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Linear Equations

• Linear equation
Ax = b

where b ! Rn and A ! Rn×n

• Importance of linear solution methods

— Some important problems are linear problems

— Nonlinear solution methods are generally sequences of linear problems

— Solution methods illustrate general ideas and concepts for solving equations
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Triangular Systems

• A is lower triangular if all nonzero elements lie on or below the diagonal:

A =

!

"""#

a11 0 · · · 0
a21 a22 · · · 0
... ... . . . ...
an1an2 · · · ann

$

%%%& .

— Upper triangular: all nonzero entries on or above the diagonal.

— A is a triangular matrix if it is either upper or lower triangular.

— A diagonal matrix has nonzero elements only on the diagonal.

— A triangular matrix is nonsingular i! all diagonal elements are nonzero

— Lower (upper, diagonal) triangular matrices are closed under multiplication and inversion.
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• Solve triangular systems by back-substitution.

— Assume: A is lower triangular, nonsingular.

— Back-substitution is

x1=
b1
a11

(3.1.1)

xk=
bk " !k"1j=1 akj xj

akk
, k = 2, 3, ..., n (3.1.2)

is well-dened for nonsingular, lower triangular matrices.

— Similar for upper triangular except we begin with xn = bn/ann and proceed to xk, k = n "
1, n" 2, ...2, 1.

4



Gaussian Elimination, LU Decomposition

• Suppose A is nonsingular

• Factor A = LU where L is lower triangular, U is upper triangular

— Computed by Gaussian elmination; see details in any numerical analysis book.

— There are many operations like (3.1.1, 3.1.2) executed to nd L and U .

— Rows and columns often must be reordered to avoid division by zero — pivoting

— Given LU decomposition, nd x by

# Solve Lz = b by back substitution
# Solve Ux = z by back substitution
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QR factorization

• Denition: A is orthogonal i! A$A is a diagonal matrix

• Factor A = QR where Q is orthogonal and R is upper triangular

— See details in books on linear numerical analysis.

— Given QR decomposition, nd x by

# Solve Qz = b by z =
'
Q$Q

("1
Q$b which requires only inversion of a diagonal matrix and

matrix multiplication

# Solve Rx = z by back substitution

Cholesky Factorization

• Suppose A is symmetric positive denite

• Factor A = LL$ where L is lower triangular

— L is a Cholesky factor, or “squareroot” of A.

— See details in book.

— A special case of LU decomposition: L$ is upper triangular and is U in LU decomposition
procedure.
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Cramer’s Rule

• Cramer’s rule solves for x in Ax = b by applying a direct formula to the elements of A and b.

• Is only method for symbolic expressions

• Very slow, with operation count of O(n!).
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Error Bounds
We want to approximate errors in solving Ax = b.

• True system: Ax = b

— Errors in b (due to roundo!, etc.) cause computer to solve Ax̃ = b + r

— Error in solution is e % x̃" x

— Hence, e = A"1 r.

• Sensitivity of e to r is
& e &
& x &

÷ & r &
& b &

,

— Equals percentage error in x relative to the percentage error in b — an elasticity

— Minimum sensitivity is 1, achieved when A = aI, x = b/a.

— Sensitivity can be computed for any numerical problem

— Sensitivity%Elasticity
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• Matrix analysis

— If & · & is a norm on Rn, dene norm of A

& A &% max
x'=0

& Ax &
& x &

= max
&x&=1

& Ax &

— Spectral radius: !(A) = max {& " & | " an eigenvalue of A}
— For any norm & · &, !(A) (& A & .

• The condition number of A relative to & · & is

cond(A) % & A & & A"1 &,

— Upper and lower bounds on error

& e &
& x &

(
& r &
& b &

cond(A) (3.5.1)

— Depends on norm & · &
— Numerical analysis typically uses & · &)
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• Spectral condition number

— Dene:

cond# (A) %
max"!#(A) |"|
min"!#(A) |"|

=
!(A)

!(A"1)

— Theorem: For any norm,
cond(A) * cond# (A)

— Practical fact: For standard norms, such as max or Euclidean norm,

cond(A) + cond# (A)

— We arrive at an approximate error bound

& e &
& x &

! & r &
& b &

cond# (A)

which is more practical since cond# (A) is relatively easy to estimate and we are only interested
in orders of magnitude.
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• Hilbert matrix example:

— Denition

Hn %

!

"""#

1 12
1
3 · · · 1n

1
2
1
3

1
4 · · · 1

n+1
... ... ... . . . ...
1
n · · · · · · · · ·

1
2n"1

$

%%%&

— Condition numbers (table in book has some errors)

n: 4 5 6 8 11
cond# (Hn): 1.6(4) 4.8(5) 1.5(7) 1.5(10) 5.2(14)
cond) (Hn): 2.8(4) 9.4(5) 2.9(7) 3.4(10) 1.2(15)
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• Notes on condition numbers

— The error bound is an approximate upper bound; errors could possibly be greater, but are more
likely to be substantially less.

— Condition numbers are sensitive to scaling

# Consider the problem x = a, My = b; trivial to solve
# This matrix has spectral condition numberM :

)
1 0

0 M

*

# Dene z =My; problem becomes one with condition number 1.

x = a, z = b

# Lesson: change in units (a.k.a., rescaling), or a linear transformation (“pre-conditioning”)
may improve conditioning

# Recommendation: formulate problem so answer is O (1).
# See McCullough and Vinod, AER (2003), and followup comments.
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Iterative Methods

• Direct methods (LU, QR, Cholesky)

— High accuracy

— Time cost is order n3; too large for large matrices.

• Iterative methods

— Can handle large problems

— Less accuracy

— Less time

— User has time-accuracy tradeo!s under his control

— Ideas are used in nonlinear as well as linear problems.
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• Fixed-Point Iteration.

— G(x) % Ax" b + x

— Compute sequence
xk+1 = G(xk) = (A + I)xk " b (3.6.1)

— Clearly x is a xed point of G(x) if and only if x solves Ax = b.

— (3.6.1) will converge i! |"| < 1 for all " ! # (A + I); i.e., G is a contraction
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• Gauss-Jacobi

— Idea: Replace system of multivariate linear equations with sequence of single variable linear
problems

— The equation from the rst row of Ax = b:

b1 = a11x1 + a12x2 + · · ·+ a1nxn
=,x1 = a"111 (b1 " a12x2 " · · ·" a1nxn).

— In general, if aii '= 0, the ith row of A implies

xi =
1

aii

+
,

-bi "
.

j '=i

aij xj

/
0

1 .

— Turn this into an iterative process as in

xk+1i =
1

aii

+
,

-bi "
.

j '=i

aij x
k
j

/
0

1 , i = 1, . . ., n (3.6.2)

— Note: no xk+1i is used until each xk+1i has been computed.

— We hope that (3.6.2) converges to the true solution

— Results are sensitive to which equation goes with which equation
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• Gauss-Seidel

— Idea: Replace multivariate system with sequence of univariate problems and use new informa-
tion immediately

— Given xk, compute guess for x1 from row 1

xk+11 = a"111 (b1 " a12x
k
2 " · · ·" a1nxkn),

— Use xk+11 immediately to compute xk+12 :

xk+12 = a"122 (b2 " a21x
k+1
1 " a23xk3 " · · ·" a2nxkn).

— In general, dene the sequence {xk})k=1

xk+1i =
1

aii

+
,

-bi "
i"1.

j=1

aij x
k+1
j "

n.

j=i+1

aij x
k
j

/
0

1 , i = 1, · · · , n (3.6.3)

— Each component of xk+1 is used immediately after computed

— Gauss-Seidel sensitive to (i) matching between variables and equations, and (ii) ordering of
equations.
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Gauss-Jacobi (ADGH) versus Gauss-Seidel (ABELN..)
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Tatonnement and Iterative Schemes.

• Equilibrium problem

— Inverse demand equation p = 10" q

— Supply curve q = p/2 + 1

— Equilibrium

p+ q=10 (3.6.6a)

p" 2q="2 (3.6.6b)
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• Gauss-Jacobi

— Initial guess: p = 4 and q = 1, point A in gure 3.2.

— New guess:

# Solve demand eqn for p, holding q xed; move to C on the demand eqn.
# Move from A to the B on supply curve to solve for q holding p xed.
# Similar to a pair of auctioneers
# General iteration is

qn+1= 1 +
1
2pn,

pn+1= 10" qn.
(3.6.7)

# Slow convergence, spiraling to p = 6 and q = 4.

19



• Gauss-Seidel

— Start from A.

— Use the supply curve to get a new q at B

— Move from B up to E, get new p from the demand equation.

— Similar to an auctioneer alternating between markets.

— Also called hog cycle — rms expect p0, produce q1, which causes prices to rise to p1, causing
production to be q2, and so on.

— General iteration is
qn+1= 1 +

1
2pn,

pn+1= 10" qn+1.
(3.6.8)

— Gauss-Seidel converges more rapidly.

20



Operator Splitting Approach.

• General strategy: Transform problem into another problem with same solution where xed-point
iteration is cheap and works.

— Problem: Ax = b.

— Split A into two operators
A = N " P, (3.7.1)

— Note: Ax = b if and only if Nx = b + Px.

— Dene the iteration
Nxm+1 = b + Pxm (3.7.2)

— Goal: nd N so that

# each step of (3.7.2) is easy to solve, and
# (3.7.2) converges
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• Gauss-Jacobi is a splitting with diagonal N

N =

!

"""#

a11 0 · · · 0
0 a22 · · · 0
... ... . . . ...
0 0 · · · ann

$

%%%& , P = "

!

"""#

0 a12 · · · a1n
a21 0 · · · a2n
... ... . . . ...
an1an2 · · · 0

$

%%%& .

• Gauss-Seidel is a splitting with lower triangular N

N =

!

"""#

a11 0 0 · · · 0
a21 a22 0 · · · 0
... ... ... . . . ...
an1an2an3 · · · ann

$

%%%& , P = "

!

"""#

0a12 a13 · · · a1n
0 0 a23 · · · a2n
... ... ... . . . ...
0 0 · · · 0 0

$

%%%&

• Many possible splittings; just keep N simple

• Note: A can be any operator, not just linear operator
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Convergence of Iterative Schemes.

• Rate of convergence.

— Suppose A = N " P , and Ax# = b.

— Consider Nxm+1 = b + Pxm

# Error em % x# " xm obeys iteration em = (N"1P )m e0.

# em- 0 i! (N"1P )m e0 - 0 i! !(N"1P ) < 1.

— At best linearly convergent

• Diagonal dominance. A is diagonally dominant i!
.

j '=i

|aij| < |aii|, i = 1, · · · , n.
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Theorem 1 If A is diagonally dominant, both Gauss-Jacobi and Gauss-Seidel iteration schemes are
convergent for all initial guesses.

• Economic intuition:

— If (Ap)i is excess demand for good i at price p ! Rn, then diagonal dominance says excess
demand for each good is more sensitive to its own price than to a similar change in all other
prices.

— Also known as gross substitutability.

• This tells us how to match variables with equations:

— Match xi with some equation where xi has a large coe"cient

— In tatonnement, use the apple excess demand equation to compute the apple price, use cheese
excess demand equation to compute cheese price, etc.
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Acceleration and Stabilization Methods

• Convergence od Gaussian is linear; no way to change that.

• Sometimes we can increase the linear rate of convergence.

• Extrapolation and Dampening.

— To solve Ax = b, dene G = I "A.

— Consider the iteration
xk+1 = Gxk + b (3.9.1)

# (3.9.1) will converge i! !(G) < 1
# If !(G) < 1 then G is a contraction mapping with contraction rate ! (G)
# If !(G) is close to 1, convergence will be slow.
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— For scalar $, consider
xk+1= $Gxh + $b + (1" $)xk

% G[$]xk + $b
(3.9.2)

# When $ > 1, (3.9.2) is called extrapolation; see Figure 3.3.b.

· Convergence implies that Gxk + b is a good direction to move
· Convergence may be accelerated by going further each iteration.

# When $ < 1, (3.9.2) is called dampening; see Figure 3.3.b.

· Gxk + b may be a good direction, but overshoots solution
· If $ < 1, (3.9.2) may avoid overshooting and converge
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• Suppose all eigenvalues of G are real

— Decompose G = P"1DP . Then

$G+ (1" $)I = P"1($D + (1" $)I)P

and
#($G+ (1" $)I) = $#(G) + 1" $.

— From denition of G[$], the scalar $

# stretches or shrinks the spectrum of G,
# then ips it around 0 if $ < 0, and
# nally shifts it by 1" $.
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— Choose $ to minimize !(G[$]). If # (G) . R, this is

min
$

max
"!#($G+(1"$)I)

|"| (3.9.3)

with solution
$# =

2

2"m"M
(3.9.4)

and spectral radius

!(G[$#]) =

2222
M "m

2"M "m

2222 . (3.9.5)

— Properties of (3.9.5)

# If "1 < m < M < 1, $# accelerates convergence

# If M < 1, then !(G[$#]) < 1 for all m, $# stabilizes explosive roots

# If M > 1 and m < "1 (both kinds of unstable roots) then (3.9.5) fails
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• Successive Overrelaxation

— Combine Gauss-Seidel with extrapolation.

— For scalar $, dene

xk+1i = $

3
1

aii

4 5

6bi "
i"1.

j=1

aij x
k+1
j "

n.

j=i+1

aij x
k
j

7

8+ (1" $) xki . (3.9.6)

— The i’th component of the k + 1 iterate is a linear combination, parameterized by $, of the
Gauss-Seidel value and the kth iterate.

— DecomposeA = D+L+U whereD is diagonal, L is lower triangular, andU is upper triangular.
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— SOR has the convenient matrix representation

(D + $L)xk+1 = ((1" $)D " $U) xk + $b.

DeneM$ % D + $L, N$ % (1" $)D " $U ; then

xk+1 =M"1
$ N$ x

k + $M"1
$ b (3.9.7)

— Best choice for $ is argmin$ !(M"1
$ N$).

# Gains can be substantial
# Optima $ is di"cult to compute; see Hageman and Young (1981) for ways to estimate it.
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Dampening to Stabilize an Unstable “Hog Cycle”.

• Suppose inverse demand is p = 21" 3q and supply is q = p/2" 3

• Linear system is not diagonally dominant:
)
1 3

1"2

*)
p

q

*
=

)
21

6

*
(3.9.8)

• Gauss-Seidel is unstable:

pn+1=21" 3qn (3.9.9a)

qn+1=
1

2
pn+1 " 3 (3.9.9b)
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• Stabilize through damping: if $ = 0.75, then we have stable system

pn+1=0.75(21" 3qn) + 0.25pn (3.9.10a)

qn+1=0.75(
1

2
pn+1 " 3) + 0.25qn (3.9.10b)
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Exatrapolation to Accelerate Convergence in a Game

• Assume rm two’s reaction curve is p2 = 2 + 0.80p1 % R2(p1), and rm one’s reaction curve is
p1 = 1 + 0.75p2 % R1(p2).

• Equilibrium system is diagonally dominant

• Gauss-Seidel is the iterative scheme

pn+11 =R1 (p
n
2) (3.9.12a)

pn+12 =R2
'
pn+11

(
(3.9.12b)

• Accelerate (3.9.12). If $ = 1.5, we arrive at faster scheme:

pn+11 =1.5R1 (p
n
2)" 0.5p

n
1 , (3.9.13a)

pn+12 =1.5R2
'
pn+11

(
" 0.5pn2 . (3.9.13b)
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Sparse Matrices

• Classication

— Dense: A is dense if aij '= 0 for most i, j.

— Sparse: A is sparse if aij = 0 for most i, j

# “most” is not a precise denition
# In practice, we are studying a class of problems of varying dimension and “most” means
that the number of nonzero elements isMn form some xedM .

• Diagonal matrix:

D=

!

"""#

d1 0 · · · 0
0 d2 · · · 0
... ... . . . ...
0 0 · · · dn

$

%%%&

Dx=b =, xi =
bi
di
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• Tridiagonal matrix has all nonzero elements on or next to the diagonal

A =

!

""""""""#

a11a12 0 · · · 0
a21a22a23 · · · 0
0 a32a33a34 · · · 0
0 0 a43a44 · · · 0
... ... ... ... . . . ...
0 0 0 0 · · · ann

$

%%%%%%%%&

and Ax = b is solved by

a11x1 + a12x2 = b1 (Row 1)

=,x2 =
b1 " a11x1
a12

= %2 " &2x1
a21x1 + a22x2 + a23x3 = a21x1 + a22 (%2 " &2x1) + a23x3 = b2 (Row 2)

=,x3 = %3 " &3x1
...

xn = %n"1 " &n"1x1 (Row n-1)

an,n"1 (%n"2 " &n"2x1) + ann (%n"1 " &n"1x1) = bn (Row n)

=,x1 solution
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• Taking advantage of sparseness

— Storage:

# Dense: n2 numbers
# Sparse: store onlym / O (n) nonzero elements along with their locations.

— Operations: Matrix multiplication — Ax or yB

# Dense uses 2n2 ops
# Sparse approach uses 2m / O (n) ops

• Application: Ergodic distribution of a nite Markov chain

— Markov transition matrices, ", are often sparse

— Ergodic distribution x solves x" = x.

— Solve by iteration: xk+1 = xk"; works well since xk" is fast if " is sparse.

• Software: Standard packages (Matlab, Mathematica, etc.) o!er sparse storage and operation
options.

36



Summary

• Linear equations are essential in numerical methods

— Linear problems are common

— Nonlinear problems are reduced to a sequence of linear problems

• Linear equation methods often inspire methods for nonlinear problems

— The key concepts behind Gauss-Jacobi and Gauss-Seidel methods can also be applied to non-
linear problems

— The key concepts behind relaxation methods can also be applied to nonlinear problems
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