket equilibrium. Inm-good,
n-agent model

∗ First-order condition
uij(x

i) = pjλ
i, i = 1, · · · , n, j = 1, · · · ,m (5.10.3)

∗ Budget constraint for each agent
p · (xi − ei) = 0 , i = 1, · · · , n (5.10.4)

∗ Market balance for goods 1 through m− 1,
nX
i=1

(xij − eij) = 0, j = 1, · · · ,m− 1 (5.10.5)

∗ Simplex condition for prices X
j

pj = 1 (5.10.6)

∗ Unknowns are p, xi, and λi, i = 1, · · · , n.
— System is large, but has a sparse Jacobian

31



• Computation: Negishi Method
— Key observations

∗ Any competitive equilibrium maximizes social welfare
maxx1,x2,...

Pn
i=1 λ

iui(xi),

s.t.
Pn

i=1(e
i − xi) = 0. (5.10.7)

for some weights, λi > 0, i = 1, . . . , n.

∗ Prices are proportional to marginal utilities since pj/p1 = uij/ui1
∗ Negishi approach to computing general equilibrium: Look for λ s.t. solution to (5.10.7) is
equilibrium xi
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— Algorithm:

∗ For λ vector, compute X(λ) ∈ Rm×n that solves (5.10.7).
∗ Compute prices in unit simplex implied by X(λ)

pj =
u1
x1j
(X1(λ))Pm

`=1 u
1
x1`
(X1(λ))

≡ Pj(λ)

∗ Compute, for each i, excess wealthWi(λ) ≡ P (λ) · (ei −Xi(λ)).

∗ P (λ) are equilibrium prices iffWi(λ) = 0

∗ Negishi approach solves the system
Wi(λ) = 0, i = 1, . . . , n (5.10.8)

for λ, and then computes P (λ) to get equilibrium prices.

— Negishi approach is very good if there are n < m

— Representative agent model is an example.
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