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Linear Equations

e Linear equation

Ax

|
S¥

where b € R" and A € R™"*"

e Importance of linear solution methods

— Some important problems are linear problems
— Nonlinear solution methods are generally sequences of linear problems

— Solution methods illustrate general ideas and concepts for solving equations



Triangular Systems

o A is lower triangular if all nonzero elements lie on or below the diagonal:

ay 0 - 0
ag1 A2+ - 0

A:

Ap1dp2 """ Qpp
— Upper triangular: all nonzero entries on or above the diagonal.
— A is a triangular matrix if it is either upper or lower triangular.
— A diagonal matrix has nonzero elements only on the diagonal.
— A triangular matrix is nonsingular iff all diagonal elements are nonzero

— Lower (upper, diagonal) triangular matrices are closed under multiplication and inversion.



e Solve triangular systems by back-substitution.

— Assume: A is lower triangular, nonsingular.

— Back-substitution is

b1
T =— 3.1.1
: a1y ( )
b — X5l ag; @
P VM 93 (3.1.2)

Ak

is well-defined for nonsingular, lower triangular matrices.

— Similar for upper triangular except we begin with x,, = b, /a,, and proceed to =y, k = n —
I,n—2,..21.



Gaussian Elimination, LU Decomposition

e Suppose A is nonsingular

e Factor A = LU where L is lower triangular, U is upper triangular

— Computed by Gaussian elmination; see details in any numerical analysis book.
— There are many operations like (3.1.1, 3.1.2) executed to find L and U.

— Rows and columns often must be reordered to avoid division by zero — pivoting
— Given LU decomposition, find = by

x Solve Lz = b by back substitution
x Solve Ux = z by back substitution



QR factorization

e Definition: A is orthogonal iff AT A is a diagonal matrix

e Factor A = QR where () is orthogonal and R is upper triangular

— See details in books on linear numerical analysis.
— Given ()R decomposition, find x by

x Solve Qz =bby z = (Q'Q) 1 OTb which requires only inversion of a diagonal matrix and
matrix multiplication

x Solve Rx = z by back substitution

Cholesky Factorization

e Suppose A is symmetric positive definite

e Factor A = LL" where L is lower triangular

— L is a Cholesky factor, or “squareroot” of A.
— See details in book.

— A special case of LU decomposition: L' is upper triangular and is U in LU decomposition
procedure.



Cramer’s Rule

e Cramer’s rule solves for x in Ax = b by applying a direct formula to the elements of A and b.
e Is only method for symbolic expressions

e Very slow, with operation count of O(n!).



Error Bounds
We want to approximate errors in solving Az = b.

e True system: Ax =b

— Errors in b (due to roundoff, etc.) cause computer to solve Az =b+r
— Error in solutionise =1 — x

— Hence, e = A~ 'r.

e Sensitivity of e to r is
lell . Il

I

— Equals percentage error in  relative to the percentage error in b — an elasticity

— Minimum sensitivity is 1, achieved when A = al, z = b/a.
— Sensitivity can be computed for any numerical problem

— Sensitivity=FElasticity



e Matrix analysis

—If || - || is a norm on R", define norm of A
A
| A f= max LA o ) 4z
20 x| Jel=t

— Spectral radius: p(A) = max {|| A || | A an eigenvalue of A}
~ For any nomm | - |, p(4) <|| 4|

e The condition number of A relative to || - || is
cond(A) = | A | A7,

— Upper and lower bounds on error

fell _ 7|

< C
[z = (o]

ond(A) (3.5.1)

— Depends on norm || - ||

— Numerical analysis typically uses || - ||



e Spectral condition number

— Define:
_ maxsenn A p(4

L(A) = =
cond () = o A (AT

— Theorem: For any norm,

cond(A) > cond, (A)
— Practical fact: For standard norms, such as max or Euclidean norm,

cond(A) ~ cond, (A)

— We arrive at an approrimate error bound

lell o 7|
(K I

cond, (A)

which is more practical since cond, (A) is relatively easy to estimate and we are only interested
in orders of magnitude.



e Hilbert matrix example:

— Definition

1 1 1
12 3 n
11 1 1
HnE 2.3 4 TL—H
1 ......... 1
n 2n—1

— Condition numbers (table in book has some errors)
n: 4 5 6 8 11
cond, (H,): 1.6(4) 4.8(5) 1.5(7) 1.5(10) 5.2(14)
conds (H,): 2.8(4) 9.4(5) 2.9(7) 3.4(10) 1.2(15)



e Notes on condition numbers

— The error bound is an approrimate upper bound; errors could possibly be greater, but are more
likely to be substantially less.

— Condition numbers are sensitive to scaling

x Consider the problem x = a, My = b; trivial to solve

« This matrix has spectral condition number M :

o)

+ Define z = My; problem becomes one with condition number 1.

* Lesson: change in units (a.k.a., rescaling), or a linear transformation (“pre-conditioning”)
may improve conditioning

* Recommendation: formulate problem so answer is O (1).

* See McCullough and Vinod, AER (2003), and followup comments.



Iterative Methods
e Direct methods (LU, QR, Cholesky)

— High accuracy

— Time cost is order n?; too large for large matrices.
e [terative methods

— Can handle large problems

— Less accuracy

— Less time

— User has time-accuracy tradeoffs under his control

— Ideas are used in nonlinear as well as linear problems.



e [ixed-Point Iteration.

—Gr)=Ar—b+=x
— Compute sequence
=G = (A+ 12" —b (3.6.1)
— Clearly z is a fixed point of G(z) if and only if = solves Ax = b.
— (3.6.1) will converge iff |A\| < 1 for all A € o (A + I); i.e., G is a contraction



e Gauss-Jacobi

— Idea: Replace system of multivariate linear equations with sequence of single variable linear
problems

— The equation from the first row of Ax = b:

by = ay1x1 + apxy + -+ -+ aTy

1
— 11 = ajy (b1 — a9 — -+ - — A1Ty).

— In general, if a;; # 0, the 1th row of A implies

1
r, — — bz‘— E CLZ‘jfj
i

J#
— Turn this into an iterative process as in
xkﬂ—i b'—Za'wk i=1 n (3.6.2)
i — a/“ 4 - 1] ] 3 — 4, ... 0.
J7i
— Note: no 2™ is used until each 2 *! has been computed.

— We hope that (3.6.2) converges to the true solution

— Results are sensitive to which equation goes with which equation



o Gauss-Seidel

— Idea: Replace multivariate system with sequence of univariate problems and use new informa-
tion immediately

— Given z*, compute guess for z; from row 1
w1 = ay)' (b — anenhy — - — aray),
— Use 2™ immediately to compute x5
b = agt(by — agiah ™ — azga:l?f — e — gyt

— In general, define the sequence {2},

1 |
gt = — p, — a;; ot — Z a; ks i=1,---n (3.6.3)

1
Ay

kE+1 s

— Each component of """ is used immediately after computed

— Gauss-Seidel sensitive to (i) matching between variables and equations, and (ii) ordering of
equations.



)

10

1 2 3 4 5 6

Gauss-Jacobi (ADGH) versus Gauss-Seidel (ABELN..)



Tatonnement and Iterative Schemes.
e Equilibrium problem

— Inverse demand equation p = 10 — ¢
— Supply curve ¢ = p/2+ 1
— Equilibrium
p+q=10 (3.6.6a)
p—2q=—2 (3.6.6b)



e Gauss-Jacobi

— Initial guess: p =4 and ¢ = 1, point A in figure 3.2.
— New guess:

x Solve demand eqn for p, holding ¢ fixed; move to C' on the demand eqn.
*x Move from A to the B on supply curve to solve for ¢ holding p fixed.
* Similar to a pair of auctioneers

* (General iteration is
Gny1=1+ %pna
Por1= 10 — gqy.
x Slow convergence, spiraling to p = 6 and ¢ = 4.

(3.6.7)



o Gauss-Seidel

— Start from A.

— Use the supply curve to get a new q at B

— Move from B up to E, get new p from the demand equation.
— Similar to an auctioneer alternating between markets.

— Also called hog cycle — firms expect pg, produce ¢;, which causes prices to rise to p;, causing
production to be ¢y, and so on.
— General iteration is 1
n =1 +35 )y
o+l 2P (3.6.8)
Pn+1— 10 — Gn+1-

— Gauss-Seidel converges more rapidly.



Operator Splitting Approach.

e General strategy: Transform problem into another problem with same solution where fixed-point
iteration is cheap and works.

— Problem: Az = b.

— Split A into two operators
A=N-—P, (3.7.1)

— Note: Az = b if and only if Nx = b+ Pux.

— Define the iteration
Na™ = b4 Pa™ (3.7.2)

— Goal: find N so that

+ each step of (3.7.2) is easy to solve, and

* (3.7.2) converges



e Gauss-Jacobi is a splitting with diagonal N

aiy 0O--- 0 0 aip - -
N — 0(122"' 0 | p_ CL210°"
0 0 *c App Ap1Qp2- -

e Gauss-Seidel is a splitting with lower triangular N

4 0 0 - 0 Oty ays - -
N — CL.21(I.22(.)..- 0 | p_ _ 00(123
An1 Ap2An3 -+ App 00 ---

e Many possible splittings; just keep N simple

e Note: A can be any operator, not just linear operator

Ain

A2n



Convergence of Iterative Schemes.

e Rate of convergence.
— Suppose A = N — P, and Ax* = b.
— Consider No™*! = b4 Pz™
x Frror ™ = z* — 2™ obeys iteration € = (N~1P)™ ¢,
x " — 0iff (N"IP)" e — 0iff p(N~1P) < 1.

— At best linearly convergent

e Diagonal dominance. A is diagonally dominant iff

D layl <laul, i=1,--,n.

JF



Theorem 1 If A is diagonally dominant, both Gauss-Jacobi and Gauss-Seidel iteration schemes are

convergent for all initial quesses.
e Fconomic intuition:

— If (Ap); is excess demand for good i at price p € R", then diagonal dominance says excess
demand for each good is more sensitive to its own price than to a similar change in all other

prices.

— Also known as gross substitutability.
e This tells us how to match variables with equations:

— Match x; with some equation where x; has a large coefficient

— In tatonnement, use the apple excess demand equation to compute the apple price, use cheese

excess demand equation to compute cheese price, etc.



Acceleration and Stabilization Methods

e Convergence od Gaussian is linear; no way to change that.
e Sometimes we can increase the linear rate of convergence.

e Extrapolation and Dampening.

— To solve Ax = b, define G = I — A.

— Consider the iteration
2" =G a2t +b (3.9.1)
* (3.9.1) will converge iff p(G) < 1
* If p(G) < 1 then G is a contraction mapping with contraction rate p (G)

x If p(G) is close to 1, convergence will be slow.



— For scalar w, consider o ) )
2" = wGa" + wb+ (1 — w)x
o (392

* When w > 1, (3.9.2) is called extrapolation; see Figure 3.3.b.

. Convergence implies that Ga* + b is a good direction to move

- Convergence may be accelerated by going further each iteration.
* When w < 1, (3.9.2) is called dampening; see Figure 3.3.b.

. G2¥ 4+ b may be a good direction, but overshoots solution

- If w < 1, (3.9.2) may avoid overshooting and converge

k+1 k+1  k
x0 O F(w-)xT O -x)) K+l
o X

L
k .@ /
?:/ X.V ka—H + (1-w) Xk

@ (b)



e Suppose all eigenvalues of G are real
— Decompose G = P~'DP. Then
wG + (1 —w)l = P HwD + (1 —w)I)P

and
oc(wG+ (1 —w)l)=wo(G)+1—w.

— From definition of Gy, the scalar w

x stretches or shrinks the spectrum of GG,
* then flips it around 0 if w < 0, and
x finally shifts it by 1 — w.



— Choose w to minimize p(Gy,)). If o (G) C R, this is

min max Al (3.9.3)
w  Aeo(wG+(1-w))
with solution )
* — 3.9.4
“ 2—m—M ( )
and spectral radius
M —m
) = |72 (3.95)

— Properties of (3.9.5)

x If —1 <m < M < 1, w* accelerates convergence
* If M <1, then p(G+) < 1 for all m, w* stabilizes explosive roots
« If M > 1 and m < —1 (both kinds of unstable roots) then (3.9.5) fails



e Successive Overrelaxation

— Combine Gauss-Seidel with extrapolation.

— For scalar w, define

1—1 n
1
2 = w (—) b, — Z a;j xf“ — Z a;j :Ef + (1 —w) al. (3.9.6)

a/.‘
t j=1 j=i+1

— The 7’th component of the k& + 1 iterate is a linear combination, parameterized by w, of the
Gauss-Seidel value and the kth iterate.

— Decompose A = D+ L+U where D is diagonal, L is lower triangular, and U is upper triangular.



— SOR has the convenient matrix representation
(D +wL) 2" = ((1 —w)D —wU) 2"+ wb.
Define M, = D + wL, N, = (1 — w) D — wU; then
" = MY N, af +wM D (3.9.7)

— Best choice for w is arg min, p(M;1 N,).

* (Gains can be substantial

* Optima w is difficult to compute; see Hageman and Young (1981) for ways to estimate it.



Dampening to Stabilize an Unstable “Hog Cycle”.

e Suppose inverse demand is p = 21 — 3¢q and supply is ¢ = p/2 — 3

e Linear system is not diagonally dominant:

e Gauss-Seidel is unstable:

(%) ()-C)

Pn+1= 21 — 3Qn
1
gn+1= §pn—|—1 -3

20

15 G C

10 A J

" D

(3.9.8)

(3.9.9a)
(3.9.9b)



e Stabilize through damping: if w = 0.75, then we have stable system

Pns1=0.75(21 — 3q,) + 0.25p,, (3.9.10a)
1
@1 =0.75(5D1 — 3) + 0.25¢, (3.9.10D)



Exatrapolation to Accelerate Convergence in a Game

e Assume firm two’s reaction curve is po = 2 4+ 0.80p; = Ray(p1), and firm one’s reaction curve is

P1 = 1+ 0.75p2 = Rl(pg).
e Equilibrium system is diagonally dominant

e Gauss-Seidel is the iterative scheme

pit =Ry (p)
Py =Ry (p?ﬂ)

o Accelerate (3.9.12). If w = 1.5, we arrive at faster scheme:

P =158 (ph) — 0.5p7,
Pyt =1.5R, (pi™") — 0.5p5.

(3.9.12a)
(3.9.12b)

(3.9.13a)
(3.9.13b)



Sparse Matrices

e (Classification

— Dense: A is dense if a;; # 0 for most 1, j.
— Sparse: A is sparse it a;; = 0 for most 1, j

x “most” is not a precise definition

« In practice, we are studying a class of problems of varying dimension and “most” means
that the number of nonzero elements is Mn form some fixed M.

e Diagonal matrix:

d0---0

0dy--- 0
D: ..2.

00

Dxr=b—= x;



e Tridiagonal matrix has all nonzero elements on or next to the diagonal

(CLHCLlQO 0\
(21 A2 (23 0
. 0 aspaszags--- 0
0 0 ay3Qyq - - - 0
\ 0 0 0 0 ay)
and Ax = b is solved by
a11T1 + a2 = by (RDW 1)
by —
g, = 1 — a1y
ai2
= g — B9y
(9121 + A929T9 + A93T3 = A21T1 + A99 (Oég — 62371) + Q933 = by (RDW 2)

— 23 = a3 — (371

T, = Qu_1— B, 171 (Row n-1)
Qp n—1 <04n—2 - 671—2331) + Qnp <04n—1 - 671—1331) - bn (ROW Il)

— 1 solution



e Taking advantage of sparseness

— Storage:

2

* Dense: n“ numbers

* Sparse: store only m ~ O (n) nonzero elements along with their locations.
— Operations: Matrix multiplication — Ax or yB

+ Dense uses 2n? flops

* Sparse approach uses 2m ~ O (n) flops
e Application: Ergodic distribution of a finite Markov chain

— Markov transition matrices, II, are often sparse

— Ergodic distribution x solves xII = x.

k+

— Solve by iteration: z**! = 2*II; works well since z*1I is fast if II is sparse.

e Software: Standard packages (Matlab, Mathematica, etc.) offer sparse storage and operation
options.



Summary
e Linear equations are essential in numerical methods

— Linear problems are common

— Nonlinear problems are reduced to a sequence of linear problems
e Linear equation methods often inspire methods for nonlinear problems

— The key concepts behind Gauss-Jacobi and Gauss-Seidel methods can also be applied to non-
linear problems

— The key concepts behind relaxation methods can also be applied to nonlinear problems



