$\begin{array}{c} Numerical\ Methods\ in\ Economics\\ \text{MIT Press, } 1998 \end{array}$

Notes for Chapter 5: Nonlinear Equations

October 7, 2007

Nonlinear Equations

- Two forms of equations: zeros and fixed points of $f: \mathbb{R}^n \to \mathbb{R}^n$
 - A zero of f is any x such that f(x) = 0
 - A fixed point of f is any x such that f(x) = x.
 - Note: x is a fixed point of f(x) iff it is a zero of f(x) x.
- Existence of solutions is examined in Brouwer's theorem and its extensions.
- Examples
 - Arrow-Debreu general equilibrium: find a price at which excess demand is zero
 - Nash equilibrium of games with continuous strategies
 - Transition paths of deterministic dynamic systems
 - Approximate policy functions in nonlinear dynamic problems

-

One-Dimensional Problems: Bisection

• Suppose that f(a) < 0 < f(b)

• Step 1: Pick a point $c \in (a, b)$

 $-\operatorname{If} f\left(c\right) = 0, \operatorname{stop}$

 $-\operatorname{If} f\left(c\right) < 0$, reduce interval to (c,b)

- If f(c) > 0, reduce interval to (a, c)

• Repeat

One-Dimensional Problems: Newton's Method

• Given guess x_k , compute linear approximation

$$f(x) \doteq f(x_k) + f'(x_k)(x - x_k)$$

and let x_{k+1} be zero of linear approximation:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
 (5.2.1)

• Graph of Newton's method:

• Convergence: Suppose f is C^2 and $f(x^*) = 0$. If x_0 is close to x^* , $f'(x^*) \neq 0$, and $|f''(x^*)/f'(x^*)| < \infty$, then (5.2.1) converges to x^* quadratically; that is,

$$\limsup_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^2} = \frac{1}{2} \frac{|f''(x^*)|}{|f'(x^*)|} < \infty .$$
 (5.2.2)

Pathological Examples

- Newton's method works well when it works, but it can fail.
- Example: $f(x) = x^{1/3}e^{-x^2}$.
 - Unique zero of f is at x = 0.
 - Newton's method is

$$x_{n+1} = x_n \left(1 - \frac{3}{1 - 6x_n^2} \right) \tag{5.2.4}$$

which has two pathologies.

- * For x_n small, (5.2.4) reduces to $x_{n+1} = -2x_n$; hence, (5.2.4) converges to 0 only if $x_0 = 0$ is the initial guess.
- * For x_n large, (5.2.4) becomes $x_{n+1} = x_n(1 + \frac{2}{x_n^2})$, which diverges, but will eventually satisfy stopping rule at some large x_n .
- Divergence due to $f''(0)/f'(0) = \infty$
- "Convergence" arises because e^{-x^2} factor squashes f at large x; in some sense, since $f(\pm \infty) = 0$.

• Example: convergence to a cycle:

A General Equilibrium Example

• Demand function is

$$\begin{aligned} d_{j}^{i}(p) &= \theta_{j}^{i} I^{i} p_{j}^{-\eta_{i}} \\ \theta_{j}^{i} &\equiv (a_{j}^{i})^{\eta_{i}} / \sum_{\ell=1}^{2} (a_{\ell}^{i})^{\eta_{i}} p_{\ell}^{(1-\eta_{i})} \end{aligned}$$

- Three equilibria: (0.5, 0.5), (0.1129, 0.8871), (0.8871, 0.1129).
- Reduce to a one-variable problem by $p_2 = 1 p_1$, producing

$$f(p_1) \equiv \sum_{i=1}^{2} d_1^i(p_1, 1 - p_1) - \sum_{i=1}^{2} e_1^i = 0$$
 (5.2.6)

• Notice: Newton's method may send p negative.

Secant Method

- Problem: f'(x) may be costly.
- Solution: secant method approximates $f'(x_k)$ with secant of f between x_k and x_{k-1} :

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$
(5.3.1)

• Convergence: If $f(x^*) = 0$, $f'(x^*) \neq 0$, and f''(x) is continuous near x^* , then (5.3.1) converges at rate $(1 + \sqrt{5})/2$, that is

$$\limsup_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^{(1+\sqrt{5})/2}} < \infty$$
(5.3.3)

~

Multivariate Equations: Gauss-Jacobi Algorithm

• Suppose $f: \mathbb{R}^n \to \mathbb{R}^n$, and we want to solve f(x) = 0:

$$f^{1}(x_{1}, x_{2}, \dots, x_{n}) = 0,$$

$$\vdots$$

$$f^{n}(x_{1}, x_{2}, \dots, x_{n}) = 0.$$
(5.4.1)

- Gauss-Jacobi method.
 - Given kth iterate, x^k , use equation i to compute x_i^{k+1} :

$$f^{1}(x_{1}^{k+1}, x_{2}^{k}, x_{3}^{k}, \cdots, x_{n}^{k}) = 0,$$

$$f^{2}(x_{1}^{k}, x_{2}^{k+1}, x_{3}^{k}, \cdots, x_{n}^{k}) = 0,$$

$$\vdots$$

$$f^{n}(x_{1}^{k}, x_{2}^{k}, \cdots, x_{n-1}^{k}, x_{n}^{k+1}) = 0.$$

$$(5.4.2)$$

- Gauss-Jacobi repeatedly solves n equations in one unknown.
- Gauss-Jacobi is affected by the indexing scheme.
 - * Otherwise, there are n(n-1)/2 different Gauss-Jacobi schemes.
 - * Sometimes there is a natural scheme implying diagonal dominance (or, gross substitutes)
 - * Strategy: choose indexing which makes Jacobian nearly diagonal

Multivariate Equations: Gauss-Seidel Algorithm

- Gauss-Jacobi: use new guess of x_i , x_i^{k+1} , only after we have computed the entire vector of new values, x^{k+1} .
- Gauss-Seidel: use new guess, x_i^{k+1} , as soon as it is available.
- Formal definition: construct x^{k+1} componentwise by solving

$$f^{1}(x_{1}^{k+1}, x_{2}^{k}, x_{3}^{k}, \cdots, x_{n}^{k}) = 0,$$

$$f^{2}(x_{1}^{k+1}, x_{2}^{k+1}, x_{3}^{k}, \cdots, x_{n}^{k}) = 0,$$

$$\vdots$$

$$f^{n-1}(x_{1}^{k+1}, \cdots, x_{n-2}^{k+1}, x_{n-1}^{k+1}, x_{n}^{k}) = 0,$$

$$f^{n}(x_{1}^{k+1}, \cdots, x_{n-2}^{k+1}, x_{n-1}^{k+1}, x_{n}^{k+1}) = 0.$$

$$(5.4.4)$$

- Both indexing and ordering matter in GS.
 - Back-substitution on triangular system is GS
 - Strategy: choose indexing and ordering which makes Jacobian nearly triangular

- Features of Gaussian methods:
 - Each step in GJ or GS is a nonlinear equation
 - * Usually solved by some iterative method.
 - * Economize on effort at each iteration with loose stopping rule.
 - Can apply extrapolation and acceleration methods
 - Can apply ideas at block level "block GJ, block GS"
 - * Find groups of variables and orderings such that Jacobian is nearly block diagonal or block triangular.
 - * Example: in {apples, oranges, cheddar cheese, swiss cheese} problem, put cheeses in one block, fruit in the other, and use Newton to solve blocks
 - Convergence is at best linear
 - * Discussion of convergence in chapter 3 applies here.
 - * Key fact: for any $x^{k+1} = G(x^k)$ the spectral radius of $G_x(x^*)$ is asymptotic linear rate of convergence.

Fixed-Point Iteration

• The simplest iterative method for solving x = f(x) is

$$x^{k+1} = f(x^k) (5.4.8)$$

called fixed-point iteration; also known as successive approximation, successive substitution, or function iteration.

• Method is sensitive to transformations: Consider

$$x^3 - x - 1 = 0 (5.3.3)$$

– Rewrite as $x = (x+1)^{1/3}$; then the iteration

$$x_{k+1} = (x_k + 1)^{1/3}. (5.3.4)$$

converges to a solution of (5.3.3) if $x_0 = 1$.

- Rewrite (5.3.3) as $x = x^3 - 1$; then the iteration

$$x_{k+1} = x_k^3 - 1 (5.3.5)$$

diverges to $-\infty$ if $x_0 = 1$.

- Naive implementations of the fixed-point iteration approach often fail.
- However, most algorithms have the form $x_{k+1} = f(x_k)$.
- Aim: construct fixed-point iteration which works.

Contraction Mapping Case of Function Iteration

- For a special class of functions, fixed-point iteration will work well.
- A differentiable contraction map on D is any C^1 $f: D \to R^n$ defined on a closed, bounded, convex set $D \subset R^n$ such that
 - $-f(D) \subset D$, and
 - $-\max_{x\in D} || J(x) ||_{\infty} < 1, J(x)$ is Jacobian of f.
- (Contraction mapping theorem) If f is a differentiable contraction map on D, then
 - -x = f(x) has a unique solution, $x^* \in D$;
 - $-x^{k+1} = f(x^k)$ converges to x^* ; and
 - there is a sequence $\epsilon_k \to 0$ such that

$$\| x^* - x^{k+1} \|_{\infty} \le (\| J(x^*) \|_{\infty} + \epsilon_k) \| x^* - x^k \|_{\infty}$$

• If $f(x^*) = x^*$, f is Lipschitz at x^* , and $\rho(J(x^*)) < 1$, then for x^0 close to x^* , $x^{k+1} = f(x^k)$ is convergent.

Stopping Rule Problems for Multivariate Systems

- Use ideas from chapter 1
- First, use a rule for stopping.
 - If we want $||x^k x^*|| < \epsilon$, we continue until $||x^{k+1} x^k|| \le (1 \beta)\epsilon$ where $\beta = \rho(G_x(x^*))$.
 - Sometimes we know β , as with some contraction mappings
 - Otherwise, estimate β with

$$\hat{\beta} = \left(\frac{\|x^k - x^{k+1}\|}{\|x^{k-L} - x^{k+1}\|}\right)^{1/L}$$

for some L.

- Second, check that $f(x^k)$ is close to zero.
 - Require that $|| f(x^k) || \le \delta$ for some small δ .
 - You should have each component of f small
 - Be careful about units; check should be unit-free
- δ and ϵ should not be less than square root of error in computing f.

Newton's Method for Multivariate Equations

- Sequential linear approximations:
 - Replace f with a linear approximation at x^k
 - Solve linear approximation for x^{k+1}
- Formally:
 - Newton approx around x^k is $f(x) \doteq f(x^k) + J(x^k)(x x^k)$.
 - Zero of approx is

$$x^{k+1} = x^k - J(x^k)^{-1} f(x^k)$$
(5.5.1)

• Convergence: If $f(x^*) = 0$, $\det(J(x^*)) \neq 0$ and J(x) is Lipschitz near x^* , then for x^0 near x^* , the sequence defined by (5.5.1) satisfies

$$\lim_{k \to \infty} \frac{\|x^{k+1} - x^*\|}{\|x^k - x^*\|^2} < \infty \tag{5.5.2}$$

• Problems with Newton method

- Jacobian, J(x), may be expensive to compute (but not if you use automatic differentiation)
- May not converge
- Should really be called the Newton-Raphson-Fourier-Simpson method

• Solutions

- Broyden approximates J(x)
- Powell hybrid improves likelihood of convergence.
- Homotopy methods will converge

Secant Method (Broyden)

- Jacobian, J(x), is costly to compute
 - Analytic expressions are difficult to compute
 - Finite-difference approximations require n^2 evaluations of f.
- In R, we used the secant; can we do this for R^n ?
- Broyden method
 - Start with initial Jacobian guess, A_0
 - Use A_k to compute the Newton step, s^k : $A_k s^k = -f(x^k)$
 - $\text{ Set } x^{k+1} = x^k + s^k.$
 - Choose A_{k+1} to be
 - * close to A_k
 - * consistent with secant equation $f(x^{k+1}) f(x^k) = A_{k+1}s^k$
 - * for any direction q orthogonal to s^k , want $A_{k+1}q = A_kq$, i.e., no change in directions orthogonal to Newton step

- Broyden update is

$$A_{k+1} = A_k + \frac{(y_k - A_k s^k) (s^k)^\top}{(s^k)^\top s^k}$$
$$y_k \equiv f(x^{k+1}) - f(x^k)$$

- Stop iteration when $f(x^k)$ is close to zero, or when s^k is small.
- Convergence: There exists $\epsilon > 0$ such that if $||x^0 x^*|| < \epsilon$ and $||A_0 J(x^*)|| < \epsilon$, then the Broyden method converges superlinearly.
- Key properties of Broyden versus Newton
 - * Convergence asserted only x^k , not A_k
 - * Need good initial guess for A_0
 - * Each iteration of the Broyden method is cheap to compute
 - * Broyden method will need more iterations than Newton's method.
 - * For large systems, Broyden dominates

Use Least Squares To Improve Chances of Convergence

- Nonlinear Equations as an optimization problem
 - Any solution to f(x) = 0 is a global solution of

$$0 = \min_{x} \sum_{i=1}^{n} f^{i}(x)^{2} \equiv SSR(x)$$
 (5.6.1)

- Benefits of (5.6.1)
 - * Can use optimization procedures
 - * Will always converge to something
 - * May give a good initial guess for any solver
- Problems with (5.6.1):
 - * Hessian is generally ill-conditioned; roughly equals the square of the condition number of $J\left(x\right)$
 - * (5.6.1) may have many local minima
- Powell's Hybrid Method
 - Do Newton, except check if Newton step reduces the value of SSR(x)
 - If not, then switch to least squares
 - Powell (1970) implemented procedure which avoids some conditioning problems of naive scheme.

Simple Continuation Method

- Continuation idea
 - Suppose that we
 - * want to solve $f(x; t^*) = 0$
 - * know that $x = x^0$ solves $f(x; t^0) = 0$
 - If t^* is near t^0 , use
 - * x^0 as initial guess in solving $f(x; t^*) = 0$.
 - * Jacobian of $f(x;t^0)$ as initial guess for Jacobian of $f(x;t^0)$ a hot start
 - If t^* is not close to t^0 , construct sequence of problems $f(x;t^i)=0,\,t^0\approx t^1\approx\cdots\approx t^n\approx t^*.$

• Continuation method often converges in problems where standard methods fail, but continuation may fail.

- Continuation method is an approach to mass production of solutions
 - Solve $f(x; t^0) = 0$ a fixed cost
 - Solve t sequence a small (hopefully) marginal cost

Homotopy Methods - Almost Sure Convergence

• Construct homotopy functions, H(x,t), $H: \mathbb{R}^{n+1} \to \mathbb{R}^n$, $H \in C^0(\mathbb{R}^{n+1})$, that continuously deforms g into f:

$$H(x,0) = g(x), \quad H(x,1) = f(x)$$
 (5.9.1)

- -H(x,0) should be a simple function with a unique, obvious zero
- -H(x,1) = f(x)
- Newton homotopy: $H(x,t) = f(x) (1-t)f(x^0)$ for some x^0 .
- $-\textit{Fixed-point homotopy: } H(x,t) = (1-t)\left(x-x^0\right) + tf(x) \text{ for some } x^0.$
- Linear Homotopy: H(x,t) = tf(x) + (1-t)g(x)

- -

• Examine the set

$$H^{-1}(0) = \{(x,t) \mid H(x,t) = 0\}$$

- Idea: trace out a path in $H^{-1}(0)$ connecting zeros of H(x,0) to zeros of f(x)=H(x,1).
- Continuation will fail in the sense that there is no nearby solution at some values of t, but homotopy aims at tracing out the path even as it turns down.

- ~

- $H^{-1}(0)$ may not be simple; may have
 - turning points
 - branch points
 - extraneous components

_ .

• Parametric approach

- -(x(s), t(s)) traces path in (x, t) as function of parameter s.
- Implicit differentiation of H(x(s),t(s))=0 w.r.t. s implies

$$\sum_{i=1}^{n} H_{x_i}(x(s), t(s)) x_i'(s) + H_t(x(s), t(s)) t'(s) = 0$$
(5.9.3)

- Define y(s) = (x(s), t(s)); y obeys

$$\frac{dy_i}{ds} = (-1)^i \det \left(\frac{\partial H}{\partial y}(y)_{-i}\right), \quad i = 1, \dots, n+1$$
 (5.9.4)

- Garcia and Zangwill (1981) call (5.9.4) the basic differential equation.
- (5.9.4) is defined only if $H_y = (H_x, H_t)$ has full rank; i.e., H is regular

_ . .

- Good homotopy choices: some basic theorems
 - Suppose that $f \in \mathbb{C}^2$, D compact with nonempty interior. Define

$$H(x,t) = (1-t)(x-x^{0}) + tf(x).$$

If H is regular, and $H(x,t) \neq 0$ for all $0 \leq t < 1$ and $x \in \partial D$, then f has a zero at the end of a path joining t = 0 and t = 1 in $H^{-1}(0)$.

- If $B^n \equiv \{x \in \mathbb{R}^n \mid |x| < 1\}$ and $f : \overline{B^n} \to \overline{B^n}$ is C^1 , then

$$H: B^n \times (0,1) \times B^n \to R^n,$$

 $H(a,t,x) = (1-t)(x-a) + t(x-f(x)),$

is regular and for almost all $a \in B^n$, $H^{-1}(0)$ is a smooth curve joining (0, a) to a fixed point of f at t = 1.

- There is an open and dense subset of C^2 functions, \mathcal{F} , such that for $f \in \mathcal{F}$, $H^{-1}(0)$ is a smooth curve of H(x,t) = tf(x) - x.

- Simplicial methods (a.k.a. piecewise linear homotopy) are also useful.
- Practical adaptations
 - $-H^{-1}(0)$ could have infinite length and oscillate as $t \to 1$; not a major concern in practice
 - Could try more natural homotopies
 - * Homotopy parameter could be taste parameters
 - * Homotopy parameter could be an endowment parameter
 - * Economically intuitive homotopies may lack theory but be better in practice
 - One often should switch to a Newton-style method after partially traversing $H^{-1}(0)$; homotopy methods are only linearly convergent but should get close enough for Newton to work.

CGE Problems

- Assume
 - -m goods
 - -n agents
 - * utility of type i is $u^i(x)$, $x \in \mathbb{R}^m$.
 - * endowment of good j for type i is e_i^i .
- Strategy of economic theory:
 - First, construct demand function for each agent given prices $p \in \mathbb{R}^m$

$$d^{i}(p) = \arg\max_{x} u^{i}(x)$$

s.t. $p \cdot (x - e^{i}) = 0,$ (5.10.1)

- Construct excess demand function: $E(p) = \sum_{i=1}^{n} (d^{i}(p) e^{i})$.
- Equilibrium is $p \in \mathbb{R}^m$ such that E(p) = 0.
- By degree zero homogeneity of $d^i(p)$, if E(p)=0 then $E(\lambda p)=0$ for any $0\neq\lambda\in R$; find equilibrium on unit simplex.
- To prove existence, construct g(p) on unit simplex

$$S^{m-1} = \left\{ p \left| \sum_{j=1}^{m} p_j = 1 \right. \right\}$$

such that $E(p^*) \leq 0$ at any fixed point p^* of g(p).

- Computation: Fixed-Point Iteration Method
 - Define

$$g_j(p) = \frac{p_j + \max[0, E_j(p)]}{1 + \sum_{j=1}^m \max[0, E_j(p)]}$$
(5.10.2)

- Since $g: S^{m-1} \to S^{m-1}$ is continuous, it has a fixed point.
- Could compute iteration $p^{k+1} = g(p^k)$.
- Easy if we have closed-form individual demand functions
- No need to compute Jacobians.
- Iterates stay in unit simplex.
- No assurance of convergence.

- -

- ullet Computation: E(p)=0 as a Zero Problem
 - Send E(p) = 0 to a nonlinear equation solver.
 - Must consider degree zero homogeneity of E. Hence we solve is

$$E_1(p) = 0,$$

 \vdots
 $E_{m-1}(p) = 0,$
 $\sum_{i=1}^{m} p_i = 1.$

- Easy if we have closed-form individual demand functions
- Without closed-form expressions for $d^{i}(p)$, we compute $d^{i}(p)$ numerically.
 - * Easy problem: concave objective with linear constraint
 - * However, numerical error in $d^{i}\left(p\right)$ computation implies
 - · Errors affect numerical approximation of Jacobians
 - · Errors in $d^{i}\left(p\right)$ means that convergence criterion for $E\left(p\right)=0$ must be relatively loose

- Computation: First-Order Conditions and Market Balance
 - Create large system with individuals' first-order conditions and market equilibrium. In m-good, n-agent model
 - * First-order condition

$$u_j^i(x^i) = p_j \lambda^i, \quad i = 1, \dots, n, \quad j = 1, \dots, m$$
 (5.10.3)

* Budget constraint for each agent

$$p \cdot (x^i - e^i) = 0$$
 , $i = 1, \dots, n$ (5.10.4)

* Market balance for goods 1 through m-1,

$$\sum_{i=1}^{n} (x_j^i - e_j^i) = 0, \quad j = 1, \dots, m-1$$
 (5.10.5)

* Simplex condition for prices

$$\sum_{j} p_j = 1 \tag{5.10.6}$$

- * Unknowns are p, x^i , and $\lambda^i, i = 1, \dots, n$.
- System is large, but has a sparse Jacobian

- Computation: Negishi Method
 - Key observations
 - * Any competitive equilibrium maximizes social welfare

$$\max_{x^1, x^2, \dots} \sum_{i=1}^n \lambda^i u^i(x^i),$$

s.t.
$$\sum_{i=1}^n (e^i - x^i) = 0.$$
 (5.10.7)

for some weights, $\lambda^i > 0$, i = 1, ..., n.

- * Prices are proportional to marginal utilities since $p_j/p_1=u_j^i/u_1^i$
- * Negishi approach to computing general equilibrium: Look for λ s.t. solution to (5.10.7) is equilibrium x^i

- Algorithm:
 - * For λ vector, compute $X(\lambda) \in \mathbb{R}^{m \times n}$ that solves (5.10.7).
 - * Compute prices in unit simplex implied by $X(\lambda)$

$$p_{j} = \frac{u_{x_{j}^{1}}^{1}(X^{1}(\lambda))}{\sum_{\ell=1}^{m} u_{x_{\ell}^{1}}^{1}(X^{1}(\lambda))} \equiv P_{j}(\lambda)$$

- * Compute, for each i, excess wealth $W_i(\lambda) \equiv P(\lambda) \cdot (e^i X^i(\lambda))$.
- * $P(\lambda)$ are equilibrium prices iff $W_i(\lambda) = 0$
- * Negishi approach solves the system

$$W_i(\lambda) = 0, \ i = 1, \dots, n$$
 (5.10.8)

for λ , and then computes $P(\lambda)$ to get equilibrium prices.

- Negishi approach is very good if there are n < m
- Representative agent model is an example.