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Cluster-grid algorithm (CGA)

@ A novel accurate method for solving dynamic economic models:
works for problems with high dimensionality, intractable for earlier
solution methods - 400 state variables using a laptop.

o Related literature focuses on much lower dimensionality: a
special JEDC 2011’s issue compares solution methods (including our
CGA) using models with 20 state variables at most.

o Examples of potential CGA applications:

macroeconomics (many heterogeneous agents);
international economics (many countries);
industrial organization (many firms);

finance (many assets);

climate change (many sectors and countries); etc.

o CGA is a global method: can handle strong non-linearities and
inequality constraints.
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Ingredients of CGA

o Endogenous solution domain: our grid is constructed by clustering
methods to surround the ergodic set - we avoid costs of finding a
solution in the areas of state space that are never visited in
equilibrium.

o Low-cost integration: non-product monomial and one-point
quadrature integration rules.

o Efficient solver for finding the polynomial coefficients:
fixed-point iteration.

@ Vectorized approaches for finding the control variables:
precomputation and iteration-on-allocation by Maliar, Maliar and
Judd (2011).

4

o Taken together, these ingredients allow us to meet challenges
of high-dimensional problems.
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Background

Three broad classes of numerical methods

@ Projection methods; Judd (1992), Christiano and Fisher (2000).

@ Perturbation methods; Judd and Guu (1993), Collard and Juillard
(2001).

@ Stochastic-simulation methods; den Haan and Marcet (1990),
Smith (1991).
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[llustrative example

A one-sector neoclassical growth model:

max  Ep Z 5t 1n (ct)

{kertcelino =0
s.t. Ct+kt+1 = (1—0’) kt—i-atf(kt),
Ina;y 1 =plnas + €41,

where €;11 ~ N (0,02); and initial condition (kg, ag) is given;
u () = utility function; f (-) = production function;

¢: = consumption; k;11 = capital; a; = productivity;

6 = discount factor; d = depreciation rate of capital;

p = autocorrelation coefficient of the productivity level;

o = standard deviation of the productivity shock.
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Projection methods

Characteristic features

@ Solve a model on a prespecified grid of points.
@ Use numerical (quadrature) integration for approximating conditional

expectations.
@ Compute polynomial coefficients of policy functions using Newton's

type solver.
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A projection method for the growth model

@ Choose a grid of / points in the state space {k;, a;},’-zl .
@ Parameterize the capital policy function by a polynomial

ki =Y (ki, aj; B) = By + Brki + Brai + Bski + Byal +

and substitute it in the Euler equation to get

mﬁjn Hul (c,-(k,-,a,, E{(5U1 ( k,,a,,,B)) [1_d+a§f/ (‘F(k/'ai;ﬁ))]H
where B = (B, By, -..) is a vector of coefficients and
al = dexp(e)
k' = Y (¥ (kiai;B).a}p)
c,-(k,-,a;;ﬁ) = (1—d) k,'+a,-f(k,')—kf

o (kivaiiB) = (1—d)k +aif (ki) — ki’

@ Find a vector of coefficients B that minimizes the distance using a
Newton's type of solver (this procedure involves evaluating
conditional expectations, i.e., numerical integration).
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Projection methods: curse of dimensionality

@ Very accurate and fast with few state variables but cost grows
exponentially with dimensionality!
(a) Product hypercube domain = Curse of dimensionality!
(b) Product quadrature integration == Curse of dimensionality!
(c) Newton's solver (Jacobian, Hessian) == Curse of dimensionality!

- 2 state variables with 4 grid
points = 4 x 4 = 4% = 16

ay - 3 state variables with 4 grid

as points = 43 = 64

aj

a - 10 state variables with 4 grid
ki ko k3 ks points = 410 — 1,048,576

(With 100 grid points
= 100%0 = 10%9).
e Kruger and Kubler (2004): Smolyak's sparse grid - efficient grid with
relatively small number of points in a multidimensional hypercube.

Judd, Maliar and Maliar (2011) Cluster Grid Algorithm (CGA) April 17, 2011 9 /42



Perturbation methods

Characteristic features

e Compute a solution in just one point (steady state).

@ ldentify polynomial coefficients of policy functions using k-order
Taylor's expansion of the optimality conditions.
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Perturbation methods: a log-linearization example

@ Log-linearization - first-order Taylor's expansion, e.g.,

v (cr) ~u' (c)+d" () c(ctc_c) =u (c)+u" (c) ce

where ¢; = <<

= log-deviation of ¢; from the steady state c.

o Substitute ¢ and kf = kfk_k in the optimality conditions to get a
linearized system of equations.

e Postulate specific log-linear form for decision rules ¢; = C (k¢, a¢) and
kt =K (kt, at):

/Et—i-l = Ckk;t + Ckast, C = gck/l;t + ‘:caat

where ¢, Ciar Coi and &, = coefficients to be determined.

@ Solve the obtained system of equations = identify the coefficients

Ckkr Gkar Gek and G,
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Perturbation methods of higher orders

@ Perturbation is a Taylor’s expansion performed numerically. It is
a generalization of the (first-order) log-linearization method to higher
orders.

o Perturbation methods are very fast but the range of their
accuracy is uncertain. This is a local approximation, and the
accuracy might deteriorate dramatically away from the steady state.

JEDC comparison results: 1st- and 2nd-order perturbation methods,
PERI and PER2, of Kollmann, Kim and Kim (2011) produce errors:

e on a stochastic simulation up to 6.3% and 1.4%, respectively;
e on a 30% deviation from steady state up to 65% and 50%, respectively.

o These accuracy levels are not acceptable: a method that
produces errors of 6% per quarter in the US GDP is not satisfactory
(in the same model, CGA produces errors of less than 0.009%).

Judd, Maliar and Maliar (2011) Cluster Grid Algorithm (CGA) April 17, 2011 12 / 42



Stochastic simulation methods

Characteristic features

@ Compute a solution on simulated series.

@ Use Monte Carlo integration for approximating conditional
expectations.

o Main steps:

Step 1. Guess a decision rule.
Step 2. Simulate time series.
Step 3. Use simulation results to check and to update the guess.

"]
]
]
o lterate on Steps 2 — 3 until convergence.
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A stochastic simulation method for the growth model

@ Parameterize the capital policy function by a polynomial
kevr =Y (e, ac B) = By + Brke + yac + Bki + Byai +
and substitute it into the budget constraint to get
=(1—d) ke + arf (ke) =¥ (ke ae; B)
e Fix B = (By. By, -.-). Given shocks {8t}tT:0, simulate {c;, kt+1};r:0
and construct

1—d+api1f’ (kt+1)] k1.

@ Regress y; on (1, k¢, at, kt2, a%, ) — get B (Monte Carlo
integration).
@ Compute the next-iteration input ,BJJrl as

BUTY = (1) B + P,
where u € (0, 1] = damping parameter.
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Key advantage of stochastic simulation methods

Stochastic simulation methods have endogenous solution domain:
the areas of the state space that are visited in simulation (the ergodic set).
Recall that for projection and perturbation methods: the domain is
an exogenous rectangular grid and the steady state point, respectively.

Figure 1. The ergodic distribution in the model with a closed-form sclution.
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Ratio of hypersphere volume to hypercube volume

e 2-dimensional case: a circle inscribed within a square occupies
about 79% of the area of the square.

e p-dimensional case: the ratio of a hypersphere’s volume ()}, to a
hypercube’s volume Q)p:

p—1

o W22 forp=1,35..
as = .
p P

. . . . . .
e Ratio 5 declines rapidly with the dimension of the state space:
P

o when p = 10, the ratio 210 = 3.10-3;

e when p = 30, the ratio ggg =2.10"14
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Ergodic set versus tensor-product grid: estimated

reduction in cost

Figure 2. The ratio of hypershere to hypercube volume.
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Stochastic simulation in problems with high dimensionality

In problems with high dimensionality:

@ The hypersphere ergodic set is just a tiny fraction of the hypercube
tensor-product grid.

@ Stochastic simulation methods are attractive for high-dimensional
applications.

But ...
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Two drawbacks of stochastic simulation methods

1. Numerical instability: den Haan and Marcet (1990) find that

@ a simulation-based version of PEA is numerically unstable because of
the multicollinearity in regression even under low (2-nd) degree
polynomials.

2. Relatively low accuracy: In the JEDC 2011's comparison,

@ stochastic simulation algorithm (SSA) produces errors of 0.15%;
@ PER1 and PER2 produce errors of 6.3% and 1.4%, respectively;
o CGA produces errors of 0.009%.
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Projection method on the ergodic set

In this paper,

@ We will develop an accurate projection method operating on the
ergodic set.

@ We will construct a grid of points surrounding the ergodic set using
clustering methods.
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A grid of points surrounding the ergodic set

A grid of clusters’ centers

@ Simulate time series solution to the model (the ergodic set),
T
ke artey.

@ Construct K clusters using methods from clustering analysis, e.g.,
hierarchical agglomerative or K-means clustering algorithms.

© Compute the centers of the constructed clusters.

@ Use the clusters’ centers as a grid points in multi-dimensional space.
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The ergodic set and principal components

Figure 1a. Ergodic distribution,

Figure 1b. Normalized ergodic distribution.
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Clusters on principal components of the ergodic set

2
'\

z

Istd(z?)

Figure 4a. Normalized PCs of ergodic distribution: 3 clusters.
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Figure 4b. Normalized PCs of ergodic distribution: 10 clusters.
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Figure 4c. Normalized PCs of ergodic distribution: 30 clusters.
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Figure 4. Normalized PCs of ergodic distribution: 100 clusters.
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Properties of the cluster grid

e The model is solved on the ergodic set (as is done under
stochastic simulation).

@ The cluster grid is more efficient than stochastic simulation: a
large number of closely-situated simulated points is replaced with a
smaller number of "representative" points.

@ The cluster grid is (mostly) fixed, while stochastic simulation
algorithms redraw the simulated points on each iteration (numerical
stability).

@ The cluster grid is cheap: constructing 300 clusters on simulated
series of 10,000 observations takes:

e 9 seconds with 2 state variables
e just 66 seconds with 200 state variables!

@ However, the cluster-grid alone does not prevent the course of
dimensionality.
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Multi-dimensional integration: monomial non-product rules

J
Jrvg (&) w(e)de~ ) wjg(e)),
j=1
where {sj}le = integration nodes, {an}J.le = integration weights.

Gauss-Hermite rule: 2V nodes Monomial rule: 2N nodes

shock 1 | shock 2 shock 3 shock 1 | shock 2 | shock 3
1 1 1 1 0 0
-1 1 1 -1 0 0
1 -1 1 0 1 0
-1 -1 1 0 -1 0
1 1 -1 0 0 1
-1 1 -1 0 0 -1
1 -1 -1
-1 -1 -1 One-node rule: just 1 node!

| 0| 0| 0]
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Solving for polynomial coefficients: fixed-point iteration

@ The cost of Newton's type method grows quickly with dimensionality
because of the growing number of terms in Jacobian and Hessian.

@ A simple and efficient alternative is fixed-point iteration

BUTY = (1— ) BY) + B,

where p € (0, 1) is damping parameter.
@ Cost of fixed-point iteration grows little with dimensionality.

o Fixed-point iteration works for very high dimensions, like 400 state
variables!
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The CGA algorithm: putting everything together

Parameterize the RHS of the Euler equation by a polynomial ¥ (k;, a;; B),
5U1 (C()
K = E{ D1 (k)] K
e | (k)]
~ Y (ki,ai; B) = Py + Brki + Brai +
Step 1. Simulate time series {k;, at}tT:() and construct / clusters. Use
clusters’ centers {k;, a,-}l{zl as a grid.

Step 2. Fix B = (B, By, By ---)- Given {k;, a,-}ll-zl solve for {c,-}ll-zl.
Step 3. Compute the expectation using numerical integration (quadrature
integration or monomial rules)

o duy (cf) Tet () /
&:E{uﬂq)ﬂ—d+anMk}.

Regress k’ on (1 ki, aj, k, , ,) — get B
Step 4. Solve for the coefficients using fixed-point iteration with damping,

BUTH = (1—p) Y + B, pe(0,1).
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One-country model: parameter choice

e Production function: f (k;) = ki with & = 0.36.

1
e Utility function: u(c;) = flff with v € {0.2,1,5}.

@ Process for shocks: Ina;i1 = plna; + €441, with p = {0.95,0.99}
and ¢ = {0.01,0.03}.

@ Discount factor: 6 = 0.99.
@ Depreciation rate: d = 0.025.
@ Accuracy is measured by an Euler-equation error,

sc. ”

e(kt, at) = Et Ct—:/l ( — d+0€3t+1kf_:11) -1
t
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Table 1. The one-agent growth model

Polynomial degree ‘ Mean error ‘ Max error ‘ CPU (sec)

1st degree —4.32 —3.68 11.59
2nd degree —6.12 —5.46 0.30
3rd degree —7.58 —6.93 0.26
4th degree —8.91 —7.87 0.14
5th degree —9.99 —8.85 0.24

Mean and Max are unit-free Euler equation errors in logl0 units, e.g.,

e —4 means 107% = 0.0001 (0.01%);

e —4.5 means 10~*> = 0.0000316 (0.00316%).
Benchmark parameters: d = 0.025, v =1, p = 0.95, ¢ = 0.01.
In the paper, many parameterizations are explored:

@ low risk aversion: v = 1/5;

@ high risk aversion: ¢ = b;

@ highly persistent shocks: p = 0.99;

@ highly volatile shocks: ¢ = 0.03.

For these cases, accuracy and speed are similar.
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Multi-country model

The planner maximizes a weighted sum of N countries’ utility functions:

N )
max Eo ) v" (Z stu" (cf))

{{Cf-kfﬂ}nl\l:l}io n=1 t=0

subject to
N N N N
Yo+ Y k=Y K (1—d)+ Y arf (k)
n=1 n=1 n=1 n=1

where v" is country’s n welfare weight.
Productivity of country n follows the process

n __ n n
Ina =plnai_; +€f,

where €] = & + &} with & ~ N (O, (72) is identical for all countries and
g7 ~ N (0,0?) is country-specific.
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Table 2. The multi-country model

Polyn. M1 Q(1)
degree | Mean \ Max \ CPU Mean \ Max \ CPU
N=2 1st —4.09 | —3.19 44sec —4.07 | —3.19 45sec
2nd —5.45 | —451 2 min —5.06 | —4.41 1 min
3rd —6.51 | —5.29 4 min —5.17 | —4.92 2 min
N=20 1st —4.21 | —3.29 | 20 min —4.17 | —=3.28 | 3 min
2nd —5.08 | —4.17 | 5 hours || —4.83 | —4.10 | 32 min
N=40 1st —423 | —3.31 | 5hours || —4.19 | —3.29 | 2 hours
2nd — — - —4.86 | —4.48 | 24 hours
N=100 1st —4.09 | —3.24 | 10 hours || —4.06 | —3.23 | 36 min
N=200 1st — — - —3.97 | —3.20 | 2 hours

M1 means monomial integration with 2N nodes; Q(1) means quadrature
integration with one node in each dimension; Mean and Max are mean and
maximum unit-free Euler equation errors in logl0 units, respectively; CPU
is running time.
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Conclusion

@ CGA accurately solves models that were considered to be unfeasible
until now.

@ A mix of techniques taken together allows us to address the
challenges of high-dimensional problems:

cluster-grid domain - a tiny fraction of the standard hypercube domain;
monomial and one-node integration rules;

fixed-point iteration for finding policy functions;

iteration-on-allocation and precomputation approaches for solving for
intratemporal choice.

@ A proper coordination of the above techniques is crucial for accuracy
and speed.

o Parallelization and supercomputer (Condor).
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Hierarchical clustering algorithm: an example

Data set contains five observations for x,-1 and x,-2:

Variable

Observation i | x7 | x;
1 1 05

2 2 3

3 0.5 05

4 3 1.6

5 3 1

The Euclidean distance between the observations pairwise:

1/2
dy = [ =)+ (¢ =)’
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Hierarchical clustering algorithm: an example (cont.)

o Step 1. Compute pairwise distances between "1", "2" "3" gt ngh.

1 2 3 4 5
0 27 23 21

27 0 29 17 22 Merge "1" and "3"
105]29 0 27 25 into cluster "6"
23 1.7 27 0 06

21 22 25 06 0

Dy

G W N =

@ Step 2. Compute pairwise distances between "6", "2", "4" "5":

6 2 4 5

6| 0 27 23 21

D= 2|27 0 17 22
4123 17 0 |06
5121 22]06]| 0

Merge "4" and "5"
into cluster "7"
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Hierarchical clustering algorithm: an example (cont.)

@ Step 3. Compute pairwise distances between "6", "7",6 "2":

6 7 2
Da — 6| 0 21 27 Merge "2" and "7"
T 7121 o0 [17 into cluster "8"

2127 |17] 0
@ The resulting hierarchical tree:

Cluster | Clusters | Shortest
created | merged | distance

6 1 3 0.5
7 4 5 0.6
8 2 7 1.7
9 6 8 21

@ For example, if we want to group the observations into three clusters,
we obtain the clusters: {1,3}; {4,5}; {2}.
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Hierarchical clustering algorithm: an example (cont.)

Figure 2. Agglomerative hierarchical clustering algorithm: an example
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Challenge of finding the intratemporal choice

Up to this point, we solve for consumption from the budget constraint

ce = (1 —d) ke + aef (ki) — ¥ (ke ar; B) -

In general, one cannot so trivially solve for the intartemporal choice

In the literature, the intratemporal choice is solved for as
¢t = C (ke ae; Be) similar to kep1 =¥ (ke, ag; B)

@ This become intractable for large-scaled models and involves
substantial accuracy loss; see Maliar, Maliar and Judd (2011).

Judd, Maliar and Maliar (2011) Cluster Grid Algorithm (CGA) April 17, 2011 37 / 42



Efficient intratemporal-choice approaches

e Maliar, Maliar and Judd (2011) develop two intratemporal-choice
approaches (precomputation and iteration-on-allocation) that
separate:

o the law of motion for the state variables;
e the static problem of the intratemporal choice.
@ Vectorized version of precomputation and iteration-on-allocation:

e work with vectors and matrices and can solve for the intratemporal
choice at all dates / grid points / integration nodes at once;
e are very accurate and fast in vectorized applications.
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Challenge of finding the intratemporal choice: an example

Consider a two-country model with u (¢f) = — 11/7 GOk Vh p=12
(Risk sharing) (= (C,gl)_l/ﬁr1 =7 (cf) R

(BC) el = (1—d) i kP + Y0 alf (k) — 1kt+1

1

where 11, T2 are welfare weights. Combining, we get

2
=(1-0) ) k'+...
n=1

,72

1
1 [T
G+ | = (¢
B @)
o No closed-form expression for the intratemporal choice, ¢}, c2.
e Computing ¢} as a function of state variables, ¢} (k{, k?, at, a?)
reduces accuracy by an order of magnitude.

o Computing ¢} by a Newton's solver at each date (or grid point or
integration node) is costly.
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lteration-on-allocation: Maliar, Maliar and Judd (2011)

@ A simple vectorized derivative-free solver.

@ Cost does not grow much with dimensionality.

In our example, use the optimality conditions to define a mapping:

,72

T 1/
=S|

2
& =) [A-d)k +af (k)" — kiyy] — <
n=1

1 42 1 =1
Given at, a?, k}, k?, kil 1, ki 1, take some value of ¢} and compute ¢}.

Iterate on the consumption c} until convergence (using damping).
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Precomputation approach: Maliar, Maliar and Judd (2011)

@ Idea: Compute the intratemporal choice functions outside of the main
iterative cycle.

@ In the main iterative cycle, use the constructed policy functions in the
same way we use a closed form solution

Ct = (1 — d) kt + atf (kt) e 4 (ktr dt, ‘B) .
@ If policy functions are precomputed on the ergodic set, the cost does
not grow much with dimensionality.

In our example, take a grid for values for aggregate consumption
C. = ¢t + c? such that C,, € {C1, G, ..., Cy }.
Define the grid function c' (Cm), by solving for cl foreachm=1,...M

T —1/7! -
ot + L_z (ctl) ] = Cp.

Within the main iterative cycle, compute ctl, ct2 at each date t by
interpolation of ¢! (Cp).
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The CGA algorithm: putting everything together

Parameterize the RHS of the Euler equation by a polynomial ¥ (k;, a;; B),

r 5u1(C{,€§) . Tl (L /
K= E{u1(q’€i> [1—d+af (K, )]

~ Y (ki ai;B) = By + Brki + Brai + ...

Step 1. Simulate time series {k;, at}tT:() and construct / clusters. Use
1 I .

clusters’ centers {k;, a;j};_; as a grid.
Step 2. Fix B = (By. By, By, ---)- Given {k,-,a,-},/-:l solve for {c,-,é,-}ll-:l.
Step 3. Compute the expectation using numerical integration (quadrature
integration or monomial rules)

-~ 5U1 (C{ gl)

kl=EL{ 1211 —d+af (K, 0))] k3.

r= e { o) i a s (.6 i

Regress EI’ on (1, ki, a;, k?, a2 ) — get B

I 1 I 1
Step 4. Solve for the coefficients using fixed-point iteration with damping,

BUTH = (1—p) Y + B, pe(0,1).
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