
Numerical Methods in Economics
MIT Press, 1998

Notes for Chapter 4: Optimization

October 3, 2007

1

Optimization Problems

• Canonical problem:
minx f(x)

s.t. g(x) = 0,

h(x) ≤ 0,
— f : Rn → R is the objective function

— g : Rn → Rm is the vector of m equality constraints

— h : Rn → R` is the vector of ` inequality constraints.

• Examples:
— Maximization of consumer utility subject to a budget constraint

— Optimal incentive contracts

— Portfolio optimization

— Life-cycle consumption

• Assumptions
— Always assume f, g, and h are continuous

— Usually assume f , g, and h are C1

— Often assume f , g, and h are C3

2

One-D Unconstrained Minimization: Newton’s Method

min
x∈R

f(x),

• Assume f (x) is C2 functions f(x)
— At a point a, the quadratic polynomial, p(x)

p(x) ≡ f(a) + f 0(a) (x− a) + f
00(a)
2
(x− a)2.

is the second-order approximation of f(x) at a

— Approximately minimize f by minimizing p(x)

— If f 00(a) > 0, then p is convex, and xm = a− f 0(a)/f 00(a).
— Hope: xm is closer than a to the minimum.

• Newton’s method:
Algorithm 4.2 Newton’s Method in R1

Initialize. Choose initial guess x0 and stopping parameters δ, ² > 0.
Step 1. xk+1 = xk − f 0(xk)/f 00(xk).
Step 2. If |xk − xk+1| < ²(1 + |xk|) and |f 0(xk)| < δ, STOP and report success; else go to step 1.

3

• Properties:
— Newton’s method finds critical points, that is, solutions to f 0(x) = 0, not min or max.

— If xn converges to x∗, must check f 00(x∗) to check if min or max

— Only find local extrema.

• Good news: convergence is locally quadratic.
Theorem 1 Suppose that f(x) is minimized at x∗, C3 in a neighborhood of x∗, and that f 00(x∗) 6= 0.
Then there is some ² > 0 such that if |x0 − x∗| < ², then the xn sequence defined in (4.1.2) converges
quadratically to x∗; in particular,

lim
n→∞

|xn+1 − x∗|
|xn − x∗|2 =

1

2

¯̄̄̄
f 000(x∗)
f 00(x∗)

¯̄̄̄
(4.1.3)

is the quadratic rate of convergence.

4

• Consumer problem example:
— Consumer has $1; price of x is $2, price of y is $3, utility function is x1/2 + 2y1/2.

— If θ is amount spent on x then we have

max
θ

µ
θ

2

¶1/2
+ 2

µ
1− θ

3

¶1/2
(4.1.6)

— Solution θ∗ = 3/11 = .272727

— If θ0 = 1/2, Newton iteration is

0.5, 0.2595917942, 0.2724249335, 0.2727271048, 0.2727272727

and magnitude of the errors are

2.3 (−1) , 1.3 (−2) , 3.1 (−4) , 1.7 (−7) , 4.8 (−14)

• Problems with Newton’s method
— May not converge if initial guess is too far away from solution.

— f 00(x) may be difficult to calculate.

5

Multidimensional Unconstrained Optimization: Comparison Methods

• Grid Search
— Pick a finite set of points, X; for example, a Cartesian grid:

V ={vi|i = 1, ..., n}
X={x ∈ Rn|∀i, xi ∈ V }

— Compute f (x), x ∈ X, and locate max
— Should always do some grid search first.

— Grid search is sloooooooow

6

• Polytope Methods (a.k.a. Nelder-Mead, simplex, “amoeba”)
Algorithm 4.3 Polytope Algorithm
Initialize. Choose the stopping rule parameter ². Choose an initial

simplex {x1, x2, · · · , xn+1}.
Step 1. Reorder vertices so f(xi) ≥ f(xi+1), i = 1, · · · , n.
Step 2. Look for least i s.t. f(xi) > f(yi) where yi is reflection of xi.

If such an i exists, set xi = yi, and go to step 1.
Otherwise, go to step 3.

Step 3. Stopping rule: If the width of the current simplex
is less than ², STOP. Otherwise, go to step 4.

Step 4. Shrink simplex: For i = 1, 2, · · · , n
set xi = 1

2
(xi + xn+1), and go to step 1.

7

Multidimensional Optimization: Newton’s Method

• Idea: Given xk, compute local quadratic approximation, p (x), of f (x) around xk, and let xk+1 be
max of p (x)

Algorithm 4.4 Newton’s Method in Rn

Initialize. Choose x0 and stopping parameters δ and ² > 0.
Step 1. Compute Hessian, H(xk), and gradient, 5f(xk), and solve

H(xk)sk = −(5f(xk))> for the step sk.
Step 2. xk+1 = xk + sk.
Step 3. If k xk − xk+1 k< ²(1+ k xk k),

go to step 4; else go to step 1.
Step 4. If k 5f(xk+1) k< δ(1 + |f(xk+1)|), STOP and report success;

else STOP and report convergence to nonoptimal point.

• Stopping rule: Choose ε and δ to be bigger than square root of machine epsilon.

8

Theorem 2 Suppose that f(x) is C3, minimized at x∗, and that H(x∗) is nonsingular. Then there is
some ² > 0 such that if k x0 − x∗ k< ², then the sequence defined in (4.3.1) converges quadratically to
x∗.

• Problems with Newton’s method:
— May not converge

— Computational demands may be excessive

∗ need at least O(n2) time to compute H(xk), perhaps more if one does not have efficient
code for H (x)

∗ need O(n2) space for H(xk)
∗ need O(n3) time to solve H(xk)sk = −(5f(xk))> for sk

— May converge to local solution, not global solution

— We now consider methods which solve these problems.

9

Direction Set Methods

• Problem: may not converge, or go to wrong kind of extremum
• Solution: if we always move uphill, we will eventually get to a local maximum

Algorithm 4.5 Generic Direction Method
Initialize. Choose initial x0 and stopping parameters δ and ² > 0.
Step 1. Compute a search direction sk.
Step 2. Solve λk = argminλ f(xk + λsk).
Step 3. xk+1 = xk + λks

k.
Step 4. If k xk − xk+1 k< ²(1+ k xk k), go to step 5;

else go to step 1.
Step 5. If k 5f(xk+1) k< δ(1 + f(xk+1)), STOP and report success;

else STOP and report convergence to nonoptimal point.

• Possible direction set methods
— Coordinate Directions

∗ Let search directions be coordinate, x1, x2, etc.
∗ Search direction s2n+k = xk

— Steepest Descent: sk = 5f(xk)
— Newton’s Method with Line Search: Hksk = −(5f(xk))>

• These will always converge to a local optimum.
10

Quasi-Newton Methods

• Problem: Hessians are expensive to compute
• Solution: Don’t need true Hessians (see Carter, 1993), so approximate them

Generic Quasi-Newton Method
Initialize. Choose initial x0, Hessian H0 (I)and stopping

parameters δ and ² > 0.
Step 1. Solve Hksk = −(5f(xk))> for the search direction sk.
Step 2. Solve λk = argminλ f(xk + λsk)

Step 3. xk+1 = xk + λks
k.

Step 4. Compute Hk+1 using Hk, 5f(xk+1), xk+1, 5f(xk), etc.
Step 5. If k xk − xk+1 k< ²(1+ k xk k), go to step 6;.

else go to step 1
Step 6. If k 5f(xk+1) k< δ|1 + f(xk+1)|, STOP and report success;

else STOP and report convergence to nonoptimal point.

11

• Example: BFGS:
zk=x

k+1 − xk
yk=(5f(xk+1))> − (5f(xk))>

Hk+1=Hk − Hkzkz
>
k Hk

z>k Hkzk
+
yky

>
k

y>k zk

— Preserves positive definiteness

— Uses only gradients that are already needed

— Warning: denominators may get too small; should keep them away from zero since small zk
does not necessarily stop iteration.

• Note: The Hessian iterates Hk may not converge to true Hessian at solution, even if xk converges
to solution.

12

Monopoly Example

• We look at a simple monopoly pricing example:
— Utility function: if M is spending on other goods,

U(Y,Z) = (Y α + Zα)η/α +M = u(Y,Z) +M,

— Output Y and Z implies prices of uY and uZ.

— Monopoly problem is

max
Y,Z

Π(Y,Z) ≡ Y uY (Y,Z) + ZuZ(Y,Z)− CY (Y)− CZ(Z), (1)

— Restate in terms of y ≡ lnY and z ≡ lnZ, π(y, z) ≡ Π (ey, ez)

max
y,z

π(y, z), (2)

13

Example: A Dynamic Optimization Problem

• Life-cycle savings problem.
— an individual lives for T periods

— earns wages wt in period t, t = 1, · · · , T
— consumes ct in period t

— earns interest on savings per period at rate r

— utility function
PT

t=1 β
tu(ct).

• Define St to be end-of-period savings:
St+1 = (1 + r)St + wt+1 − ct+1.

— The constraint ST = 0 = S0

— Substitute ct = St−1(1 + r) + wt − St
• Problem now has T − 1 choices:

maxSt
PT

t=1 β
tu(St−1(1 + r) + wt − St)

s.t. ST = S0 = 0
(3)

— Appears intractable for large T .

— However, there are two ways to exploit the special structure of this problem and to efficiently
solve this problem.

14

• Newton’s method
— Looks impractical if T large.

— Hessian is tridiagonal (a sparse matrix), so Newton step is easy to compute.

— Sparse Hessians are common in dynamic problems

— You must recognize this and implement Newton or quasi-Newton method with sparse Hessians

15

Domain Problems

• Suppose ST = S0 = 0 and you want to solve

max
St

TX
t=1

βt log (St−1(1 + r) + wt − St)

• Newton’s method will take the guess Sk and compute a new guess Sk+1.
• Problem: Sk+1 could imply negative consumption, St−1(1+r)+wt−St, at some t, causing computer
to crash.

• A possible solution: Alter objective function
— E.G.; replace u (c) = log c with, for some small ε > 0

eu (c) = (u (c) , c > ε

u (ε) + u0 (ε) (c− ε) + u00 (ε) (c− ε)2 /2, c ≤ ε

— Maintains curvature

— Equals real u (c) on most of domain, which hopefully includes solution

— Not as easy to apply to multivariate functions

• General solution: add constraints to keep this from happening.

16

Nonlinear Least Squares

• Objective function has form, fi : Rn → R, i = 1, ...,m.:

min
x

1

2

mX
i=1

fi(x)2 ≡ S(x),

• Idea: use simple approximation of Hessian
• In econometric applications
— fi(x) are g(β, yi),

∗ x = β is parameter vector

∗ yi are the data.
∗ g(β, yi) is residual for observation i

— S(β) is the sum of squared residuals at β.

• Let f(x) denote the column vector (fi(x))mi=1.
— Let J(x) be the Jacobian of f(x) ≡ (f1(x), . . . , fm(x))>.
— Let fi` ≡ ∂f i

∂x`
and fij` ≡ ∂2f i

∂xj∂x`
.

— The gradient of S(x) is J(x)>f : S`(x) =
Pm

i=1 f
i
`(x)f

i(x).

— The Hessian of S(x) is J(x)>J(x) +G(x), where

Gj`(x) =
mX
i=1

fij`(x)f
i(x).

17

• Special structure of the gradient and Hessian.
— fij(x) terms are needed to compute gradient of S(x).

— If f(x) = 0, then Hessian is just J(x)>J(x): easy to compute.

— A problem where f(x) is small at the solution is called a small residual problem; otherwise, it
is a large residual problem.

• Gauss-Newton algorithm
— Do Newton except use J(x)>J(x) for Hessian approx.

sk = −(J(xk)>J(xk))−1(∇f(xk))> (4.5.1)

and avoid computing second derivatives of f .

— Natural to use for small residual problems.

— Works very well when it works.

18

• Problems.
— J(x)>J(x) is likely to be poorly conditioned, since it is the “square” of a matrix.

— J(x) may be poorly conditioned itself, particularly in statistical contexts.

— Gauss-Newton step may not be a descent direction.

• Solution: Levenberg-Marquardt algorithm.
— Use J(x)>J(x) + λI for some scalar λ (I is identity matrix):

sk = −(J(xk)>J(xk) + λI)−1(∇f(xk))>

— The λI term reduces conditioning problems by “adding a little piece of the identity matrix”

— sk will be descent direction for large λ since sk gets closer to steepest descent direction λ.

19

Linear Programming

• Canonical linear programming problem is
minx a

>x
s.t.Cx = b,

x ≥ 0.
(4)

— Dx ≤ f : use slack variables, s, and constraints Dx + s = f, s ≥ 0.
— Dx ≥ f : use Dx− s = f, s ≥ 0, s is vector of surplus variables.
— x ≥ d : define y = x− d and min over y
— xi free: define xi = yi − zi, add constraints yi, zi ≥ 0, and min over (yi, zi).

20

• Basic method is the simplex method. Figure 4.4 shows example:
minx,y −2x− y
s.t. x+ y ≤ 4, x, y ≥ 0,

x ≤ 3, y ≤ 2.
— Find some point on boundary of constraints, such as A.

— Step 1: Note which constraints are active at A and points nearby.

— Find feasible directions and choose steepest descent direction.

— Figure 4.4 has two directions: from A: to B and to O, with B better.

— Follow that direction to next vertex on boundary, and go back to step 1.

— Continue until no direction reduces the objective: point H.

— Stops in finite time since there are only a finite set of vertices.

21

22

• General History
— Goes back to Dantzig (1951).

— Fast on average.

— Worst case time is exponential in number of variables and constraints

— Software implementations vary in numerical stability

• Interior point methods
— Developed in 1980’s

— Better on large problems

23

Constrained Nonlinear Optimization

• General problem:
minx f(x)

s.t. g(x) = 0

h(x) ≤ 0
(4.7.1)

— f : X ⊆ Rn → R: n choices

— g : X ⊆ Rn → Rm: m equality constraints

— h : X ⊆ Rn → R`: ` inequality constraints

— f, g, and h are C2 on X

• Linear Independence Constraint Qualification (LICQ): The binding constraints at the solution are
linearly independent

• Kuhn-Tucker theorem: if there is a local minimum at x∗ then there are multipliers λ∗ ∈ Rm and
μ∗ ∈ R` such that x∗ is a stationary, or critical point of L, the Lagrangian,

L(x,λ,μ) = f(x) + λ>g(x) + μ>h(x) (4.7.2)

If LICQ holds then the multipliers are unique; otherwise, they are called “unbounded”.

24

• First-order conditions, Lx(x∗,λ∗,μ∗) = 0, imply that (λ∗,μ∗, x∗) solves
fx + λ>gx+μ>hx = 0

μih
i(x)= 0 , i = 1, · · · , `
g(x)= 0

h(x)≤ 0
μ≥ 0

(4.7.3)

25

A Kuhn-Tucker Approach

• Idea: try all possible Kuhn-Tucker systems and pick best
— Let J be the set {1, 2, · · · , `}.
— For a subset P ⊂ J , define the P problem, corresponding to a combination of binding and
nonbinding inequality constraints

g(x)= 0

hi(x)= 0 , i ∈ P,
μi= 0 , i ∈ J −P ,

fx + λ>gx + μ>hx= 0.

(4.7.4)

— Solve (or attempt to do so) each P-problem
— Choose the best solution among thoseP-problems with solutions consistent with all constraints.

• We can do better in general.

26

Penalty Function Approach

• Most constrained optimization methods use a penalty function approach:
— Replace constrained problem with related unconstrained problem.

— Permit anything, but make it “painful” to violate constraints.

• Penalty function: for canonical problem
minx f(x)

s.t. g(x) = a,

h(x) ≤ b.
(4.7.5)

construct the penalty function problem

min
x
f(x) +

1

2
P

⎛⎝X
i

¡
gi(x)− ai

¢2
+
X
j

¡
max

£
0, hj(x)− bj

¤¢2⎞⎠ (4.7.6)

where P > 0 is the penalty parameter.

— Denote the penalized objective in (4.7.6) F (x;P, a, b).

— Include a and b as parameters of F (x;P, a, b).

— If P is “infinite,” then (4.7.5) and (4.7.6) are identical.

— Hopefully, for large P , their solutions will be close.

27

• Problem: for large P , the Hessian of F , Fxx, is ill-conditioned at x away from the solution.
• Solution: solve a sequence of problems.
— Solve minx F (x;P1, a, b) with a small choice of P1 to get x1.

— Then execute the iteration
xk+1 ∈ argmin

x
F (x;Pk+1, a, b) (4.7.7)

where we use xk as initial guess in iteration k+ 1, and Fxx(xk;Pk+1, a, b) as the initial Hessian
guess (which is hopefully not too ill-conditioned)

• Shadow prices in (4.7.5) and (4.7.7):
— Shadow price of ai in (4.7.6) is Fai = P (g

i(x)− ai).
— Shadow price of bj in (4.7.6) is Fbj ; P (h

j(x)− bj) if binding, 0 otherwise.
• Theorem: Penalty method works with convergence of x and shadow prices as Pk diverges (under
mild conditions)

28

• Simple example
— Consumer buys good y (price is 1) and good z (price is 2) with income 5.

— Utility is u(y, z) =
√
yz.

— Optimal consumption problem is
maxy,z

√
yz

s.t. y + 2z ≤ 5. (4.7.8)

with solution (y∗, z∗) = (5/2, 5/4), λ∗ = 8−1/2.

— Penalty function is

u(y, z)− 1
2
P (max[0, y + 2z − 5])2

— Iterates are in Table 4.7 (stagnation due to finite precision)

Table 4.7
Penalty function method applied to (4.7.8)

k Pk (y, z)− (y∗, z∗) Constraint violation λ error
0 10 (8.8(-3), .015) 1.0(−1) −5.9(−3)
1 102 (8.8(−4), 1.5(−3)) 1.0(−2) −5.5(−4)
2 103 (5.5(−5), 1.7(−4)) 1.0(−3) 2.1(−2)
3 104 (−2.5(−4), 1.7(−4)) 1.0(−4) 1.7(−4)
4 105 (−2.8(−4), 1.7(−4)) 1.0(−5) 2.3(−4)

29

Sequential Quadratic Method

• Special methods are available when we have a quadratic objective and linear constraints
minx (x− a)>A (x− a)
s.t. b (x− s) = 0

c (x− q) ≤ 0
• Sequential Quadratic Method
— Solution is stationary point of Lagrangian

L(x,λ,μ) = f(x) + λ>g(x) + μ>h(x)

— Suppose that the current guesses are (xk,λk,μk).

— Let step size sk+1 solve approximating quadratic problem

minsLx(xk,λk,μk)(xk − s) + (xk − s)>Lxx(xk,λk,μk)(xk − s)
s.t. g(xk) + gx(x

k)(xk − s) = 0
h(xk) + hx(x

k)(xk − s) ≤ 0
— The next iterate is xk+1 = xk + φsk+1 for some φ

∗ Could use linesearch to choose φ, or must take φ = 1.
∗ λk and μk are also updated but we do not describe the detail here.

— Proceed through a sequence of quadratic problems.

— S.Q. method inherits many properties of Newton’s method

∗ rapid local convergence
∗ can use quasi-Newton to approximate Hessian.

30

Domain Problems

• Suppose f : X ⊆ Rn → R, g : X ⊆ Rn → Rm, h : X ⊆ Rn → R`, and we want to solve

minx f(x)

s.t. g(x) = 0

h(x) ≤ 0
(4.7.1)

• The penalty function approach produces an unconstrained problem
max
x∈Rn

F (x;P, a, b)

• Problem: F (x;P, a, b) may not be defined for all x.
• Example: Consumer demand problem

maxy,z u(y, z)

s.t. p y + q z ≤ I.
— Penalty method

max
y,z

u(y, z)− 1
2
P (max[0, p y + q z − I])2

— Problem: u (y, z) will not be defined for all y and z, such as

u(y, z)=log y + log z

u(y, z)=y1/3z1/4

u(y, z)=
³
y1/6 + z1/6

´7/2
— Penalty method may crash when computer tries to evaluate u (y, z)!

31

• Solutions
— Strategy 1: Transform variables

∗ If functions are defined only for xi > 0, then reformulate in terms of zi = log xi
∗ For example, let ey = log y, ez = log z, and solve

maxey,ez u(eey, eez)− 1
2
P (max[0, p eey + q eez − I])2

∗ Problem: log transformation may not preserve shape; e.g., concave function of x may not
be concave in log x

— Strategy 2: Alter objective and constraint functions so that they are defined everywhere (see
discussion above)

— Strategy 3: Express the domain where functions are defined in terms of inequality constraints
that are enforced by the algorithm at every step.

∗ E.g., if utility function is log (x) + log (y), then add constraints x ≥ δ, y ≥ δ for some very
small δ > 0 (use, for example, δ ≈ 10−6; don’t use δ = 0 since roundoff error may still allow
negative x or y)

∗ In general, you can avoid domain problems if you express the domain in terms of linear
constraints.

∗ If the domain is defined by nonlinear functions, then create new variables that can describe
the domain in linear terms.

32

Active Set Approach

• Problems:
— Kuhn-Tucker approach has too many combinations to check

∗ some choices of P may have no solution
∗ there may be multiple local solutions to others.

— Penalty function methods are costly since all constraints are in (4.7.5), even if only a few bind
at solution.

• Solution: refine K-T with a good sequence of subproblems.
— Let J be the set {1, 2, · · · , `}
— for P ⊂ J , define the P problem

minx f(x)

s.t. g(x) = 0,

hi(x) ≤ 0, i ∈ P.
(P) (4.7.10)

— Choose an initial set of constraints, P, and start to solve (4.7.10-P).
— Periodically drop constraints in P which fail to bind
— Periodically add constraints which are violated.

— Increase penalty parameters

• The simplex method for linear programing is really an active set method.
33

Efficient Outcomes with Adverse Selection

• Rothschild-Stiglitz-Wilson (RSW) model of insurance markets with adverse selection; we formulate
it as an endowment problem

• All agents receive either e1 or e2, e1 > e2
— type H: probability πH of receiving e1

— type L : probability πL of receiving e1, πH > πL.

— θH (θL = 1− θH) is fraction of type H(L) agents.

— Risks are independent across agents;

— Infinite number of each type; invoke LLN.

• Social planner
— offers insurance contracts; redistributes income across states and people

— sees only individual’s realized income, not his type

— must break even.

34

• y = (y1, y2) is net state-contingent total income
— pays e1 − y1 to insurer and consumes y1 if income is e1
— receives y2 − e2 and consumes y2 otherwise.

• Type t expected utility with net income, yt.
Ut(yt) = πtut(yt1) + (1− πt)ut(yt2), t = H,L,

• Planner’s profits are
Π(yH, yL)= θH(πH(e1 − yH1) + (1− πH)(e2 − yH2))

+θL(πL(e1 − yL1) + (1− πL)(e2 − yL2)).
(4.8.3)

• Social planner offers menu ¡yH, yL¢ and lets agents choose
• yH, yL ∈ R2 constrained efficient if it solves

max λUH(yH)+(1− λ)UL(yL)

s.t. UH(yH)≥ UH(yL),
UL(yL)≥ UL(yH),

Π(yH, yL)≥ 0,
(4.8.4)

where 0 ≤ λ ≤ 1 is the welfare weight of type H agents.

35

• Example (Rothschild-Stiglitz, Wilson, Miyazaki, Spence):
— e1 = 1, e2 = 0, πH = 0.8, λ = 1

— u (c) = −e−4c
— Pk = 101+k/2; Pk = 10k did not work as well

(Modification of Table 4.9)
Adverse selection example

πL θH (yH1 , y
H
2) (yL1 , y

L
2) IV: UL(yL)− UL(yH) Profit

0.70 0.10 0.87, 0.51 0.70, 0.70 −1(−10) −1(−10)
0.50 0.10 0.92, 0.35 0.50, 0.50 −5(−14) −1(−14)
0.70 0.75 0.82, 0.79 0.77, 0.77 −1(−12) −6(−13)
0.50 0.75 0.797, 0.789 0.794, 0.794 −2(−12) −6(−13)

• The results do reflect the predictions of adverse selection (“hidden information”) theory.
— If θH small, there is no cross-subsidy. TypeH agents receive actuarially fair contracts but must
face risk to keep type L agents from pretending to be H.

— If θH large, cross-subsidies arise: the numerous type H agents take actuarially unfair contracts
but receive safer allocations.

— Type L agents always receive a risk-free consumption since no one wants to pretend to be L.

36

Computing Nash Equilibrium

• A game with n players.
— Player i: strategy set Si = {si1, si2, · · · , siJi}.
— S = Πni=1Si is set strategy combinations.

— Mi(qi,σ−i) is payoff to i from mixed strategy qi if others play σ−i.

• Consider the function

v(σ) =
nX
i=1

X
sij∈Si

{max [Mi(sij,σ−i)−Mi(σ), 0]}2 .

Theorem 3 (McKelvey) The solutions to

min
σ
v(σ)X

σi (sj) = 1

σi (sj) ≥ 0
are the Nash equilibria of (M,S) and they are also the zeros of v(σ), and conversely.

• Tradeoffs
— Reduces Nash computation to a minimization problem

— There may be local optima where v(σ) > 0 and are not equilibria.

37

• Example: simple coordination game:
R

L
1, 1 0, 0
0, 0 1, 1

— pij is prob. that player i plays his jth strategy.

— Payoff for each player is p11p
2
1 + p

1
2p
2
2.

— Lyapunov function for this game is

v(p11, p
1
2, p

2
1, p

2
2) =

2X
i,j=1

max[0, pji − (p11p21 + p12p22)]2.

— Three global min (and three equilibria) are

(p11, p
1
2, p

2
1, p

2
2)=(1, 0, 1, 0),

(0.5, 0.5, 0.5, 0.5),

(0, 1, 0, 1)

— BFGS did well except it got hung up on saddle point, but such hangups are easily fixed.

38

Table 4.10: Coordination game
Iterate (p11, p

2
1) (p11, p

2
1) (p11, p

2
1) (p11, p

2
1)

0 (0.1, 0.25) (0.9, 0.2) (0.8, 0.95) (0.25, 0.25)
1 (0.175, 0.100) (0.45, 0.60) (0.959, 8.96) (0.25, 0.25)
2 (0.110, 0.082) (0.471, 0.561) (0.994, 0.961) (0.25, 0.25)
3 (0, 0) (0.485, 0.509) (1.00, 1.00) (0.25, 0.25)
4 (0, 0) (0.496, 0.502) (1.00, 1.00) (0.25, 0.25)
5 (0, 0) (0.500, 0.500) (1.00, 1.00) (0.25, 0.25)

39

