Numerical Methods in Economacs
MIT Press, 1998

Notes for Chapter 4: Optimization

October 3, 2007

Optimization Problems

e Canonical problem:

min, f(z)
st. glz) =0,
h(xz) <0,

— f : R” — R is the objective function
— g : R" — R™ is the vector of m equality constraints

— h: R* — R is the vector of ¢ inequality constraints.
e Examples:

— Maximization of consumer utility subject to a budget constraint
— Optimal incentive contracts
— Portfolio optimization

— Life-cycle consumption
e Assumptions

— Always assume f, g, and h are continuous
— Usually assume f, g, and h are C"

— Often assume f, g, and h are C°

One-D Unconstrained Minimization: Newton’s Method

min - f(z),
e Assume f () is C? functions f(x)

— At a point a, the quadratic polynomial, p(z)

p(@) = f(@) + f(a) (@ — @) + Dz — ap,

is the second-order approximation of f(x) at a
— Approximately minimize f by minimizing p(x)
— If f”(a) > 0, then p is convex, and z,,, = a — f'(a)/f"(a).

— Hope: z,, is closer than a to the minimum.

e Newton’s method:

Algorithm 4.2 Newton’s Method in R!
Initialize. Choose initial guess x(and stopping parameters o, € > 0.

Step 1. w1 =z — f'(z1) /" (T).
Step 2. If |z, — xpi1| < €(1+ |zx]) and |f'(zx)] < 6, STOP and report success; else go to step 1.

e Properties:

— Newton’s method finds critical points, that is, solutions to f’(z) = 0, not min or max.
— If x,, converges to z*, must check f”(z*) to check if min or max

— Only find local extrema.
e Good news: convergence is locally quadratic.

Theorem 1 Suppose that f(x) is minimized at z*, C° in a neighborhood of x*, and that f"(z*) # 0.
Then there is some € > 0 such that if |ty — x*| < €, then the x, sequence defined in (4.1.2) converges
quadratically to x*; in particular,

f///(a;,*)
/(@)

’wn—l—l - -77*‘ - 1

(4.1.3)

7}1_)1"1(;10 |z, — 252 2

1s the quadratic rate of convergence.

e Consumer problem example:

— Consumer has $1; price of x is $2, price of y is $3, utility function is z'/2 4 2y'/2.

— If 0 is amount spent on x then we have

o\ 1/2 | _ o\ /2
max (§> +2 (T) (4.1.6)
— Solution §* = 3/11 = 272727

— If 6, = 1/2, Newton iteration is
0.5,0.2595917942, 0.2724249335, 0.2727271048, 0.2727272727
and magnitude of the errors are
2.3(—1), 1.3(=2), 3.1(—4), 1.7(=7), 4.8(—14)
e Problems with Newton’s method

— May not converge if initial guess is too far away from solution.

— f”(x) may be difficult to calculate.

Multidimensional Unconstrained Optimization: Comparison Methods
e Grid Search

— Pick a finite set of points, X; for example, a Cartesian grid:

V:{Ui”i = 1,...,’)2}
X={z e R"Vi,x; € V}

— Compute f (z), z € X, and locate max
— Should always do some grid search first.

— Grid search is slo0000000W

e Polytope Methods (a.k.a. Nelder-Mead, simplex, “amoeba’”)

Algorithm 4.3 Polytope Algorithm

Inatialize.

Choose the stopping rule parameter . Choose an initial

simplex {x!, 2%, .- 2"}

Step 1. Reorder vertices so f(z') > f(z'™), i=1,--- n.
Step 2. Look for least 7 s.t. f(z') > f(y') where y' is reflection of z°.
If such an 7 exists, set ' = 3, and go to step 1.
Otherwise, go to step 3.
Step 3. Stopping rule: If the width of the current simplex
is less than e, STOP. Otherwise, go to step 4.
Step 4. Shrink simplex: For i =1,2,--- ,n
set ' = 1(z’ + "), and go to step 1.
A
Al A" C
B STl Rl

Multidimensional Optimization: Newton’s Method

k

e Idea: Given z*, compute local quadratic approximation, p (z), of f (x) around z*, and let 2% be

max of p (z)

Algorithm 4.4 Newton’s Method in R”

Initialize. Choose x and stopping parameters § and € > 0.

Step 1. Compute Hessian, H ("), and gradient, 5/ f(z¥), and solve
H(z%)s* = —(s7f(2¥))" for the step s*.

Step 2. Mt =k 4 sk

Step 3. If || o — 2L || < (14 || 2% |]),
go to step 4; else go to step 1.

Step 4. If || v f (1Y) [|< 6(1 + | f(z"1)]), STOP and report success;
else STOP and report convergence to nonoptimal point.

e Stopping rule: Choose ¢ and 6 to be bigger than square root of machine epsilon.

Theorem 2 Suppose that f(z) is C°, minimized at x*, and that H(z*) is nonsingular. Then there is
some € > 0 such that if || 2° — z* ||< €, then the sequence defined in (4.3.1) converges quadratically to

x*.

e Problems with Newton’s method:

— May not converge
— Computational demands may be excessive

* need at least O(n?) time to compute H(x"), perhaps more if one does not have efficient
code for H (x)

+ need O(n?) space for H(z")
+ need O(n?) time to solve H(z%)s* = — (7 f(2*))" for s*
— May converge to local solution, not global solution

— We now consider methods which solve these problems.

Direction Set Methods

e Problem: may not converge, or go to wrong kind of extremum

e Solution: if we always move uphill, we will eventually get to a local maximum

Algorithm 4.5 Generic Direction Method

Initialize. Choose initial 2" and stopping parameters § and € > 0.

Step 1. Compute a search direction s*.

Step 2. Solve A, = arg miny, f(z* + \s¥).

Step 3. Mt = aF 4+ \;sh.

Step 4. If || 2F — 2*L || < (14 || 2% ||), go to step 5;
else go to step 1.

Step 5. If || s/ f (1) ||< 6(1 + f(2*1)), STOP and report success;
else STOP and report convergence to nonoptimal point.

e Possible direction set methods

— Coordinate Directions

« Let search directions be coordinate, z;, x-, etc.

* Search direction s, = Tp
— Steepest Descent: s;, = v/ f(z")
— Newton’s Method with Line Search: Hys* = — (7 f(z"))"

e These will always converge to a local optimum.

Quasi-Newton Methods

e Problem: Hessians are expensive to compute
e Solution: Don’t need true Hessians (see Carter, 1993), so approximate them

Generic Quasi-Newton Method
Initialize. Choose initial z°, Hessian H" (I)and stopping
parameters 6 and € > 0.
Step 1. Solve H;s* = —(x7f(2*))" for the search direction s*.
Step 2. Solve \;, = arg miny, f(z* + \s¥)
Step 3. oM =2k + NSt
Step 4. Compute H, using Hy, <7 f(zFt1), 2¥L, 7 f(2%), ete.
Step 5. If || 2 — 2 ||< (14 || 2% ||), go to step 6;.
else go to step 1
Step 6. If || s/ f (") ||< 8]1 + f(2*1)], STOP and report success;
else STOP and report convergence to nonoptimal point.

e Example: BFGS:

=gt — gk

ye= (V)T = (v f(") "
Hyz.2) Hy n Yy

2, Hyzp, y,;r 2k
— Preserves positive definiteness
— Uses only gradients that are already needed

— Warning: denominators may get too small; should keep them away from zero since small z;
does not necessarily stop iteration.

e Note: The Hessian iterates H; may not converge to true Hessian at solution, even if x; converges
to solution.

Monopoly Example
e We look at a simple monopoly pricing example:
— Utility function: if M is spending on other goods,
UY,Z)= Y+ 2+ M =u(Y,Z)+ M,
— QOutput Y and Z implies prices of uy and uy.
— Monopoly problem is

n}}%XH(Y, 2)=Yuy(Y,Z)+ Zuy(Y, Z) — Cy(Y) — Cz(2),

— Restate in terms of y =InY and z =In Z, 7(y, z) = 11 (€Y, €)

max(y, 2),
Y,z

Newton

................. Coordinate Direction

--------- Newton with linesearch

— — — BFGS

Example: A Dynamic Optimization Problem
e Life-cycle savings problem.

— an individual lives for 1" periods

— earns wages w; in period t,t =1,---,T

— consumes ¢; in period ¢

— earns interest on savings per period at rate r

— utility function 3", B'u(cy).
e Define S; to be end-of-period savings:
Str1 = (14+7)S; + w1 — 41
— The constraint S =0 =9
— Substitute ¢; = Sy 1(1 +7) + wy — Sy

e Problem now has T" — 1 choices:

maxg, Zthl Bu(Si—1(1417) +w — Sp)

3
s.t. ST:S():O ()

— Appears intractable for large 7.

— However, there are two ways to exploit the special structure of this problem and to efficiently
solve this problem.

e Newton’s method

— Looks impractical if T" large.
— Hessian is tridiagonal (a sparse matrix), so Newton step is easy to compute.
— Sparse Hessians are common in dynamic problems

— You must recognize this and implement Newton or quasi-Newton method with sparse Hessians

Domain Problems

e Suppose St = Sy = 0 and you want to solve
T
t
max log (S;1(1+7)+w — S
o ;5 g (Si-1() t 1)

e Newton’s method will take the guess S* and compute a new guess S+

Sk;+1

e Problem: could imply negative consumption, Sy _1(1+7)+w;— Sy, at some ¢, causing computer

to crash.

e A possible solution: Alter objective function

— E.G.; replace u (¢) = log ¢ with, for some small £ > 0

a(C){u(c), c>¢€

e)+u (e)(c—e)+u' () (c—e) /2, c<e

S

— Maintains curvature
— Equals real u (¢) on most of domain, which hopefully includes solution

— Not as easy to apply to multivariate functions

e General solution: add constraints to keep this from happening.

Nonlinear Least Squares
e Objective function has form, f*: R" — R, i =1,...,m.:
1 .
mxin§ 2_1: fiz)* = S(x),
e Idea: use simple approximation of Hessian

e In econometric applications

o fl(aj) are 9(67 yz),
x © = (3 is parameter vector
+ ' are the data.

x g(03,y") is residual for observation i

— S() is the sum of squared residuals at 3.
e Let f(z) denote the column vector (f*(z))™;.

— Let J(x) be the Jacobian of f(x) = (f!(z),..., f™(x))".
— Let f} = af and fZ = aijg;'
— The gradlent of S(x)is J(x)' f: Se(x) =", fi(z)f ().

— The Hessian of S(z) is J(x)'J(z) + G(z), where

v) = fil@)f'()

e Special structure of the gradient and Hessian.
— fi(z) terms are needed to compute gradient of S(x).
— If f(x) = 0, then Hessian is just J(z)' J(z): easy to compute.

— A problem where f(x) is small at the solution is called a small residual problem; otherwise, it
is a large residual problem.

e Gauss-Newton algorithm
— Do Newton except use J(z)' J(x) for Hessian approx.
st = —(J (@) (@) TV (=) (4.5.1)

and avoid computing second derivatives of f.
— Natural to use for small residual problems.

— Works very well when it works.

e Problems.

— J(x)" J(x) is likely to be poorly conditioned, since it is the “square” of a matrix.
— J(z) may be poorly conditioned itself, particularly in statistical contexts.

— Gauss-Newton step may not be a descent direction.
e Solution: Levenberg-Marquardt algorithm.
— Use J(z)" J(z) + M for some scalar A (I is identity matrix):
st = = (J(2") T + A)TH(V ()

— The AI term reduces conditioning problems by “adding a little piece of the identity matrix”

— s* will be descent direction for large \ since s* gets closer to steepest descent direction \.

Linear Programming

e Canonical linear programming problem is
min, a ' x
s.t.Cx = b,
x > 0.
— Dz < f : use slack variables, s, and constraints Dz + s = f,s > 0.
—Dx > f:use Dr—s= f,s >0, sis vector of surplus variables.

—x > d : define y = x — d and min over y

— x; free: define z; = y; — z;, add constraints y;, z; > 0, and min over (y;, ;).

e Basic method is the simplex method. Figure 4.4 shows example:
ming , —2r —y
st.x+y <4, x,y=>0,
r<3 y<2

— Find some point on boundary of constraints, such as A.

— Step 1: Note which constraints are active at A and points nearby.

— Find feasible directions and choose steepest descent direction.

— Figure 4.4 has two directions: from A: to B and to O, with B better.

— Follow that direction to next vertex on boundary, and go back to step 1.

— Continue until no direction reduces the objective: point H.

— Stops in finite time since there are only a finite set of vertices.

= 4

e General History

— Goes back to Dantzig (1951).
— Fast on average.
— Worst case time is exponential in number of variables and constraints

— Software implementations vary in numerical stability
e Interior point methods

— Developed in 1980’s

— Better on large problems

Constrained Nonlinear Optimization

e General problem:
min, f(z)

s.t. g(x) = (4.7.1)

— f: X CR" — R: n choices

—g: X CR" — R™ m equality constraints
— h: X CR" — R’ / inequality constraints
— f,g,and h are C? on X

e Linear Independence Constraint Qualification (LICQ): The binding constraints at the solution are
linearly independent

e Kuhn-Tucker theorem: if there is a local minimum at x* then there are multipliers A* € R™ and

u* € R such that z* is a stationary, or critical point of £, the Lagrangian,
Lz, A p) = fz) + X g(z) +p'h(z) (4.7.2)

If LICQ holds then the multipliers are unique; otherwise, they are called “unbounded”.

e First-order conditions, £, (z*, *, u*) = 0, imply that (A*, u*, z*) solves

fa: +)‘Tgw+MThx =0
ph(x)=0, i=1---,¢

g(x)=0 (4.7.3)
h(z)<0
1> 0

A Kuhn-Tucker Approach

e Idea: try all possible Kuhn-Tucker systems and pick best

— Let J be the set {1,2,--- ,/}.

— For a subset P C J, define the P problem, corresponding to a combination of binding and
nonbinding inequality constraints

g(r)=0
hi(z)=0, i
()= . Le P (4.7.4)
n=Vu, (S j T P 3
fot+MNgo+p"h,=0.

— Solve (or attempt to do so) each P-problem

— Choose the best solution among those P-problems with solutions consistent with all constraints.

e We can do better in general.

Penalty Function Approach
e Most constrained optimization methods use a penalty function approach:

— Replace constrained problem with related unconstrained problem.

— Permit anything, but make it “painful” to violate constraints.

e Penalty function: for canonical problem

min, f(x)
st. g(x)=a, (4.7.5)
h(z) <b
construct the penalty function problem
. 1 i 2 ; 2
min f(z) + EP Z (9'(z) —a;)” + Z (max [0, #/ (z) — b;]) (4.7.6)
i J

where P > 0 is the penalty parameter.

— Denote the penalized objective in (4.7.6) F(x; P, a,b).
— Include a and b as parameters of F'(x; P, a,b).
— If P is “infinite,” then (4.7.5) and (4.7.6) are identical.

— Hopefully, for large P, their solutions will be close.

e Problem: for large P, the Hessian of F', F).,, is ill-conditioned at x away from the solution.

e Solution: solve a sequence of problems.

— Solve min, F (z; Py, a,b) with a small choice of P, to get x'.

— Then execute the iteration
"1 € argmin F (x; Pyy1,a,b) (4.7.7)

k

where we use z* as initial guess in iteration k + 1, and Fj,(z*; P11, a, b) as the initial Hessian

guess (which is hopefully not too ill-conditioned)
e Shadow prices in (4.7.5) and (4.7.7):

— Shadow price of a; in (4.7.6) is F,, = P(g'(z) — a;).
— Shadow price of b; in (4.7.6) is Fy; P(h/(x) — b;) if binding, 0 otherwise.

e Theorem: Penalty method works with convergence of x and shadow prices as P diverges (under
mild conditions)

e Simple example

— Consumer buys good y (price is 1) and good z (price is 2) with income 5.

— Utility is u(y, z) = \/yz.

— Optimal consumption problem is

with solution (y*, z*) =

— Penalty function is

— Iterates are in Table 4.7 (stagnation due to finite precision)

Penalty function method applied to (4.7.8)

(5/2,5/4), A

maxy , /Y2

st. y+2z <.

1
u(y, z) — EP(max[O, y 4 22 — 5])?

f=g8712

Table 4.7

k By (y,2) — (y*,2*) Constraint violation A error
0 10 (8.8(-3), .015) 1.0(—1) T5.9(—3)
1 10> (8.8(—4), L5(—3)) 1.0(—2) —5.5(—4)
2 10° (5.5(=5), 1.7(—4)) 1.0(—3) 2.1(—2)
3 10" (—2.5(—4), 1.7(—4)) 1.0(—4) 1.7(—4)
4 100 (—2.8(—4), 1.7(—4)) 1.0(—5) 2.3(—4)

(4.7.8)

Sequential Quadratic Method

e Special methods are available when we have a quadratic objective and linear constraints
: T
min, (r —a) A(zr —a)
st. b(x—s)=0
c(x—q) <0
e Sequential Quadratic Method

— Solution is stationary point of Lagrangian
Lz, A\ p) = f(z) + X g(z) +p'h(z)

— Suppose that the current guesses are (zk, A\, k).

1 solve approximating quadratic problem

ming L, (xF, N, 1) (2% — 8) + (2F — 8) T Low(2F, N¥, 1F) (2F — 5)
sit. g(z¥) + gy (aF)(2% —) =0
h(z®) + hy(2¥)(zF — s) <0

— The next iterate is 2**! = z¥ + ¢s**! for some ¢

— Let step size s

x Could use linesearch to choose ¢, or must take ¢ = 1.

+ * and p* are also updated but we do not describe the detail here.
— Proceed through a sequence of quadratic problems.
— S.Q. method inherits many properties of Newton’s method

x rapid local convergence

* can use quasi-Newton to approximate Hessian.

Domain Problems
e Suppose f: X CR" - R, g: X CR* - R™ h: X CR" — R and we want to solve

min, f(z)
s.t. g(x)
h(z)

0
0

IA

e The penalty function approach produces an unconstrained problem

max F'(x; P,a,b)

TR

e Problem: F'(x; P,a,b) may not be defined for all x.

e Example: Consumer demand problem
max, , u(y, z)
st.py+qz<1.
— Penalty method .
2

max u(y, z) — 5 P(max(0, py+q 2~ 1))
Y,z

— Problem: u (y, z) will not be defined for all y and z, such as

u(y, z)=logy + log z
uly, z)=y"*z"*

7/2
u(y, 2)= (yl/ 64 2Y 6)

— Penalty method may crash when computer tries to evaluate u (y, 2)!

(4.7.1)

e Solutions

— Strategy 1: Transform variables

x If functions are defined only for x; > 0, then reformulate in terms of z; = log x;

x For example, let y = logy, z = log 2z, and solve

_ 1 _ _
max u(el, ¢*) = ZP(max(0, p e +g = I)
Y,z

2

+x Problem: log transformation may not preserve shape; e.g., concave function of x may not
be concave in log

— Strategy 2: Alter objective and constraint functions so that they are defined everywhere (see
discussion above)

— Strategy 3: Express the domain where functions are defined in terms of inequality constraints
that are enforced by the algorithm at every step.

x F.g., if utility function is log (z) + log (), then add constraints x > 6,y > ¢ for some very
small § > 0 (use, for example, § ~ 1075 don’t use § = 0 since roundoff error may still allow
negative x or y)

* In general, you can avoid domain problems if you express the domain in terms of linear
constraints.

« If the domain is defined by nonlinear functions, then create new variables that can describe
the domain in linear terms.

Active Set Approach
e Problems:

— Kuhn-Tucker approach has too many combinations to check

* some choices of P may have no solution

* there may be multiple local solutions to others.

— Penalty function methods are costly since all constraints are in (4.7.5), even if only a few bind
at solution.

e Solution: refine K-T with a good sequence of subproblems.

— Let J be the set {1,2,--- , ¢}
— for P C J , define the P problem

min, f(z)
s.t. g(x) =0, (P) (4.7.10)
hi(z) <0, i€P.

— Choose an initial set of constraints, P, and start to solve (4.7.10-P).
— Periodically drop constraints in P which fail to bind
— Periodically add constraints which are violated.

— Increase penalty parameters

e The simplex method for linear programing is really an active set method.

Efficient Outcomes with Adverse Selection

e Rothschild-Stiglitz-Wilson (RSW) model of insurance markets with adverse selection; we formulate
it as an endowment problem

e All agents receive either ey or ey, €1 > e

— type H: probability 7 of receiving e;

— type L : probability 7" of receiving e, 77 > wt.
— 0" (0% =1 — 6") is fraction of type H(L) agents.
— Risks are independent across agents;

— Infinite number of each type; invoke LLN.
e Social planner

— offers insurance contracts; redistributes income across states and people
— sees only individual’s realized income, not his type

— must break even.

e y = (y1,12) is net state-contingent total income

— pays e; — y; to insurer and consumes y; if income is e;

— receives 19 — e and consumes s otherwise.
e Type t expected utility with net income, 1.

U'ly') = m'u'(y}) + (1 — a")u'(ys), t = H, L,

e Planner’s profits are

Iy, yt)= 0" (xf (e — yl) + (1 — 7) (e — yih))
+0" (rh(er — yf) + (1 — 78)(e2 — b))

e Social planner offers menu (yH : yL) and lets agents choose

o yH yt € R? constrained efficient if it solves

max AU (y#)+(1 — \)U*(y*)
st. UM(y")>U"(y"),
U"(y") > UH(y"),
I(y", y*) >0,

where 0 < A < 1 is the welfare weight of type H agents.

(4.8.3)

(4.8.4)

e FExample (Rothschild-Stiglitz, Wilson, Miyazaki, Spence):

—e1=1,e=0, 71T =08, =1
—u(c) = —e ¥

— P. = 10'%/2: P, = 10* did not work as well

(Modification of Table 4.9)
Adverse selection example

b0 Wy (yh k) Vi URyE) - UE(yH) Profit

0.70 0.10] 0.87,0.51 | 0.70,0.70 —1(—10) —1(—10)
0.50 0.10] 0.92,0.35 | 0.50,0.50 —5(—14) —1(—14)
0.70 0.75| 0.82,0.79 | 0.77,0.77 —1(—12) —6(—13)
0.50 0.75]0.797,0.789 | 0.794,0.794 —2(—12) —6(—13)

e The results do reflect the predictions of adverse selection (“hidden information”) theory.
— If 9% small, there is no cross-subsidy. Type H agents receive actuarially fair contracts but must
face risk to keep type L agents from pretending to be H.

— If 6 large, cross-subsidies arise: the numerous type H agents take actuarially unfair contracts
but receive safer allocations.

— Type L agents always receive a risk-free consumption since no one wants to pretend to be L.

Computing Nash Equilibrium
e A game with n players.

— Player i: strategy set S; = {s1, Si2, - , SiJ }-
— S =1II"|S; is set strategy combinations.

— M;(q;,0_;) is payoff to ¢ from mixed strategy ¢; if others play o_;.

e Consider the function

Z > {max[Mi(s;;,0-;) — Mi(0),0]}".

=1 s;;€5;

Theorem 3 (McKelvey) The solutions to

are the Nash equilibria of (M, S) and they are also the zeros of v(o), and conversely.
e Tradeoffs

— Reduces Nash computation to a minimization problem

— There may be local optima where v(o) > 0 and are not equilibria.

e Example: simple coordination game:

R
1,1]0,0
0,0]1, 1

L

— p’; is prob. that player i plays his jth strategy.
— Payoff for each player is pip? + psp3.

— Lyapunov function for this game is

v(pl, p3, P1,13) = Z max[0, p] — (pip} + psp3)|*.
i,j=1

— Three global min (and three equilibria) are

(p17 p27 p17 pZ) (1 0 1 O)
(0.5, 0.5, 0.5, 0.5),

(0, 1, 0, 1)

— BFGS did well except it got hung up on saddle point, but such hangups are easily fixed.

Table 4.10: Coordination game

Iterate (py, pi) (p1, 1) (p1,p7) (p1,p7)

0 (0.1,0.25) (0.9, 0.2) (0.8,0.95) (0.25, 0.25)
1 (0.175, 0.100) (0.45, 0.60) (0.959, 8.96) (0.25, 0.25)
9 (0.110, 0.082) (0.471, 0.561) (0.994, 0.961) (0.25, 0.25)
3 (0, 0) (0.485, 0.509) (1.00, 1.00) (0.25, 0.25)
4 (0, 0) (0.496, 0.502) (1.00, 1.00) (0.25, 0.25)
5 (0, 0) (0.500, 0.500) (1.00, 1.00) (0.25, 0.25)

