$\begin{array}{c} Numerical\ Methods\ in\ Economics\\ \text{MIT Press, } 1998 \end{array}$

Notes for Chapter 3: Linear Equations and Iterative Methods

September 30, 2008

Linear Equations

• Linear equation

$$Ax = b$$

where $b \in \mathbb{R}^n$ and $A \in \mathbb{R}^{n \times n}$

- Importance of linear solution methods
 - Some important problems are linear problems
 - Nonlinear solution methods are generally sequences of linear problems
 - Solution methods illustrate general ideas and concepts for solving equations

~

Triangular Systems

• A is lower triangular if all nonzero elements lie on or below the diagonal:

$$A = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}.$$

- Upper triangular: all nonzero entries on or above the diagonal.
- -A is a triangular matrix if it is either upper or lower triangular.
- A diagonal matrix has nonzero elements only on the diagonal.
- A triangular matrix is nonsingular iff all diagonal elements are nonzero
- Lower (upper, diagonal) triangular matrices are closed under multiplication and inversion.

~

- Solve triangular systems by back-substitution.
 - Assume: A is lower triangular, nonsingular.
 - Back-substitution is

$$x_1 = \frac{b_1}{a_{11}} \tag{3.1.1}$$

$$x_k = \frac{b_k - \sum_{j=1}^{k-1} a_{kj} x_j}{a_{kk}}, k = 2, 3, ..., n$$
(3.1.2)

is well-defined for nonsingular, lower triangular matrices.

– Similar for upper triangular except we begin with $x_n = b_n/a_{nn}$ and proceed to x_k , k = n - 1, n - 2, ... 2, 1.

Gaussian Elimination, LU Decomposition

- ullet Suppose A is nonsingular
- Factor A = LU where L is lower triangular, U is upper triangular
 - Computed by Gaussian elmination; see details in any numerical analysis book.
 - There are many operations like (3.1.1, 3.1.2) executed to find L and U.
 - Rows and columns often must be reordered to avoid division by zero pivoting
 - Given LU decomposition, find x by
 - * Solve Lz = b by back substitution
 - * Solve Ux = z by back substitution

QR factorization

- Definition: A is orthogonal iff $A^{\top}A$ is a diagonal matrix
- ullet Factor A=QR where Q is orthogonal and R is upper triangular
 - See details in books on linear numerical analysis.
 - Given QR decomposition, find x by
 - * Solve Qz = b by $z = (Q^{\top}Q)^{-1}Q^{\top}b$ which requires only inversion of a diagonal matrix and matrix multiplication
 - * Solve Rx = z by back substitution

Cholesky Factorization

- Suppose A is symmetric positive definite
- \bullet Factor $A = LL^{\top}$ where L is lower triangular
 - -L is a Cholesky factor, or "squareroot" of A.
 - See details in book.
 - A special case of LU decomposition: L^{\top} is upper triangular and is U in LU decomposition procedure.

Cramer's Rule

- Cramer's rule solves for x in Ax = b by applying a direct formula to the elements of A and b.
- \bullet Is only method for symbolic expressions
- Very slow, with operation count of $\mathcal{O}(n!)$.

_

Error Bounds

We want to approximate errors in solving Ax = b.

- True system: Ax = b
 - Errors in b (due to roundoff, etc.) cause computer to solve $A\tilde{x} = b + r$
 - Error in solution is $e \equiv \tilde{x} x$
 - Hence, $e = A^{-1} r$.
- Sensitivity of e to r is

$$\frac{\parallel e \parallel}{\parallel x \parallel} \div \frac{\parallel r \parallel}{\parallel b \parallel},$$

- Equals percentage error in x relative to the percentage error in b an elasticity
- Minimum sensitivity is 1, achieved when A = aI, x = b/a.
- Sensitivity can be computed for any numerical problem
- Sensitivity≡Elasticity

- Matrix analysis
 - If $\|\cdot\|$ is a norm on \mathbb{R}^n , define norm of A

$$\parallel A \parallel \equiv \max_{x \neq 0} \frac{\parallel Ax \parallel}{\parallel x \parallel} = \max_{\parallel x \parallel = 1} \parallel Ax \parallel$$

- Spectral radius: $\rho(A) = \max \{ \parallel \lambda \parallel \mid \lambda \text{ an eigenvalue of } A \}$
- For any norm $\|\cdot\|$, $\rho(A) \leq \|A\|$.
- The condition number of A relative to $\|\cdot\|$ is

$$\operatorname{cond}(A) \equiv ||A|| ||A^{-1}||,$$

- Upper and lower bounds on error

$$\frac{\parallel e \parallel}{\parallel x \parallel} \le \frac{\parallel r \parallel}{\parallel b \parallel} \operatorname{cond}(A) \tag{3.5.1}$$

- Depends on norm $\|\cdot\|$
- Numerical analysis typically uses $\|\cdot\|_{\infty}$

- \bullet Spectral condition number
 - Define:

$$\operatorname{cond}_*(A) \equiv \frac{\max_{\lambda \in \sigma(A)} |\lambda|}{\min_{\lambda \in \sigma(A)} |\lambda|} = \frac{\rho(A)}{\rho(A^{-1})}$$

- Theorem: For any norm,

$$\operatorname{cond}(A) \ge \operatorname{cond}_*(A)$$

- Practical fact: For standard norms, such as max or Euclidean norm,

$$\operatorname{cond}(A) \approx \operatorname{cond}_*(A)$$

- We arrive at an approximate error bound

$$\frac{\parallel e \parallel}{\parallel x \parallel} \lessapprox \frac{\parallel r \parallel}{\parallel b \parallel} \operatorname{cond}_*(A)$$

which is more practical since $\operatorname{cond}_*(A)$ is relatively easy to estimate and we are only interested in orders of magnitude.

- Hilbert matrix example:
 - Definition

$$H_n \equiv \begin{pmatrix} 1\frac{1}{2} & \frac{1}{3} & \cdots & \frac{1}{n} \\ \frac{1}{2}\frac{1}{3} & \frac{1}{4} & \cdots & \frac{1}{n+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{1}{n} \cdots & \cdots & \frac{1}{2n-1} \end{pmatrix}$$

- Condition numbers (table in book has some errors)

$$n$$
: 4 5 6 8 11 $\operatorname{cond}_*(H_n)$: 1.6(4) 4.8(5) 1.5(7) 1.5(10) 5.2(14) $\operatorname{cond}_\infty(H_n)$: 2.8(4) 9.4(5) 2.9(7) 3.4(10) 1.2(15)

. .

- Notes on condition numbers
 - The error bound is an *approximate* upper bound; errors could possibly be greater, but are more likely to be substantially less.
 - Condition numbers are sensitive to scaling
 - * Consider the problem x = a, My = b; trivial to solve
 - * This matrix has spectral condition number M:

$$\begin{pmatrix} 1 & 0 \\ 0 & M \end{pmatrix}$$

* Define z = My; problem becomes one with condition number 1.

$$x = a, z = b$$

- * Lesson: change in units (a.k.a., rescaling), or a linear transformation ("pre-conditioning") may improve conditioning
- * Recommendation: formulate problem so answer is O(1).
- \ast See McCullough and Vinod, AER (2003), and followup comments.

Iterative Methods

- Direct methods (LU, QR, Cholesky)
 - High accuracy
 - Time cost is order n^3 ; too large for large matrices.
- Iterative methods
 - Can handle large problems
 - Less accuracy
 - Less time
 - User has time-accuracy tradeoffs under his control
 - Ideas are used in nonlinear as well as linear problems.

• Fixed-Point Iteration.

$$-G(x) \equiv Ax - b + x$$

- Compute sequence

$$x^{k+1} = G(x^k) = (A+I)x^k - b (3.6.1)$$

- Clearly x is a fixed point of G(x) if and only if x solves Ax = b.
- (3.6.1) will converge iff $|\lambda| < 1$ for all $\lambda \in \sigma(A+I)$; i.e., G is a contraction

. .

• Gauss-Jacobi

- Idea: Replace system of multivariate linear equations with sequence of single variable linear problems
- The equation from the first row of Ax = b:

$$b_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n$$

$$\Longrightarrow x_1 = a_{11}^{-1}(b_1 - a_{12}x_2 - \dots - a_{1n}x_n).$$

- In general, if $a_{ii} \neq 0$, the *i*th row of A implies

$$x_i = \frac{1}{a_{ii}} \left\{ b_i - \sum_{j \neq i} a_{ij} x_j \right\}.$$

- Turn this into an iterative process as in

$$x_i^{k+1} = \frac{1}{a_{ii}} \left\{ b_i - \sum_{j \neq i} a_{ij} x_j^k \right\}, \quad i = 1, \dots, n$$
 (3.6.2)

- Note: no x_i^{k+1} is used until each x_i^{k+1} has been computed.
- We hope that (3.6.2) converges to the true solution
- Results are sensitive to which equation goes with which equation

• Gauss-Seidel

- Idea: Replace multivariate system with sequence of univariate problems and use new information immediately
- Given x^k , compute guess for x_1 from row 1

$$x_1^{k+1} = a_{11}^{-1}(b_1 - a_{12}x_2^k - \dots - a_{1n}x_n^k),$$

- Use x_1^{k+1} immediately to compute x_2^{k+1} :

$$x_2^{k+1} = a_{22}^{-1}(b_2 - a_{21}x_1^{k+1} - a_{23}x_3^k - \dots - a_{2n}x_n^k).$$

– In general, define the sequence $\{x^k\}_{k=1}^{\infty}$

$$x_i^{k+1} = \frac{1}{a_{ii}} \left\{ b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{k+1} - \sum_{j=i+1}^n a_{ij} x_j^k \right\}, i = 1, \dots, n$$
 (3.6.3)

- Each component of x^{k+1} is used immediately after computed
- Gauss-Seidel sensitive to (i) matching between variables and equations, and (ii) ordering of equations.

. .

Gauss-Jacobi (ADGH) versus Gauss-Seidel (ABELN..)

Tatonnement and Iterative Schemes.

- Equilibrium problem
 - Inverse demand equation p = 10 q
 - Supply curve q = p/2 + 1
 - Equilibrium

$$p + q = 10$$
 (3.6.6a)

$$p - 2q = -2$$
 (3.6.6b)

. ~

• Gauss-Jacobi

- Initial guess: p = 4 and q = 1, point A in figure 3.2.
- New guess:
 - * Solve demand eqn for p, holding q fixed; move to C on the demand eqn.
 - * Move from A to the B on supply curve to solve for q holding p fixed.
 - * Similar to a pair of auctioneers
 - * General iteration is

$$q_{n+1} = 1 + \frac{1}{2}p_n, p_{n+1} = 10 - q_n.$$
(3.6.7)

* Slow convergence, spiraling to p = 6 and q = 4.

. .

ullet Gauss-Seidel

- Start from A.
- Use the supply curve to get a new q at B
- Move from B up to E, get new p from the demand equation.
- Similar to an auctioneer alternating between markets.
- Also called hog cycle firms expect p_0 , produce q_1 , which causes prices to rise to p_1 , causing production to be q_2 , and so on.
- General iteration is

$$q_{n+1} = 1 + \frac{1}{2}p_n, p_{n+1} = 10 - q_{n+1}.$$
(3.6.8)

- Gauss-Seidel converges more rapidly.

- -

Operator Splitting Approach.

- General strategy: Transform problem into *another* problem with *same* solution where fixed-point iteration is cheap and works.
 - Problem: Ax = b.
 - Split A into two operators

$$A = N - P, (3.7.1)$$

- Note: Ax = b if and only if Nx = b + Px.
- Define the iteration

$$Nx^{m+1} = b + Px^m (3.7.2)$$

- Goal: find N so that
 - * each step of (3.7.2) is easy to solve, and
 - * (3.7.2) converges

_ .

 \bullet Gauss-Jacobi is a splitting with diagonal N

$$N = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix} , \quad P = - \begin{pmatrix} 0 & a_{12} & \cdots & a_{1n} \\ a_{21} & 0 & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & 0 \end{pmatrix} .$$

 \bullet Gauss-Seidel is a splitting with lower triangular N

$$N = \begin{pmatrix} a_{11} & 0 & 0 & \cdots & 0 \\ a_{21} & a_{22} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{pmatrix} , \quad P = - \begin{pmatrix} 0 & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & 0 & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

- Many possible splittings; just keep N simple
- Note: A can be any operator, not just linear operator

- -

Convergence of Iterative Schemes.

- Rate of convergence.
 - Suppose A = N P, and $Ax^* = b$.
 - Consider $Nx^{m+1} = b + Px^m$
 - * Error $e^m \equiv x^* x^m$ obeys iteration $e^m = (N^{-1}P)^m e^0$.
 - * $e^m \to 0$ iff $(N^{-1}P)^m e^0 \to 0$ iff $\rho(N^{-1}P) < 1$.
 - At best linearly convergent
- Diagonal dominance. A is diagonally dominant iff

$$\sum_{j \neq i} |a_{ij}| < |a_{ii}|, \quad i = 1, \dots, n.$$

- ~

Theorem 1 If A is diagonally dominant, both Gauss-Jacobi and Gauss-Seidel iteration schemes are convergent for all initial guesses.

• Economic intuition:

- If $(Ap)_i$ is excess demand for good i at price $p \in \mathbb{R}^n$, then diagonal dominance says excess demand for each good is more sensitive to its own price than to a similar change in all other prices.
- Also known as *gross substitutability*.
- This tells us how to match variables with equations:
 - Match x_i with some equation where x_i has a large coefficient
 - In tatonnement, use the apple excess demand equation to compute the apple price, use cheese excess demand equation to compute cheese price, etc.

_ .

Acceleration and Stabilization Methods

- Convergence od Gaussian is linear; no way to change that.
- Sometimes we can increase the linear rate of convergence.
- Extrapolation and Dampening.
 - To solve Ax = b, define G = I A.
 - Consider the iteration

$$x^{k+1} = Gx^k + b (3.9.1)$$

- * (3.9.1) will converge iff $\rho(G) < 1$
- * If $\rho(G) < 1$ then G is a contraction mapping with contraction rate $\rho(G)$
- * If $\rho(G)$ is close to 1, convergence will be slow.

– For scalar ω , consider

$$x^{k+1} = \omega G x^h + \omega b + (1 - \omega) x^k$$

$$\equiv G_{[\omega]} x^k + \omega b$$
(3.9.2)

- * When $\omega > 1$, (3.9.2) is called *extrapolation*; see Figure 3.3.b.
 - · Convergence implies that $Gx^k + b$ is a good direction to move
 - · Convergence may be accelerated by going further each iteration.
- * When $\omega < 1$, (3.9.2) is called *dampening*; see Figure 3.3.b.
 - $\cdot Gx^k + b$ may be a good direction, but overshoots solution
 - · If $\omega < 1$, (3.9.2) may avoid overshooting and converge

- -

- ullet Suppose all eigenvalues of G are real
 - Decompose $G = P^{-1}DP$. Then

$$\omega G + (1 - \omega)I = P^{-1}(\omega D + (1 - \omega)I)P$$

and

$$\sigma(\omega G + (1 - \omega)I) = \omega \sigma(G) + 1 - \omega.$$

- From definition of $G_{[\omega]}$, the scalar ω
 - * stretches or shrinks the spectrum of G,
 - * then flips it around 0 if $\omega < 0$, and
 - * finally shifts it by 1ω .

– Choose ω to minimize $\rho(G_{[\omega]})$. If $\sigma(G) \subset \mathbb{R}$, this is

$$\min_{\omega} \max_{\lambda \in \sigma(\omega G + (1 - \omega)I)} |\lambda| \tag{3.9.3}$$

with solution

$$\omega^* = \frac{2}{2 - m - M} \tag{3.9.4}$$

and spectral radius

$$\rho(G_{[\omega^*]}) = \left| \frac{M - m}{2 - M - m} \right|. \tag{3.9.5}$$

- Properties of (3.9.5)
 - * If -1 < m < M < 1, ω^* accelerates convergence
 - * If M < 1, then $\rho(G_{[\omega^*]}) < 1$ for all m, ω^* stabilizes explosive roots
 - * If M > 1 and m < -1 (both kinds of unstable roots) then (3.9.5) fails

- ~

- Successive Overrelaxation
 - Combine Gauss-Seidel with extrapolation.
 - For scalar ω , define

$$x_i^{k+1} = \omega \left(\frac{1}{a_{ii}}\right) \quad \left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{k+1} - \sum_{j=i+1}^n a_{ij} x_j^k\right] + (1 - \omega) x_i^k.$$
 (3.9.6)

- The *i*'th component of the k+1 iterate is a linear combination, parameterized by ω , of the Gauss-Seidel value and the kth iterate.
- Decompose A = D + L + U where D is diagonal, L is lower triangular, and U is upper triangular.

- -

- SOR has the convenient matrix representation

$$(D + \omega L) x^{k+1} = ((1 - \omega) D - \omega U) x^k + \omega b.$$

Define $M_{\omega} \equiv D + \omega L$, $N_{\omega} \equiv (1 - \omega) D - \omega U$; then

$$x^{k+1} = M_{\omega}^{-1} N_{\omega} x^k + \omega M_{\omega}^{-1} b \tag{3.9.7}$$

- Best choice for ω is $\arg\min_{\omega} \rho(M_{\omega}^{-1} N_{\omega})$.
 - * Gains can be substantial
 - * Optima ω is difficult to compute; see Hageman and Young (1981) for ways to estimate it.

~ ~

Dampening to Stabilize an Unstable "Hog Cycle".

- Suppose inverse demand is p = 21 3q and supply is q = p/2 3
- Linear system is not diagonally dominant:

$$\begin{pmatrix} 1 & 3 \\ 1 - 2 \end{pmatrix} \begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} 21 \\ 6 \end{pmatrix} \tag{3.9.8}$$

• Gauss-Seidel is unstable:

$$p_{n+1} = 21 - 3q_n \tag{3.9.9a}$$

$$p_{n+1} = 21 - 3q_n$$

$$q_{n+1} = \frac{1}{2}p_{n+1} - 3$$
(3.9.9a)
(3.9.9b)

 \bullet Stabilize through damping: if $\omega = 0.75$, then we have stable system

$$p_{n+1} = 0.75(21 - 3q_n) + 0.25p_n (3.9.10a)$$

$$p_{n+1} = 0.75(21 - 3q_n) + 0.25p_n$$

$$q_{n+1} = 0.75(\frac{1}{2}p_{n+1} - 3) + 0.25q_n$$
(3.9.10a)
$$(3.9.10b)$$

Exatrapolation to Accelerate Convergence in a Game

- Assume firm two's reaction curve is $p_2 = 2 + 0.80p_1 \equiv R_2(p_1)$, and firm one's reaction curve is $p_1 = 1 + 0.75p_2 \equiv R_1(p_2)$.
- Equilibrium system is diagonally dominant
- Gauss-Seidel is the iterative scheme

$$p_1^{n+1} = R_1(p_2^n) \tag{3.9.12a}$$

$$p_2^{n+1} = R_2 \left(p_1^{n+1} \right) \tag{3.9.12b}$$

• Accelerate (3.9.12). If $\omega = 1.5$, we arrive at faster scheme:

$$p_1^{n+1} = 1.5R_1(p_2^n) - 0.5p_1^n, (3.9.13a)$$

$$p_2^{n+1} = 1.5R_2 \left(p_1^{n+1} \right) - 0.5p_2^n.$$
 (3.9.13b)

Sparse Matrices

• Classification

- Dense: A is dense if $a_{ij} \neq 0$ for most i, j.
- Sparse: A is sparse if $a_{ij} = 0$ for most i, j
 - * "most" is not a precise definition
 - * In practice, we are studying a class of problems of varying dimension and "most" means that the number of nonzero elements is Mn form some fixed M.

• Diagonal matrix:

$$D = \begin{pmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{pmatrix}$$

$$Dx = b \Longrightarrow x_i = \frac{b_i}{d_i}$$

~ .

• Tridiagonal matrix has all nonzero elements on or next to the diagonal

$$A = \begin{pmatrix} a_{11} a_{12} & 0 & \cdots & 0 \\ a_{21} a_{22} a_{23} & \cdots & 0 \\ 0 & a_{32} a_{33} a_{34} \cdots & 0 \\ 0 & 0 & a_{43} a_{44} \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{pmatrix}$$

and Ax = b is solved by

$$a_{11}x_{1} + a_{12}x_{2} = b_{1}$$

$$\Rightarrow x_{2} = \frac{b_{1} - a_{11}x_{1}}{a_{12}}$$

$$= \alpha_{2} - \beta_{2}x_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + a_{23}x_{3} = a_{21}x_{1} + a_{22}(\alpha_{2} - \beta_{2}x_{1}) + a_{23}x_{3} = b_{2}$$

$$\Rightarrow x_{3} = \alpha_{3} - \beta_{3}x_{1}$$

$$\vdots$$

$$x_{n} = \alpha_{n-1} - \beta_{n-1}x_{1}$$

$$\vdots$$

$$x_{n} = \alpha_{n-1} - \beta_{n-1}x_{1}$$

$$\vdots$$

$$a_{n,n-1}(\alpha_{n-2} - \beta_{n-2}x_{1}) + a_{nn}(\alpha_{n-1} - \beta_{n-1}x_{1}) = b_{n}$$

$$\Rightarrow x_{1} \text{ solution}$$
(Row 1)
$$\Rightarrow x_{1} \text{ solution}$$

- Taking advantage of sparseness
 - Storage:
 - * Dense: n^2 numbers
 - * Sparse: store only $m \sim O(n)$ nonzero elements along with their locations.
 - Operations: Matrix multiplication Ax or yB
 - * Dense uses $2n^2$ flops
 - * Sparse approach uses $2m \sim O(n)$ flops
- Application: Ergodic distribution of a finite Markov chain
 - Markov transition matrices, Π , are often sparse
 - Ergodic distribution x solves $x\Pi = x$.
 - Solve by iteration: $x^{k+1} = x^k \Pi$; works well since $x^k \Pi$ is fast if Π is sparse.
- Software: Standard packages (Matlab, Mathematica, etc.) offer sparse storage and operation options.

~ ~

Summary

- Linear equations are essential in numerical methods
 - Linear problems are common
 - Nonlinear problems are reduced to a sequence of linear problems
- Linear equation methods often inspire methods for nonlinear problems
 - The key concepts behind Gauss-Jacobi and Gauss-Seidel methods can also be applied to non-linear problems
 - The key concepts behind relaxation methods can also be applied to nonlinear problems