
Numerical Methods in Economics
MIT Press, 1998

Notes for Chapter 2: Elementary Concepts

Kenneth L. Judd
Hoover Institution

September 29, 2008

1

The Economics of Computation

• Economics: the study of allocation of scarce resources

• Computation as an economic problem:

— Scarce resources:

! Computer time: you need methods that will solve your problem before your thesis needs to
be done.

! Computer memory space: memory costs money, particularly fast (cache) memory, and cheap
memory (such as virtual memory on the hard drive) is too slow

! Human time: opportunity cost varies greatly across economists
! Human ability: [no comment]

— Preferences

! Reduce resource use
! Increase accuracy
! Increase reliability; i.e., the likelihood of the algorithm working

2

Computer Arithmetic

• Finite representation of real numbers: ±m2±n

— m: mantissa (an integer)

— n: exponent (an integer)

— Typical double precision:

! Uses 64 bits (“single precision” used 32; common until mid-80’s)
! m = 52, n = 10, plus sign bits, one for each.

• Machine epsilon

— Smallest relative quantity

— Denition: !M = sup {x|1 + x “ = ” 1} (“=” means computer equality, that is, up to computer
error)

— Double precision: !M is 2"52
.
= 10"16 if m = 52; typical choice for desktops

3

• Machine zero

— Smallest absolute quantity

— Denition: 0M = sup {x|x “ = ” 0}

— Double precision: 0M is about 10"308 if n = 10

• Extended precision:

— Desirable to use in many cases; occasionally necessary.

— Specialized hardware can reduce !M and/or 0M

— Software packages can produce arbitrary precision arithmetic.

! Implemented in Mathematica, Maple, and some other programs.
! Can be added to C and Fortran programs via operator overloading.

4

• Arithmetic operations take time

— Integer addition is fastest

— Real addition and multiplication are a bit slower

— Division is slower than multiplication and addition

— Power, trigonometric and logarithmic operations are slower

— The computer does only addition and multiplication; everything else is a sequence of those
operations

5

Errors: The Central Problem of Numerical Mathematics

• Rounding

— 1/3 = .33333... needs to be truncated.

— 1/10 has a nite decimal expression but an innite binary expression which must be cut

6

• Truncation

— Exponential function is dened an innite sum

ex =
#!

n=0

xn

n!
(2.7.1)

but must be approximated with nite sum, such as

N!

n=0

xn

n!

— Innite series: If a quantity is dened by

x! = lim
n$#

xn

we must take xn for some nite n.

7

• Error Propagation

— Initial errors are magnied by many mathematical operations

— Example: x2 " 26x + 1 = 0

! True solution x! = 13"
%
168 = .0385186 · · ·

! Five-digit machine says

x! = 13"
%
168

.
= 13.000" 12.961 = 0.039 & x̂1

! A better approach (even in ve-digit machine)

13"
%
168 =

1

13 +
%
168

.
=

1

25.961
.
= 0.038519 & x̂2,

• Numerical methods must formulate algorithms which minimize the creation and propagation of
errors.

8

E!cient Evaluations of Expressions

• Consider cost of evaluating
n!

k=0

ak x
k (2.4.1)

— Obvious method involves n additions, n multiplications, and m" 1 exponentiations

— Alternative: replace xi with x · x · ... · x, i" 1 multiplications

— Better method: compute x1 = x, xi+1 = x ! xi, i = 1, n, to replace n" 1 exponentiations with
n" 1 multiplications.

— Best method is Horner’s method:

a0 + a1x+ a2x
2 + a3x

3 + ...+ anx
n (2.4.2)

=a0 + x(a1 + ...+ x(an"1 + x · an))

9

Table 2.1: Polynomial Evaluation Costs
additions multiplications exponentiations

Direct Method 1: n n n" 1
Alternative: n n + (n" 1)n/2 0

Better Method n 2n" 1 0

Horner’s Method: n n 0

• Mathematically irrelevant alterations in a mathematical expression can be very important in com-
putations.

10

Direct versus Iterative Methods

• Direct methods:

— Aim to compute high accuracy answer

— Uses xed number of steps (depending on size of input)

— Example: quadratic formula

0=ax2 + bx+ c

x=
"b±

%
b2 " 4ac
2a

• Iterative methods:

— Compute sequence
xk+1 = gk+1(xk , xk"1, · · ·)

and stop when stopping criterion is satised

— Uses unknown number of steps

— Accuracy is adjusted by adjusting stopping criterion

— User faces a tradeo" between time and accuracy.

— Example: By varying N , we can determine quality of approximation to ex

ex =
#!

i=0

xi

i!
.
=

N!

i=0

xi

i!

11

Rates of Convergence

• Suppose sequence xk ' Rn satises limk$# xk = x!.

• xk converges at rate q to x! if

lim
k$#

(xk+1 " x! (
(xk " x! (q

<#, (2.8.1)

— If (2.8.1) is true for q = 2, we say that xk converges quadratically. Example: xk = 10"2
k

— If q = 1 and

lim
k$#

(xk+1 " x! (
(xk " x! (

) " < 1 (2.8.2)

we say xk converges linearly at rate ". Example: xk = .95"k

— If " = 0, xk is said to converge superlinearly.

— Convergence at rate q > 1 implies superlinear and linear convergence.

12

Stopping Rules

• Iterative algorithms need to know when to stop

• Problem: If you know that
xk+1 = gk+1(xk , xk"1, · · ·)

converges to some unknown solution x!.

• We want to

— Stop the sequence only when we are close to x!

— Stop sequence for small k

13

• Consider the sequence

xk =
k!

j=1

1

j
(2.8.3)

— The limit of xk is innite

— But xk goes to innity slowly; e.g., x1000 = 7.485

— Hard to tell xk diverges from examining numerical sequence.

14

• We rely on heuristic methods, stopping rules, to end a sequence.

— Stop when the sequence is not “changing much.”

! “Stop when |xk+1 " xk| is small relative to |xk|”

|xk+1 " xk|
|xk|

) !

for some small !.

! This may never stop if xk converges to zero.
! Solution is hybrid rule: “stop if changes are small relative to 1 + |xk|”

Stop and accept xk+1 if
|xk+1 " xk|
1 + |xk|

) ! (2.8.4)

! (2.8.4) can fail spectacularly: for example, if ! = 0.001 it would end (2.8.3) at k = 9330,
xk = 9.71827. (show examples; add example where sequence does converge but slowly and
still get bad convergence)

! This simple rule is not reliable

15

— Use additional information

! If xk converges quadratically, (2.8.4) works well enough if ! << 1 since, for someM > 0

(xk+1 " x! (< M (xk " x! (2 (2.8.1)

! If xk satises
(xk+1 " xk () " (xk " xk"1 ((2.8.5)

for some " < 1, then we know that

(xk+1 " x! ()
(xk " xk"1 (

1" "
.

Hence, the rule

Stop and accept xk+1 if (xk+1 " xk () !(1" ") (2.8.6)

will stop only when (xk+1 " x! () !.

16

! If xk converges linearly at unknown rate " < 1, then at iteration k choose a large L << k,
estimate "

"̂k,L = max
1<j<L

(xk"j " xk"j+1 (
(xk"j"1 " xk"j (

,

estimate the error

(xk+1 " x! ()
(xk+1 " xk (
1" "̂k,L

and stop only if
(xk+1 " xk () !(1" "̂k,L).

! A less stringent alternative would be a p-norm

"̂k,L =

"

1
L

L!

j=1

$
(xk"j+1 " xk"j (
(xk"j " xk"j"1 (

%p
&

'
1/p

! p =# in the p-norm denition is the same as the max denition.

— Conclusion:

! There is no fool-proof, general method
! Heuristic rules generally do well when carefully implemented using a consistent theory of
the rate of convergence

17

Evaluating the Errors in the Final Result

• When we have completed a computation, we

— Hope that error is small — di!cult to verify

— Hope that error is small in terms of economic signicance — more feasible

— Need to choose ! to accomplish this.

• Error Bounds

— Sometimes, we can put a bound on the actual error, (x! " x̂ (; called forward error analysis.

— Usually di!cult to determine (x! " x̂ (with useful precision

! Error bounds tend to be very conservative, producing, at best, information about the order
of magnitude of the error.

! Error bounds often need information about the true solution, which is not available, and
must also be approximated.

— Forward error analysis is rarely available (dynamic programming is unusual).

18

• Error Evaluation: Compute and Verify

— Use numerical solution to generate information about its quality

— Consider solving f(x) = 0 for some function f .

! A numerical solution, x̂, will generally not satisfy f(x) = 0 exactly.
! Use f(x̂), or some related g(x̂), to measure importance of error if we accept x̂.

— compute and verify

! rst, compute an approximation
! second, verify that it is an acceptable approximation according to some economically mean-
ingful criteria.

19

— Consider f(x) = x2 " 2 = 0.

! A three-digit machine would produce x̂ = 1.41.
! We compute (on the three-digit machine) f(1.41) = ".01.
! f(1.41) = ".01 may tell us that x̂ = 1.41 is an acceptable approximation
! The value f(x̂) can be a useful index of acceptability in our economic problems, but only if
it is formulated correctly

— Let E(p) = D(p)" S(p) be an excess demand function

! Suppose numerical solution p̂ to E (p) = 0 implies E(p̂) = 10.0.
! p̂ is acceptable depending on D(p̂) and S(p̂).

· If D(p̂) = 105, then E(p̂) is 10"4 of D(p̂) — looks good
· If D(p̂) = 10, then E(p̂) equals D(p̂) — looks bad!

20

— In general,

! Compute a candidate solution x̂ to f(x) = 0.
! Then verify that x̂ is acceptable by computing g(x̂) where

· g is function(s) with same zeros as f .
· g is unit-free
· g expresses importance of error.

! In excess demand example,

· solve E(p) = 0
· but compute g(p̂) & S(p̂)/D(p̂)" 1 to check p̂.

! In economic, g(x̂) expresses quantities like

· measures of agents’ optimization errors
· “leakage” between demand and supply.

— Compute and verify is always possible

21

• Backward error analysis

— Find a problem, f̂(x) = 0, such that x̂ is exact solution

— If f̂(.) .= f(.), then accept x̂ as an approximation to f (x) = 0.

— For example, is x = 1.41 is an acceptable solution to x2 " 2 = 0

! x = 1.41 is solution to x2 " 1.9881 = 0.
! If x2 " 1.9881 = 0 is “close enough” to x2 " 2 = 0, then accept x = 1.41 as solution.

• Multiplicity:

— There are many x̂ that satisfy stopping rules and error analysis.

— Existence of multiple acceptable equilibria makes it di!cult to make precise statements (e.g.,
comparative statics) about equilibrium.

— However, we could usually run some diagnostics to estimate the size of the set of acceptable
solutions.

— Two ideas:

! For any guess x̂, do random sampling of x near x̂ to see how many nearby points satisfy
acceptance criterion.

! Restart algorithm from many initial guesses to see if you get values for x̂ that are not close
to each other.

22

• General Philosophy

— Any economic model approximates reality

— A good numerical approximation is as useful as exact solution.

— But, we should always do some error analysis

23

Computational Complexity of an Algorithm

• Measured by relation between accuracy and computational e"ort.

— Let ! denote the error

— N : computational e"ort (ops, iterates, ..) to reduce error to !

— Examine N(!) for small !, or its inverse, !(N) for large N .

— If iterative method converges linearly at rate " andN is the number of iterations, then !(N) *
"N and N(!) * (log !)(log ")"1.

— If an algorithm obeys the convergence rule

lim
!$0

N(!)

!"p
= a <#

then we need a!"p operations to bring error down to !.

— Asymptotic ranking depends on p, not a

24

• Asymptotic results are not necessarily relevant

— Suppose algorithm A uses a!"p operations and B uses b!"q operations

! Algorithm A is asymptotically more e!cient if q > p.
! Algorithm A is better only if a!"p < b!"q, i.e.

! < !! & (b/a)1/(q"p)

! E.g., if q = 2, p = 1, b = 1, and a = 1000, then !! = 0.001.

— Asymptotic superiority may imply superiority only for very small !.

• Know many algorithms since best choice depends on accuracy target.

25

Types of processes

• Serial processing

— One action at a time

— Each action potentially uses previous computations

• Parallel processing: multiple simultaneous actions

— Parallel or distributed processing uses many processors

— Must manage communication among independent processes

— Parallel processing is present in modern processors; e.g., pipelining

• We focus mostly on serial processes in this course, but we will point out potential of parallel
processing

26

