$\begin{array}{c} Numerical\ Methods\ in\ Economics\\ \text{MIT Press, } 1998 \end{array}$

Notes for Chapter 4: Optimization

October 3, 2007

Optimization Problems

• Canonical problem:

$$\min_{x} f(x)$$

$$s.t. \ g(x) = 0,$$

$$h(x) \le 0,$$

- $-f: \mathbb{R}^n \to \mathbb{R}$ is the objective function
- $-g: \mathbb{R}^n \to \mathbb{R}^m$ is the vector of m equality constraints
- $-h: \mathbb{R}^n \to \mathbb{R}^\ell$ is the vector of ℓ inequality constraints.

• Examples:

- Maximization of consumer utility subject to a budget constraint
- Optimal incentive contracts
- Portfolio optimization
- Life-cycle consumption

• Assumptions

- Always assume f, g, and h are continuous
- Usually assume f, g, and h are C^1
- Often assume f, g, and h are C^3

One-D Unconstrained Minimization: Newton's Method

$$\min_{x \in \mathbb{R}} \quad f(x),$$

- Assume f(x) is C^2 functions f(x)
 - At a point a, the quadratic polynomial, p(x)

$$p(x) \equiv f(a) + f'(a)(x - a) + \frac{f''(a)}{2}(x - a)^{2}.$$

is the second-order approximation of f(x) at a

- Approximately minimize f by minimizing p(x)
- If f''(a) > 0, then p is convex, and $x_m = a f'(a)/f''(a)$.
- Hope: x_m is closer than a to the minimum.

• Newton's method:

Algorithm 4.2 Newton's Method in \mathbb{R}^1

Initialize. Choose initial guess x_0 and stopping parameters $\delta, \epsilon > 0$.

Step 1.
$$x_{k+1} = x_k - f'(x_k)/f''(x_k)$$
.

Step 2. If
$$|x_k - x_{k+1}| < \epsilon(1 + |x_k|)$$
 and $|f'(x_k)| < \delta$, STOP and report success; else go to step 1.

• Properties:

- Newton's method finds critical points, that is, solutions to f'(x) = 0, not min or max.
- If x_n converges to x^* , must check $f''(x^*)$ to check if min or max
- Only find local extrema.
- Good news: convergence is locally quadratic.

Theorem 1 Suppose that f(x) is minimized at x^* , C^3 in a neighborhood of x^* , and that $f''(x^*) \neq 0$. Then there is some $\epsilon > 0$ such that if $|x_0 - x^*| < \epsilon$, then the x_n sequence defined in (4.1.2) converges quadratically to x^* ; in particular,

$$\lim_{n \to \infty} \frac{|x_{n+1} - x^*|}{|x_n - x^*|^2} = \frac{1}{2} \left| \frac{f'''(x^*)}{f''(x^*)} \right| \tag{4.1.3}$$

is the quadratic rate of convergence.

- Consumer problem example:
 - Consumer has \$1; price of x is \$2, price of y is \$3, utility function is $x^{1/2} + 2y^{1/2}$.
 - If θ is amount spent on x then we have

$$\max_{\theta} \quad \left(\frac{\theta}{2}\right)^{1/2} + 2\left(\frac{1-\theta}{3}\right)^{1/2} \tag{4.1.6}$$

- Solution $\theta^* = 3/11 = .272727$
- If $\theta_0 = 1/2$, Newton iteration is

0.5, 0.2595917942, 0.2724249335, 0.2727271048, 0.2727272727

and magnitude of the errors are

$$2.3(-1)$$
, $1.3(-2)$, $3.1(-4)$, $1.7(-7)$, $4.8(-14)$

- Problems with Newton's method
 - May not converge if initial guess is too far away from solution.
 - -f''(x) may be difficult to calculate.

Multidimensional Unconstrained Optimization: Comparison Methods

• Grid Search

- Pick a finite set of points, X; for example, a Cartesian grid:

$$V = \{v_i | i = 1, ..., n\}$$
$$X = \{x \in \mathbb{R}^n | \forall i, x_i \in V\}$$

- Compute $f(x), x \in X$, and locate max
- Should always do some grid search first.
- Grid search is slooooooow

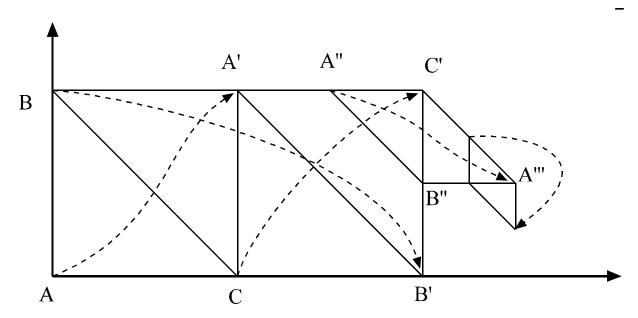
_

• Polytope Methods (a.k.a. Nelder-Mead, simplex, "amoeba")

Algorithm 4.3 Polytope Algorithm

Initialize. Choose the stopping rule parameter ϵ . Choose an initial simplex $\{x^1, x^2, \dots, x^{n+1}\}$.

- Step 1. Reorder vertices so $f(x^i) \ge f(x^{i+1}), i = 1, \dots, n$.
- Step 2. Look for least i s.t. $f(x^i) > f(y^i)$ where y^i is reflection of x^i . If such an i exists, set $x^i = y^i$, and go to step 1. Otherwise, go to step 3.
- Step 3. Stopping rule: If the width of the current simplex is less than ϵ , STOP. Otherwise, go to step 4.
- Step 4. Shrink simplex: For $i = 1, 2, \dots, n$ set $x^i = \frac{1}{2}(x^i + x^{n+1})$, and go to step 1.



Multidimensional Optimization: Newton's Method

• Idea: Given x^k , compute local quadratic approximation, p(x), of f(x) around x^k , and let x^{k+1} be max of p(x)

Algorithm 4.4 Newton's Method in \mathbb{R}^n

Initialize. Choose x^0 and stopping parameters δ and $\epsilon > 0$.

- Step 1. Compute Hessian, $H(x^k)$, and gradient, $\nabla f(x^k)$, and solve $H(x^k)s^k = -(\nabla f(x^k))^{\top}$ for the step s^k .
- Step 2. $x^{k+1} = x^k + s^k$.
- Step 3. If $||x^k x^{k+1}|| < \epsilon(1 + ||x^k||)$, go to step 4; else go to step 1.
- Step 4. If $\| \nabla f(x^{k+1}) \| < \delta(1 + |f(x^{k+1})|)$, STOP and report success; else STOP and report convergence to nonoptimal point.

• Stopping rule: Choose ε and δ to be bigger than square root of machine epsilon.

Theorem 2 Suppose that f(x) is C^3 , minimized at x^* , and that $H(x^*)$ is nonsingular. Then there is some $\epsilon > 0$ such that if $||x^0 - x^*|| < \epsilon$, then the sequence defined in (4.3.1) converges quadratically to x^* .

• Problems with Newton's method:

- May not converge
- Computational demands may be excessive
 - * need at least $\mathcal{O}(n^2)$ time to compute $H(x^k)$, perhaps more if one does not have efficient code for H(x)
 - * need $\mathcal{O}(n^2)$ space for $H(x^k)$
 - * need $\mathcal{O}(n^3)$ time to solve $H(x^k)s^k = -(\nabla f(x^k))^{\top}$ for s^k
- May converge to local solution, not global solution
- We now consider methods which solve these problems.

Direction Set Methods

- Problem: may not converge, or go to wrong kind of extremum
- Solution: if we always move uphill, we will eventually get to a local maximum

Algorithm 4.5 Generic Direction Method

Initialize. Choose initial x^0 and stopping parameters δ and $\epsilon > 0$.

Step 1. Compute a search direction s^k .

Step 2. Solve $\lambda_k = \arg\min_{\lambda} f(x^k + \lambda s^k)$.

Step 3. $x^{k+1} = x^k + \lambda_k s^k$.

Step 4. If $||x^k - x^{k+1}|| < \epsilon(1+||x^k||)$, go to step 5; else go to step 1.

Step 5. If $\| \nabla f(x^{k+1}) \| < \delta(1 + f(x^{k+1}))$, STOP and report success; else STOP and report convergence to nonoptimal point.

- Possible direction set methods
 - Coordinate Directions
 - * Let search directions be coordinate, x_1 , x_2 , etc.
 - * Search direction $s_{2n+k} = x_k$
 - Steepest Descent: $s_k = \nabla f(x^k)$
 - Newton's Method with Line Search: $H_k s^k = -(\nabla f(x^k))^{\top}$
- These will always converge to a local optimum.

Quasi-Newton Methods

- Problem: Hessians are expensive to compute
- Solution: Don't need true Hessians (see Carter, 1993), so approximate them

Generic Quasi-Newton Method

Initialize. Choose initial x^0 , Hessian H^0 (I) and stopping parameters δ and $\epsilon > 0$.

- Step 1. Solve $H_k s^k = -(\nabla f(x^k))^{\top}$ for the search direction s^k .
- Step 2. Solve $\lambda_k = \arg\min_{\lambda} f(x^k + \lambda s^k)$
- Step 3. $x^{k+1} = x^k + \lambda_k s^k$.
- Step 4. Compute H_{k+1} using H_k , $\nabla f(x^{k+1})$, x^{k+1} , $\nabla f(x^k)$, etc.
- Step 5. If $||x^k x^{k+1}|| < \epsilon(1+||x^k||)$, go to step 6;. else go to step 1
- Step 6. If $\| \nabla f(x^{k+1}) \| < \delta |1 + f(x^{k+1})|$, STOP and report success; else STOP and report convergence to nonoptimal point.

• Example: BFGS:

$$\begin{aligned} z_k &= x^{k+1} - x^k \\ y_k &= (\nabla f(x^{k+1}))^\top - (\nabla f(x^k))^\top \\ H_{k+1} &= H_k - \frac{H_k z_k z_k^\top H_k}{z_k^\top H_k z_k} + \frac{y_k y_k^\top}{y_k^\top z_k} \end{aligned}$$

- Preserves positive definiteness
- Uses only gradients that are already needed
- Warning: denominators may get too small; should keep them away from zero since small z_k does not necessarily stop iteration.
- Note: The Hessian iterates H_k may not converge to true Hessian at solution, even if x_k converges to solution.

Monopoly Example

- We look at a simple monopoly pricing example:
 - Utility function: if M is spending on other goods,

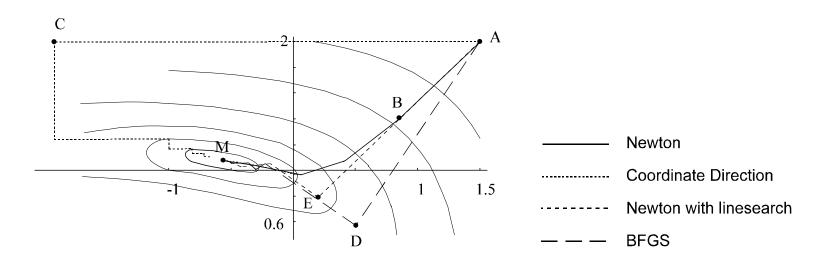
$$U(Y,Z) = (Y^{\alpha} + Z^{\alpha})^{\eta/\alpha} + M = u(Y,Z) + M,$$

- Output Y and Z implies prices of u_Y and u_Z .
- Monopoly problem is

$$\max_{Y,Z} \Pi(Y,Z) \equiv Y u_Y(Y,Z) + Z u_Z(Y,Z) - C_Y(Y) - C_Z(Z), \tag{1}$$

– Restate in terms of $y \equiv \ln Y$ and $z \equiv \ln Z$, $\pi(y,z) \equiv \Pi \; (e^y,e^z)$

$$\max_{y,z} \pi(y,z),\tag{2}$$



Example: A Dynamic Optimization Problem

- Life-cycle savings problem.
 - an individual lives for T periods
 - earns wages w_t in period $t, t = 1, \dots, T$
 - consumes c_t in period t
 - earns interest on savings per period at rate r
 - utility function $\sum_{t=1}^{T} \beta^t u(c_t)$.
- Define S_t to be end-of-period savings:

$$S_{t+1} = (1+r)S_t + w_{t+1} - c_{t+1}.$$

- The constraint $S_T = 0 = S_0$
- Substitute $c_t = S_{t-1}(1+r) + w_t S_t$
- Problem now has T-1 choices:

$$\max_{S_t} \sum_{t=1}^{T} \beta^t u(S_{t-1}(1+r) + w_t - S_t)$$
s.t. $S_T = S_0 = 0$ (3)

- Appears intractable for large T.
- However, there are two ways to exploit the special structure of this problem and to efficiently solve this problem.

• Newton's method

- Looks impractical if T large.
- Hessian is tridiagonal (a sparse matrix), so Newton step is easy to compute.
- Sparse Hessians are common in dynamic problems
- You must recognize this and implement Newton or quasi-Newton method with sparse Hessians

Domain Problems

• Suppose $S_T = S_0 = 0$ and you want to solve

$$\max_{S_t} \sum_{t=1}^{T} \beta^t \log (S_{t-1}(1+r) + w_t - S_t)$$

- Newton's method will take the guess S^k and compute a new guess S^{k+1} .
- Problem: S^{k+1} could imply negative consumption, $S_{t-1}(1+r)+w_t-S_t$, at some t, causing computer to crash.
- A possible solution: Alter objective function
 - E.G.; replace $u(c) = \log c$ with, for some small $\varepsilon > 0$

$$\widetilde{u}(c) = \begin{cases} u(c), & c > \varepsilon \\ u(\varepsilon) + u'(\varepsilon)(c - \varepsilon) + u''(\varepsilon)(c - \varepsilon)^2/2, & c \le \varepsilon \end{cases}$$

- Maintains curvature
- Equals real u(c) on most of domain, which hopefully includes solution
- Not as easy to apply to multivariate functions
- General solution: add constraints to keep this from happening.

Nonlinear Least Squares

• Objective function has form, $f^i: \mathbb{R}^n \to \mathbb{R}, i = 1, ..., m$.:

$$\min_{x} \frac{1}{2} \sum_{i=1}^{m} f^{i}(x)^{2} \equiv S(x),$$

- Idea: use simple approximation of Hessian
- In econometric applications
 - $-f^i(x)$ are $g(\beta, y^i)$,
 - * $x = \beta$ is parameter vector
 - * y^i are the data.
 - * $g(\beta, y^i)$ is residual for observation i
 - $-S(\beta)$ is the sum of squared residuals at β .
- Let f(x) denote the column vector $(f^i(x))_{i=1}^m$.
 - Let J(x) be the Jacobian of $f(x) \equiv (f^1(x), \dots, f^m(x))^{\top}$.
 - Let $f_{\ell}^i \equiv \frac{\partial f^i}{\partial x_{\ell}}$ and $f_{j\ell}^i \equiv \frac{\partial^2 f^i}{\partial x_j \partial x_{\ell}}$.
 - The gradient of S(x) is $J(x)^{\top} f$: $S_{\ell}(x) = \sum_{i=1}^{m} f_{\ell}^{i}(x) f^{i}(x)$.
 - The Hessian of S(x) is $J(x)^{\top}J(x)+G(x)$, where

$$G_{j\ell}(x) = \sum_{i=1}^{m} f_{j\ell}^{i}(x) f^{i}(x).$$

- Special structure of the gradient and Hessian.
 - $-f_{i}^{i}(x)$ terms are needed to compute gradient of S(x).
 - If f(x) = 0, then Hessian is just $J(x)^{\top}J(x)$: easy to compute.
 - A problem where f(x) is small at the solution is called a *small residual problem*; otherwise, it is a *large residual problem*.
- Gauss-Newton algorithm
 - Do Newton except use $J(x)^{\top}J(x)$ for Hessian approx.

$$s^{k} = -(J(x^{k})^{\top} J(x^{k}))^{-1} (\nabla f(x^{k}))^{\top}$$
(4.5.1)

and avoid computing second derivatives of f.

- Natural to use for small residual problems.
- Works very well when it works.

- Problems.
 - $-J(x)^{\top}J(x)$ is likely to be poorly conditioned, since it is the "square" of a matrix.
 - -J(x) may be poorly conditioned itself, particularly in statistical contexts.
 - Gauss-Newton step may not be a descent direction.
- Solution: Levenberg-Marquardt algorithm.
 - Use $J(x)^{\top}J(x) + \lambda I$ for some scalar λ (I is identity matrix):

$$s^k = -(J(x^k)^\top J(x^k) + \lambda I)^{-1} (\nabla f(x^k))^\top$$

- The λI term reduces conditioning problems by "adding a little piece of the identity matrix"
- $-s^k$ will be descent direction for large λ since s^k gets closer to steepest descent direction λ .

Linear Programming

• Canonical linear programming problem is

$$\min_{x} a^{\top} x
s.t. Cx = b,
x \ge 0.$$
(4)

- $-Dx \le f$: use slack variables, s, and constraints $Dx + s = f, s \ge 0$.
- $-Dx \ge f$: use $Dx s = f, s \ge 0$, s is vector of surplus variables.
- $-x \ge d$: define y = x d and min over y
- $-x_i$ free: define $x_i = y_i z_i$, add constraints $y_i, z_i \ge 0$, and min over (y_i, z_i) .

- ~

• Basic method is the *simplex method*. Figure 4.4 shows example:

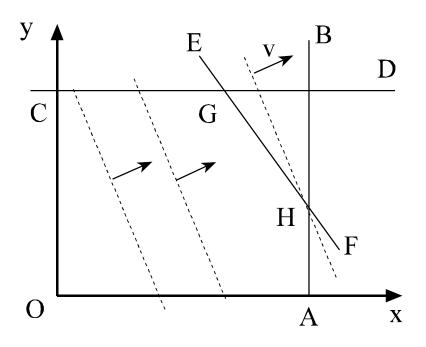
$$\min_{x,y} -2x - y$$

$$s.t. \ x + y \le 4, \quad x, y \ge 0,$$

$$x \le 3, \quad y \le 2.$$

- Find some point on boundary of constraints, such as A.
- Step 1: Note which constraints are active at A and points nearby.
- Find feasible directions and choose steepest descent direction.
- Figure 4.4 has two directions: from A: to B and to O, with B better.
- Follow that direction to next vertex on boundary, and go back to step 1.
- Continue until no direction reduces the objective: point H.
- Stops in finite time since there are only a finite set of vertices.

_ .



- General History
 - Goes back to Dantzig (1951).
 - Fast on average.
 - Worst case time is exponential in number of variables and constraints
 - Software implementations vary in numerical stability
- Interior point methods
 - Developed in 1980's
 - Better on large problems

Constrained Nonlinear Optimization

• General problem:

$$\min_{x} f(x)$$

$$s.t. \ g(x) = 0$$

$$h(x) \le 0$$
(4.7.1)

- $-f:X\subseteq\mathbb{R}^n\to\mathbb{R}$: n choices
- $-g:X\subseteq\mathbb{R}^n\to\mathbb{R}^m$: m equality constraints
- $-h: X \subseteq \mathbb{R}^n \to \mathbb{R}^\ell$: ℓ inequality constraints
- $-f, g, \text{ and } h \text{ are } C^2 \text{ on } X$
- Linear Independence Constraint Qualification (LICQ): The binding constraints at the solution are linearly independent
- Kuhn-Tucker theorem: if there is a local minimum at x^* then there are multipliers $\lambda^* \in \mathbb{R}^m$ and $\mu^* \in \mathbb{R}^\ell$ such that x^* is a stationary, or critical point of \mathcal{L} , the Lagrangian,

$$\mathcal{L}(x,\lambda,\mu) = f(x) + \lambda^{\top} g(x) + \mu^{\top} h(x)$$
(4.7.2)

If LICQ holds then the multipliers are unique; otherwise, they are called "unbounded".

_ .

• First-order conditions, $\mathcal{L}_x(x^*, \lambda^*, \mu^*) = 0$, imply that (λ^*, μ^*, x^*) solves

$$f_x + \lambda^{\top} g_x + \mu^{\top} h_x = 0$$

$$\mu_i h^i(x) = 0, \quad i = 1, \dots, \ell$$

$$g(x) = 0$$

$$h(x) \le 0$$

$$\mu \ge 0$$

$$(4.7.3)$$

_ . .

A Kuhn-Tucker Approach

- Idea: try all possible Kuhn-Tucker systems and pick best
 - Let \mathcal{J} be the set $\{1, 2, \cdots, \ell\}$.
 - For a subset $\mathcal{P} \subset \mathcal{J}$, define the \mathcal{P} problem, corresponding to a combination of binding and nonbinding inequality constraints

$$g(x) = 0$$

$$h^{i}(x) = 0, \quad i \in \mathcal{P},$$

$$\mu^{i} = 0, \quad i \in \mathcal{J} - \mathcal{P},$$

$$f_{x} + \lambda^{\top} g_{x} + \mu^{\top} h_{x} = 0.$$

$$(4.7.4)$$

- Solve (or attempt to do so) each \mathcal{P} -problem
- Choose the best solution among those \mathcal{P} -problems with solutions consistent with all constraints.
- We can do better in general.

Penalty Function Approach

- Most constrained optimization methods use a *penalty function* approach:
 - Replace constrained problem with related unconstrained problem.
 - Permit anything, but make it "painful" to violate constraints.
- Penalty function: for canonical problem

$$\min_{x} f(x)
s.t. \quad g(x) = a,
h(x) \le b.$$
(4.7.5)

construct the penalty function problem

$$\min_{x} f(x) + \frac{1}{2}P\left(\sum_{i} (g^{i}(x) - a_{i})^{2} + \sum_{j} (\max[0, h^{j}(x) - b_{j}])^{2}\right)$$
(4.7.6)

where P > 0 is the penalty parameter.

- Denote the penalized objective in (4.7.6) F(x; P, a, b).
- Include a and b as parameters of F(x; P, a, b).
- If P is "infinite," then (4.7.5) and (4.7.6) are identical.
- Hopefully, for large P, their solutions will be close.

- Problem: for large P, the Hessian of F, F_{xx} , is ill-conditioned at x away from the solution.
- Solution: solve a sequence of problems.
 - Solve $\min_{x} F(x; P_1, a, b)$ with a small choice of P_1 to get x^1 .
 - Then execute the iteration

$$x^{k+1} \in \arg\min_{x} F(x; P_{k+1}, a, b)$$
 (4.7.7)

where we use x^k as initial guess in iteration k+1, and $F_{xx}(x^k; P_{k+1}, a, b)$ as the initial Hessian guess (which is hopefully not too ill-conditioned)

- Shadow prices in (4.7.5) and (4.7.7):
 - Shadow price of a_i in (4.7.6) is $F_{a_i} = P(g^i(x) a_i)$.
 - Shadow price of b_j in (4.7.6) is F_{b_j} ; $P(h^j(x) b_j)$ if binding, 0 otherwise.
- Theorem: Penalty method works with convergence of x and shadow prices as P_k diverges (under mild conditions)

• Simple example

- Consumer buys good y (price is 1) and good z (price is 2) with income 5.
- Utility is $u(y, z) = \sqrt{yz}$.
- Optimal consumption problem is

$$\max_{y,z} \sqrt{yz}$$

$$s.t. \ y + 2z \le 5.$$

$$(4.7.8)$$

with solution $(y^*, z^*) = (5/2, 5/4), \lambda^* = 8^{-1/2}$.

- Penalty function is

$$u(y,z) - \frac{1}{2}P(\max[0, y + 2z - 5])^2$$

- Iterates are in Table 4.7 (stagnation due to finite precision)

Table 4.7
Penalty function method applied to (4.7.8)

\overline{k}	P_k	$(y,z)-(y^*,z^*)$	Constraint violation	$\lambda \text{ error}$
0	10	(8.8(-3), .015)	1.0(-1)	-5.9(-3)
1	10^{2}	(8.8(-4), 1.5(-3))	1.0(-2)	-5.5(-4)
2	10^{3}	(5.5(-5), 1.7(-4))	1.0(-3)	2.1(-2)
3	10^{4}	(-2.5(-4), 1.7(-4))	1.0(-4)	1.7(-4)
4	10^{5}	(-2.8(-4), 1.7(-4))	1.0(-5)	2.3(-4)

- -

Sequential Quadratic Method

• Special methods are available when we have a quadratic objective and linear constraints

$$\min_{x} (x - a)^{\top} A (x - a)$$
s.t. $b (x - s) = 0$

$$c (x - q) \le 0$$

- Sequential Quadratic Method
 - Solution is stationary point of Lagrangian

$$\mathcal{L}(x,\lambda,\mu) = f(x) + \lambda^{\top} g(x) + \mu^{\top} h(x)$$

- Suppose that the current guesses are (x^k, λ^k, μ^k) .
- Let step size s^{k+1} solve approximating quadratic problem

$$\min_{s} \mathcal{L}_{x}(x^{k}, \lambda^{k}, \mu^{k})(x^{k} - s) + (x^{k} - s)^{\top} \mathcal{L}_{xx}(x^{k}, \lambda^{k}, \mu^{k})(x^{k} - s)$$
s.t. $g(x^{k}) + g_{x}(x^{k})(x^{k} - s) = 0$

$$h(x^{k}) + h_{x}(x^{k})(x^{k} - s) \leq 0$$

- The next iterate is $x^{k+1} = x^k + \phi s^{k+1}$ for some ϕ
 - * Could use linesearch to choose ϕ , or must take $\phi = 1$.
 - * λ^k and μ^k are also updated but we do not describe the detail here.
- Proceed through a sequence of quadratic problems.
- S.Q. method inherits many properties of Newton's method
 - * rapid local convergence
 - * can use quasi-Newton to approximate Hessian.

Domain Problems

• Suppose $f: X \subseteq \mathbb{R}^n \to \mathbb{R}, g: X \subseteq \mathbb{R}^n \to \mathbb{R}^m, h: X \subseteq \mathbb{R}^n \to \mathbb{R}^\ell$, and we want to solve

$$\min_{x} f(x)$$

$$s.t. \ g(x) = 0$$

$$h(x) \le 0$$
(4.7.1)

• The penalty function approach produces an unconstrained problem

$$\max_{x \in \mathbb{R}^n} F(x; P, a, b)$$

- Problem: F(x; P, a, b) may not be defined for all x.
- Example: Consumer demand problem

$$\max_{y,z} u(y,z)$$
s.t. $p \ y + q \ z \le I$.

- Penalty method

$$\max_{y,z} \ u(y,z) - \frac{1}{2} P(\max[0, \ p \ y + q \ z - I])^2$$

- Problem: u(y, z) will not be defined for all y and z, such as

$$u(y,z) = \log y + \log z$$

$$u(y,z) = y^{1/3}z^{1/4}$$

$$u(y,z) = \left(y^{1/6} + z^{1/6}\right)^{7/2}$$

- Penalty method may crash when computer tries to evaluate u(y, z)!

• Solutions

- Strategy 1: Transform variables
 - * If functions are defined only for $x_i > 0$, then reformulate in terms of $z_i = \log x_i$
 - * For example, let $\widetilde{y} = \log y$, $\widetilde{z} = \log z$, and solve

$$\max_{\widetilde{y},\widetilde{z}} u(e^{\widetilde{y}}, e^{\widetilde{z}}) - \frac{1}{2} P(\max[0, p e^{\widetilde{y}} + q e^{\widetilde{z}} - I])^2$$

- * Problem: log transformation may not preserve shape; e.g., concave function of x may not be concave in $\log x$
- Strategy 2: Alter objective and constraint functions so that they are defined everywhere (see discussion above)
- Strategy 3: Express the domain where functions are defined in terms of inequality constraints that are enforced by the algorithm at every step.
 - * E.g., if utility function is $\log(x) + \log(y)$, then add constraints $x \ge \delta, y \ge \delta$ for some very small $\delta > 0$ (use, for example, $\delta \approx 10^{-6}$; don't use $\delta = 0$ since roundoff error may still allow negative x or y)
 - * In general, you can avoid domain problems if you express the domain in terms of linear constraints.
 - * If the domain is defined by nonlinear functions, then create new variables that can describe the domain in linear terms.

~ ~

Active Set Approach

- Problems:
 - Kuhn-Tucker approach has too many combinations to check
 - * some choices of \mathcal{P} may have no solution
 - * there may be multiple local solutions to others.
 - Penalty function methods are costly since all constraints are in (4.7.5), even if only a few bind at solution.
- Solution: refine K-T with a good sequence of subproblems.
 - Let \mathcal{J} be the set $\{1, 2, \cdots, \ell\}$
 - for $\mathcal{P} \subset \mathcal{J}$, define the \mathcal{P} problem

$$\min_{x} f(x)
s.t. \ g(x) = 0, \qquad (\mathcal{P})
h^{i}(x) \leq 0, \quad i \in \mathcal{P}.$$
(4.7.10)

- Choose an initial set of constraints, \mathcal{P} , and start to solve (4.7.10- \mathcal{P}).
- Periodically drop constraints in \mathcal{P} which fail to bind
- Periodically add constraints which are violated.
- Increase penalty parameters
- The simplex method for linear programing is really an active set method.

Efficient Outcomes with Adverse Selection

- Rothschild-Stiglitz-Wilson (RSW) model of insurance markets with adverse selection; we formulate it as an endowment problem
- All agents receive either e_1 or e_2 , $e_1 > e_2$
 - type H: probability π^H of receiving e_1
 - type L: probability π^L of receiving e_1 , $\pi^H > \pi^L$.
 - $-\theta^{H}$ ($\theta^{L} = 1 \theta^{H}$) is fraction of type H(L) agents.
 - Risks are independent across agents;
 - Infinite number of each type; invoke LLN.

• Social planner

- offers insurance contracts; redistributes income across states and people
- sees only individual's realized income, not his type
- must break even.

- $y = (y_1, y_2)$ is net state-contingent total income
 - pays $e_1 y_1$ to insurer and consumes y_1 if income is e_1
 - receives $y_2 e_2$ and consumes y_2 otherwise.
- Type t expected utility with net income, y^t .

$$U^{t}(y^{t}) = \pi^{t}u^{t}(y_{1}^{t}) + (1 - \pi^{t})u^{t}(y_{2}^{t}), \ t = H, L,$$

• Planner's profits are

$$\Pi(y^H, y^L) = \theta^H(\pi^H(e_1 - y_1^H) + (1 - \pi^H)(e_2 - y_2^H)) + \theta^L(\pi^L(e_1 - y_1^L) + (1 - \pi^L)(e_2 - y_2^L)).$$

$$(4.8.3)$$

- ullet Social planner offers menu $\left(y^{H},y^{L}\right)$ and lets agents choose
- $y^H, y^L \in \mathbb{R}^2$ constrained efficient if it solves

$$\max_{s.t.} \lambda U^{H}(y^{H}) + (1 - \lambda)U^{L}(y^{L})$$

$$s.t. \quad U^{H}(y^{H}) \ge U^{H}(y^{L}),$$

$$U^{L}(y^{L}) \ge U^{L}(y^{H}),$$

$$\Pi(y^{H}, y^{L}) \ge 0,$$
(4.8.4)

where $0 \le \lambda \le 1$ is the welfare weight of type H agents.

• Example (Rothschild-Stiglitz, Wilson, Miyazaki, Spence):

$$-e_1 = 1, e_2 = 0, \pi^H = 0.8, \lambda = 1$$

$$-u\left(c\right) =-e^{-4c}$$

$$-P_k = 10^{1+k/2}$$
; $P_k = 10^k$ did not work as well

(Modification of Table 4.9)

Adverse selection example

π^L	θ^H	(y_1^H, y_2^H)	(y_1^L,y_2^L)	IV: $U^L(y^L) - U^L(y^H)$	Profit
0.70	0.10	0.87, 0.51	0.70, 0.70	-1(-10)	-1(-10)
0.50	0.10	0.92, 0.35	0.50, 0.50	-5(-14)	-1(-14)
0.70	0.75	0.82, 0.79	0.77, 0.77	-1(-12)	-6(-13)
0.50	0.75	0.797, 0.789	0.794, 0.794	-2(-12)	-6(-13)

- The results do reflect the predictions of adverse selection ("hidden information") theory.
 - If θ^H small, there is no cross-subsidy. Type H agents receive actuarially fair contracts but must face risk to keep type L agents from pretending to be H.
 - If θ^H large, cross-subsidies arise: the numerous type H agents take actuarially unfair contracts but receive safer allocations.
 - Type L agents always receive a risk-free consumption since no one wants to pretend to be L.

Computing Nash Equilibrium

- \bullet A game with n players.
 - Player i: strategy set $S_i = \{s_{i1}, s_{i2}, \dots, s_{iJ_i}\}.$
 - $-S = \prod_{i=1}^{n} S_i$ is set strategy combinations.
 - $-M_i(q_i, \sigma_{-i})$ is payoff to i from mixed strategy q_i if others play σ_{-i} .
- Consider the function

$$v(\sigma) = \sum_{i=1}^{n} \sum_{s_{ij} \in S_i} \{ \max [M_i(s_{ij}, \sigma_{-i}) - M_i(\sigma), 0] \}^2.$$

Theorem 3 (McKelvey) The solutions to

$$\min_{\sigma} v(\sigma)$$

$$\sum_{\sigma} \sigma^{i}(s_{j}) = 1$$

$$\sigma^{i}(s_{j}) \ge 0$$

are the Nash equilibria of (M, S) and they are also the zeros of $v(\sigma)$, and conversely.

- Tradeoffs
 - Reduces Nash computation to a minimization problem
 - There may be local optima where $v(\sigma) > 0$ and are not equilibria.

• Example: simple coordination game:

$$\begin{array}{c|c}
R \\
1, 1 & 0, 0 \\
0, 0 & 1, 1
\end{array}$$

- $-p_j^i$ is prob. that player i plays his jth strategy.
- Payoff for each player is $p_1^1p_1^2 + p_2^1p_2^2$.
- Lyapunov function for this game is

$$v(p_1^1, p_2^1, p_1^2, p_2^2) = \sum_{i,j=1}^2 \max[0, p_i^j - (p_1^1 p_1^2 + p_2^1 p_2^2)]^2.$$

- Three global min (and three equilibria) are

$$(p_1^1, p_2^1, p_1^2, p_2^2) = (1, 0, 1, 0),$$

 $(0.5, 0.5, 0.5, 0.5),$
 $(0, 1, 0, 1)$

- BFGS did well except it got hung up on saddle point, but such hangups are easily fixed.

 Table 4.10:
 Coordination game

Iterate	(p_1^1, p_1^2)	(p_1^1, p_1^2)	(p_1^1, p_1^2)	(p_1^1, p_1^2)
0	(0.1, 0.25)	(0.9, 0.2)	(0.8, 0.95)	(0.25, 0.25)
1	(0.175, 0.100)	(0.45, 0.60)	(0.959, 8.96)	(0.25, 0.25)
2	(0.110, 0.082)	(0.471, 0.561)	(0.994, 0.961)	(0.25, 0.25)
3	(0, 0)	(0.485, 0.509)	(1.00, 1.00)	(0.25, 0.25)
4	(0, 0)	(0.496, 0.502)	(1.00, 1.00)	(0.25, 0.25)
5	(0, 0)	(0.500, 0.500)	(1.00, 1.00)	(0.25, 0.25)