
Numerical Methods in Economics

MIT Press, 1998

Notes for Chapter 6: Approximation Methods

October 20, 2010

1

Approximation Methods

• General Objective: Given data about a function f(x) (which is difficult to compute) construct a

simpler function g(x) that approximates f(x).

• Questions:

— What data should be produced and used?

— What family of “simpler” functions should be used?

— What notion of approximation do we use?

— How good can the approximation be?

— How simple can a good approximation be?

• Comparisons with statistical regression

— Both approximate an unknown function

— Both use a finite amount of data

— Statistical data is noisy; we assume here that data errors are small

— Nature produces data for statistical analysis; we produce the data in function approximation

— Our approximation methods are like experimental design with very small experimental error

2

Local Approximation Methods

• Use information about f : R → R only at a point, x0 ∈ R, to construct an approximation valid

near x0

• Taylor Series Approximation

f(x)
.
=f(x0) + (x− x0) f

′
(x0) +

(x− x0)
2

2

f
′′
(x0) + · · · (6.1.1)

+

(x− x0)
n

n!

f
(n)
(x0) +O(|x− x0|

n+1
)

=pn (x) +O(|x− x0|
n+1

)

• Power series:

∑

∞

n=0
anz

n

— The radius of convergence is

r = sup{|z| : |

∞
∑

n=0

anz
n
| < ∞},

—

∑

∞

n=0
anz

n
converges for all |z| < r and diverges for all |z| > r.

3

• Complex analysis

— f : Ω ⊂ C → C on the complex plane C is analytic on Ω iff

∀a ∈ Ω ∃r, ck

(

∀‖z − a‖ < r

(

f(z) =

∞
∑

k=0

ck(z − a)
k

))

— A singularity of f is any a s. t. f is analytic on Ω− {a} but not on Ω.

— If f or any derivative of f has a singularity at z ∈ C, then the radius of convergence in C of
∑

∞

n=0

(x−x)

n!
f
(n)
(x0), is bounded above by ‖ x0 − z ‖.

4

• Example: f(x) = x
α
where 0 < α < 1.

— One singularity at x = 0

— Radius of convergence for power series around x = 1 is 1.

— Taylor series coefficients decline slowly:

ak =

1

k!

d
k

dx
k
(x

α
)|x=1 =

α(α − 1) · · · (α − k + 1)

1 · 2 · · · · · k
.

Table 6.1 (corrected): Taylor Series Approximation Errors for x
1/4

Taylor series error x
1/4

x N: 5 10 20 50

3.0 5(−1) 8(1) 3(3) 1(12) 1.3161

2.0 1(−2) 5(−3) 2(−3) 8(−4) 1.1892

1.8 4(−3) 5(−4) 2(−4) 9(−9) 1.1583

1.5 2(−4) 3(−6) 1(−9) 0(−12) 1.1067

1.2 1(−6) 2(−10) 0(−12) 0(−12) 1.0466

.80 2(−6) 3(−10) 0(−12) 0(−12) .9457

.50 6(−4) 9(−6) 4(−9) 0(−12) .8409

.25 1(−2) 1(−3) 4(−5) 3(−9) .7071

.10 6(−2) 2(−2) 4(−3) 6(−5) .5623

.05 1(−1) 5(−2) 2(−2) 2(−3) .4729

5

Rational Approximation

• Definition: A (m,n) Padé approximant of f at x0 is a rational function

r(x) =

p(x)

q(x)

,

where degree of p (q)is at most m (n), and

0 =

d
k

dx
k
(p− f q) (x0), k = 0, · · · ,m+ n.

• Construction

— Usually choose m = n or m = n+ 1.

— The m+ 1 coefficients of p and the n+ 1 coefficients of q must satisfy linear conditions

p
(k)

(x0) = (f q)
(k)

(x0), k = 0, · · · ,m+ n, (6.1.2)

— (6.1.2) plus q(x0) = 1 forms m+ n+ 2 linear conditions on the m+ n+ 2 coefficients

— Linear system may be singular; if so, reduce n or m by 1

6

• Example: (2,1) Pade approx. of x
1/4

at x = 1

— Construct degree m+ n = 2 + 1 = 3 Taylor series

t(x) = 1 +

(x− 1)

4

−
3(x− 1)

2

32

+

7(x− 1)
3

128

≡ t(x).

— Find p0, p1, p2, and q1 such that

p0 + p1(x− 1) + p2(x− 1)
2
− t(x)(1 + q1(x− 1)) = 0 (6.1.3)

— Combine coefficients of like powers in (6.1.3) implies

21 + 70x+ 5x
2

40 + 56x

. (6.1.4)

• Pade approximation is often better; not limited by singularities

7

Log-Linearization, Log-Quadraticization

• Log-linear approximation

— Suppose we have an equation

f (x, ε) = 0

that defines x in terms of ε.

— Implicit differentiation implies

x̂ =

dx

x

= −
εfε

xfx

dε

ε

= −
εfε

xfx

ε,

— Since x̂ = d(lnx), log-linearization implies log-linear approximation

lnx− lnx0

.
= −

ε0fε(x0, ε0)

x0fx(x0, ε0)

(ln ε − ln ε0). (6.1.5)

which implies

x
.
= x0 exp

(

−
ε0fε(x0, ε0)

x0fx(x0, ε0)

(ln ε − ln ε0)

)

, (6.1.6)

8

• Generalization to nonlinear change of variables.

— Suppose Y (X) implicitly defined by f(Y (X), X) = 0.

— Define x = lnX and y = lnY, then y(x) = lnY (e
x
).

— f(Y (X), X) = 0 is equivalent to f(e
y(x)

, e
x
) ≡ g(y(x), x) = 0.

— Implicit differentiation of g(y(x), x) = 0 implies y
′
(x) =

d lnY

d lnX
and (6.1.5)

— lnY (X) = y(x) also suggests the second-order approximation

lnY (X) = y(x)
.
= y(x0) + y

′
(x)(x− x0) + y

′′
(x0)

(x− x0)
2

2

, (6.1.7)

— Can construct Padé expansions in terms of the logarithm.

— There is nothing special about log function.

∗ Take any monotonic h(·)

∗ Define x = h(X) and y = h(Y)

∗ Use the identity

f(Y,X)=f(h
−1
(h(Y)), h

−1
(h(X)))

=f(h
−1
(y), h

−1
(x))

≡g(y, x).

to generate expansions

y(x)
.
=y(x0) + y

′
(x)(x− x0) + ...

Y (X)
.
=h

−1
(y(h(X0)) + y

′
(h(X0))(h(X)− h(X0)) + ...)

∗ h(z) = ln z is natural for economists, but others may be better globally

9

Types of Approximation Methods

• Interpolation Approach: find a function from an n-dimensional family of functions which exactly

fits n data items

• Lagrange polynomial interpolation

— Data: (xi, yi) , i = 1, .., n.

— Objective: Find a polynomial of degree n− 1, pn(x), which agrees with the data, i.e.,

yi = f(xi), i = 1, .., n

— Result: If the xi are distinct, there is a unique interpolating polynomial

10

• Question: Suppose that yi = f (xi). Does pn(x) converge to f (x) as we use more points?

• Convergence Counterexample

— Suppose

f(x) =

1

1 + x
2
, xi : uniform on [−5, 5]

— Degree 10 (11 points) result:

Figure 1:

11

• Hermite polynomial interpolation

— Data: (xi, yi, y
′

i
) , i = 1, .., n.

— Objective: Find a polynomial of degree 2n− 1, p(x), which agrees with the data, i.e.,

yi=p(xi), i = 1, .., n

y
′

i
=p

′
(xi), i = 1, .., n

— Result: If the xi are distinct, there is a unique interpolating polynomial

• Least squares approximation

— Data: A function, f(x).

— Objective: Find a function g(x) from a class G that best approximates f(x), i.e.,

g = argmax
g∈G

‖f − g‖
2

12

Orthogonal polynomials

• General orthogonal polynomials

— Space: polynomials over domain D

— weighting function: w(x) > 0

— Inner product: 〈f, g〉 =
∫

D
f(x)g(x)w(x)dx

— Definition: {φ
i
} is a family of orthogonal polynomials w.r.t w (x) iff

〈

φ
i
,φ

j

〉

= 0, i -= j

— We like to compute orthogonal polynomials using recurrence formulas

φ
0
(x)=1

φ
1
(x)=x

φ
k+1

(x)=(ak+1x+ bk)φk
(x) + ck+1φk−1

(x)

— Approximation (assuming ‖φ
i
‖ = 1):

f (x)=

∞
∑

i=0

aiφi

ai=〈f,φ
i
〉 =

∫

D

f(x)φ
i
(x)w(x)dx, i -= j

13

• Legendre polynomials

— [a, b] = [−1, 1]

— w(x) = 1

— Pn(x) =
(−1)

2 n!

d

dx

[

(1− x
2
)
n
]

— Recurrence formula:

P0(x)=1

P1(x)=x

Pn+1(x)=

2n+ 1

n+ 1

xPn(x)−
n

n+ 1

Pn−1(x),

14

• Chebyshev polynomials

— [a, b] = [−1, 1]

— w(x) =

(

1− x
2
)

−1/2

— Tn(x) = cos(n cos
−1

x)

— Recurrence formula:

T0(x)=1

T1(x)=x

Tn+1(x)=2xTn(x)− Tn−1(x),

15

• Laguerre polynomials

— [a, b] = [0,∞)

— w(x) = e
−x

— Ln(x) =
e

n!

d

dx
(x

n
e
−x
)

— Recurrence formula:

L0(x)=1

L1(x)=1− x

Ln+1(x)=

1

n+ 1

(2n+ 1− x) Ln(x)−
n

n+ 1

Ln−1(x),

16

• Hermite polynomials

— [a, b] = (−∞,∞)

— w(x) = e
−x

— Hn(x) = (−1)
n
e
x d

dx
(e

−x
)

— Recurrence formula:

H0(x)=1

H1(x)=2x

Hn+1(x)=2xHn(x)− 2n Hn−1(x).

17

• General Orthogonal Polynomials

— Few problems have the specific intervals and weights used in definitions

— One must adapt interval through linear COV

∗ If compact interval [a, b] is mapped to [−1, 1] by

y = −1 + 2

x− a

b− a

then φ
i

(

−1 + 2
x−a

b−a

)

are orthogonal over x ∈ [a, b] with respect to w

(

−1 + 2
x−a

b−a

)

iff φ
i
(y)

are orthogonal over y ∈ [−1, 1] w.r.t. w (y)

∗ If half-infinite interval [a,∞] is mapped to [0,∞] by

y=

x− a

λ

w (y)=e
−y

then φ
i

(

x−a

λ

)

are orthogonal over x ∈ [a,∞] w.r.t. w

(

x−a

λ

)

iff φ
i
(y) are orthogonal over

y ∈ [0,∞] w.r.t. w (y)

∗ If [−∞,∞] is mapped to [−∞,∞] by

y=(x− µ)

/√

λ

w (y)=e
−y

then φ
i

(

x−µ
√

λ

)

are orthogonal over x ∈ [a,∞] w.r.t. w

(

x−µ
√

λ

)

iff φ
i
(y) are orthogonal over

y ∈ [0,∞] w.r.t. w (y)

18

• Trigonometric polynomials and Fourier series

— {cos(nθ), sin(mθ)} are orthogonal on [−π,π].

— If f is continuous on [−π,π] and f(−π) = f(π), then

f(θ) =

1

2

a0 +

∞
∑

n=1

an cos(nθ) +

∞
∑

n=1

bn sin(nθ)

where the Fourier coefficients are

an=

1

π

∫

π

π

f(θ) cos(nθ)dθ

bn=

1

π

∫

π

π

f(θ) sin(nθ) dθ,

— A trigonometric polynomial is any function of the form in (6.4.4).

— Convergence is uniform.

— Excellent for approximating a smooth periodic function, i.e., f : R → R such that for some ω,

f(x) = f(x+ ω).

— Not good for nonperiodic functions

∗ Convergence is not uniform

∗ Many terms are needed

19

Regression

• Data: (xi, yi) , i = 1, .., n.

• Objective: Find a function f(x;β) with β ∈ R
m
, m ≤ n, with yi

.
= f(xi), i = 1, .., n.

• Least Squares regression:

min
β∈R

∑

(yi − f (xi;β))
2

Chebyshev Regression

• Chebyshev Regression Data:

• (xi, yi) , i = 1, .., n > m,xi are the n zeroes of Tn(x) adapted to [a, b]

• Chebyshev Interpolation Data:

(xi, yi) , i = 1, .., n = m,xi are the n zeroes of Tn(x)adapted to [a, b]

20

Algorithm 6.4: Chebyshev Approximation Algorithm in R
1

• Objective: Given f(x) defined on [a, b], find a m-point degree n Chebyshev polynomial approxi-

mation p(x)

• Step 1: Compute the m ≥ n+ 1 Chebyshev interpolation nodes on [−1, 1]:

zk = −cos

(

2k − 1

2m

π

)

, k = 1, · · · ,m.

• Step 2: Adjust nodes to [a, b] interval:

xk = (zk + 1)

(

b− a

2

)

+ a, k = 1, ...,m.

• Step 3: Evaluate f at approximation nodes:

wk = f(xk) , k = 1, · · · ,m.

• Step 4: Compute Chebyshev coefficients, ai, i = 0, · · · , n :

ai =

∑

m

k=1
wkTi(zk)

∑

m

k=1
Ti(zk)

2

to arrive at approximation of f(x, y) on [a, b]:

p(x) =

n
∑

i=0

aiTi

(

2

x− a

b− a

− 1

)

21

Minmax Approximation

• Data: (xi, yi) , i = 1, .., n.

• Objective: L
∞

fit

min

β∈R

max
i

‖yi − f (xi;β)‖

• Problem: Difficult to compute

• Chebyshev minmax property

Theorem 1 Suppose f : [−1, 1] → R is C
k
for some k ≥ 1, and let In be the n-point (degree n− 1)

polynomial interpolation of f based at the zeroes of Tn(x). Then

‖ f − In ‖∞≤

(

2

π

log(n+ 1) + 1

)

×
(n− k)!

n!

(

π

2

)

k

(

b− a

2

)

k

‖ f
(k)

‖∞

• Chebyshev interpolation:

— converges in L
∞

— essentially achieves minmax approximation

— easy to compute

— does not approximate f
′

22

Splines

Definition 2 A function s(x) on [a, b] is a spline of order n iff

1. s is C
n−2

on [a, b], and

2. there is a grid of points (called nodes) a = x0 < x1 < · · · < xm = b such that s(x) is a polynomial

of degree n− 1 on each subinterval [xi, xi+1], i = 0, . . . ,m− 1.

Note: an order 2 spline is the piecewise linear interpolant.

• Cubic Splines

— Lagrange data set: {(xi, yi) | i = 0, · · · , n}.

— Nodes: The xi are the nodes of the spline

— Functional form: s(x) = ai + bi x+ ci x
2
+ di x

3
on [xi−1, xi]

— Unknowns: 4n unknown coefficients, ai, bi, ci, di, i = 1, · · ·n.

23

• Conditions:

— 2n interpolation and continuity conditions:

yi =ai + bixi + cix
2

i
+ dix

3

i
,

i = 1, ., n

yi =ai+1 + bi+1xi + ci+1x
2

i
+ di+1x

3

i
,

i = 0, ., n− 1

— 2n− 2 conditions from C
2
at the interior: for i = 1, · · ·n− 1,

bi + 2cixi + 3dix
2

i
=bi+1 + 2ci+1 xi + 3di+1x

2

i

2ci + 6dixi=2ci+1 + 6di+1xi

— Equations (1—4) are 4n− 2 linear equations in 4n unknown parameters, a, b, c, and d.

— construct 2 side conditions:

∗ natural spline: s
′
(x0) = 0 = s

′
(xn); it minimizes total curvature,

∫

x

x
s
′′
(x)

2
dx, among

solutions to (1-4).

∗ Hermite spline: s
′
(x0) = y

′

0
and s

′
(xn) = y

′

n
(assumes extra data)

∗ Secant Hermite spline: s
′
(x0) = (s(x1)−s(x0))/(x1−x0) and s

′
(xn) = (s(xn)−s(xn−1))/(xn−

xn−1).

∗ not-a-knot: choose j = i1, i2, such that i1 + 1 < i2, and set dj = dj+1.

— Solve system by special (sparse) methods; see spline fit packages

24

• Quality of approximation

Theorem 3 If f ∈ C
4
[x0, xn] and s is the Hermite cubic spline approximation to f on {x0, x1, · · ·xn}

and h ≥ maxi{xi − xi−1}, then

‖ f − s ‖∞≤
5

384

‖ f
(4)

‖∞ h
4

and

‖ f
′
− s

′
‖∞≤

[√

3

216

+

1

24

]

‖ f
(4)

‖∞ h
3
.

In general, order k + 2 splines with n nodes yield O(n
−(k+1)

) convergence for f ∈ C
k+1

[a, b].

25

• B-Splines: A basis for splines

— Put knots at {x−k, · · · , x−1, x0, · · · , xn}.

— Order 1 splines: step function interpolation spanned by

B
0

i
(x) =

0, x < xi,

1, xi ≤ x < xi+1,

0, xi+1 ≤ x,

— Order 2 splines: piecewise linear interpolation and are spanned by

B
1

i
(x) =

0 , x ≤ xi or x ≥ xi+2,

x−x

x −x
, xi ≤ x ≤ xi+1,

x −x

x −x
, xi+1 ≤ x ≤ xi+2.

The B
1

i
-spline is the tent function with peak at xi+1 and is zero for x ≤ xi and x ≥ xi+2.

— Both B
0
and B

1
splines form cardinal bases for interpolation at the xi’s.

— Higher-order B-splines are defined by the recursive relation

B
k

i
(x)=

(

x− xi

xi+k − xi

)

B
k−1

i
(x)

+

(

xi+k+1 − x

xi+k+1 − xi+1

)

B
k−1

i+1
(x)

26

Theorem 4 Let S
k

n
be the space of all order k+1 spline functions on [x0, xn] with knots at {x0, x1, · · · , xn}.

Then

1. The set

{B
k

i
|[x ,x] : −k ≤ i ≤ n− 1}

forms a linearly independent basis for S
k

n
, which has dimension n+ k.

2. B
k

i
(x) ≥ 0 and the support of B

k

i
(x) is (xi, xi+k+1).

3.
d

dx
(B

k

i
(x)) =

(

k

x −x

)

B
k−1

i
(x)− (

k

x −x
) B

k−1

i+1
(x).

4. If we have Lagrange interpolation data, (yi, zi), i = 1, · · · , n+ k, and

xi−k−1 < zi < xi , 1 ≤ i ≤ n+ k,

then there is an interpolant S in S
k

n
such that y = S(zi), i = 1,..., n+ k.

27

• Shape-preservation

— Concave (monotone) data may lead to nonconcave (nonmonotone) approximations.

— Example

28

• Schumaker Procedure:

1. Take level (and maybe slope) data at nodes xi

2. Add intermediate nodes z
+

i
∈ [xi, xi+1]

3. Run quadratic spline with nodes at the x and z nodes which intepolate data and preserves

shape.

4. Schumaker formulas tell one how to choose the z and spline coefficients (see book and correction

at book’s website)

• Many other procedures exist for one-dimensional problems

• Few procedures exist for two-dimensional problems

• Higher dimensions are difficult, but many questions are open.

29

• Spline summary:

— Evaluation is cheap

∗ Splines are locally low-order polynomial.

∗ Can choose intervals so that finding which [xi, xi+1] contains a specific x is easy.

∗ Finding enclosing interval for general xi sequence requires at most 2log
2
n3 comparisons

— Good fits even for functions with discontinuous or large higher-order derivatives. E.g., quality

of cubic splines depends only on f
(4)
(x), not f

(5)
(x).

— Can use splines to preserve shape conditions

30

Multidimensional approximation methods

• Lagrange Interpolation

— Data: D ≡ {(xi, zi)}
N

i=1
⊂ R

n+m
, where xi ∈ R

n
and zi ∈ R

m

— Objective: find f : R
n
→ R

m
such that zi = f(xi).

• Counterexample:

— Interpolation nodes:

{P1, P2, P3, P4} ≡ {(1, 0), (−1, 0), (0, 1), (0,−1)}

— Use linear combinations of {1, x, y, xy}.

— Data: zi = f(Pi), i = 1, 2, 3, 4.

— Interpolation form f(x, y) = a+ bx+ cy + dxy

— Defining conditions form the singular system

1 1 0 0

1−1 0 0

1 0 1 0

1 0 −10

a

b

c

d

=

z1

z2

z3

z4

,

— Task: Find combinations of interpolation nodes and spanning functions to produce a nonsin-

gular (well-conditioned) interpolation matrix.

31

Tensor products

• General Approach:

— If A and B are sets of functions over x ∈ R
n
, y ∈ R

m
, their tensor product is

A⊗B = {ϕ(x)ψ(y) | ϕ ∈ A, ψ ∈ B}.

— Given a basis for functions of xi, Φ
i
= {ϕ

i

k
(xi)}

∞

k=0
, the n-fold tensor product basis for functions

of (x1, x2, . . . , xn) is

Φ =

{

n
∏

i=1

ϕ
i

k
(xi) | ki = 0, 1, · · · , i = 1, . . . , n

}

• Orthogonal polynomials and Least-square approximation

— Suppose Φ
i
are orthogonal with respect to wi(xi) over [ai, bi]

— Least squares approximation of f(x1, · · · , xn) in Φ is

∑

ϕ∈Φ

〈ϕ, f〉

〈ϕ,ϕ〉
ϕ,

where the product weighting function

W (x1, x2, · · · , xn) =

n
∏

i=1

wi(xi)

defines 〈·, ·〉 over D =

∏

i
[ai, bi] in

〈f(x), g(x)〉 =

∫

D

f(x)g(x)W (x)dx.

32

Algorithm 6.4: Chebyshev Approximation Algorithm in R
2

• Objective: Given f(x, y) defined on [a, b]× [c, d], find them-point degree n Chebyshev polynomial

approximation p(x, y)

• Step 1: Compute the m ≥ n+ 1 Chebyshev interpolation nodes on [−1, 1]:

zk = −cos

(

2k − 1

2m

π

)

, k = 1, · · · ,m.

• Step 2: Adjust nodes to [a, b] and [c, d] intervals:

xk = (zk + 1)

(

b− a

2

)

+ a, k = 1, ...,m.

yk = (zk + 1)

(

d− c

2

)

+ c, k = 1, ...,m.

• Step 3: Evaluate f at approximation nodes:

wk,' = f(xk, y') , k = 1, · · · ,m. , + = 1, · · · ,m.

• Step 4: Compute Chebyshev coefficients, aij, i, j = 0, · · · , n :

aij =

∑

m

k=1

∑

m

'=1
wk,'Ti(zk)Tj(z')

(

∑

m

k=1
Ti(zk)

2
) (

∑

m

'=1
Tj(z')

2
)

to arrive at approximation of f(x, y) on [a, b]× [c, d]:

p(x, y) =

n
∑

i=0

n
∑

j=0

aijTi

(

2

x− a

b− a

− 1

)

Tj

(

2

y − c

d− c

− 1

)

33

Multidimensional Splines

• B-splines: Multidimensional versions of splines can be constructed through tensor products; here

B-splines would be useful.

• Summary

— Tensor products directly extend one-dimensional methods to n dimensions

— Curse of dimensionality often makes tensor products impractical

34

Complete polynomials

• Taylor’s theorem for R
n
produces the approximation

f(x)
.
=f(x

0
)

+

∑

n

i=1

∂f

∂x
(x

0
) (xi − x

0

i
)

+
1

2

∑

n

i =1

∑

n

i =1

∂ f

∂x ∂x
(x0)(xi − x

0

i
)(xi − x

0

i
)

...

— For k = 1, Taylor’s theorem for n dimensions used the linear functions

P
n

1
≡ {1, x1, x2, · · · , xn}

— For k = 2, Taylor’s theorem uses

P
n

2
≡ P

n

1
∪ {x

2

1
, · · · , x

2

n
, x1x2, x1x3, · · · , xn−1xn}.

P
n

2
contains some product terms, but not all; for example, x1x2x3 is not in P

n

2
.

35

• In general, the kth degree expansion uses the complete set of polynomials of total degree k in n

variables.

P
n

k
≡ {x

i

1
· · ·x

i

n
|

n
∑

'=1

i' ≤ k, 0 ≤ i1, · · · , in}

• Complete orthogonal basis includes only terms with total degree k or less.

• Sizes of alternative bases

degree k P
n

k
Tensor Prod.

2 1 + n+ n(n+ 1)/2 3
n

3 1 + n+
n(n+1)

2
+ n

2
+

n(n−1)(n−2)

6
4
n

— Complete polynomial bases contains fewer elements than tensor products.

— Asymptotically, complete polynomial bases are as good as tensor products.

— For smooth n-dimensional functions, complete polynomials are more efficient approximations

• Construction

— Compute tensor product approximation, as in Algorithm 6.4

— Drop terms not in complete polynomial basis (or, just compute coefficients for polynomials in

complete basis).

— Complete polynomial version is faster to compute since it involves fewer terms

36

Nonlinear approximation methods

• Neural Network Definitions:

— A single-layer neural network is a function of form

F (x;β) ≡ h

(

n
∑

i=1

β
i
g (xi)

)

where

∗ x ∈ R
n
is the vector of inputs

∗ h and g are scalar functions (e.g., g(x) = x)

— A single hidden-layer feedforward neural network is a function of form

F (x;β, γ) ≡ f

m
∑

j=1

γ
j
h

(

n
∑

i=1

β
j

i
g (xi)

)

 ,

where h is called the hidden-layer activation function.

37

• Neural Network Approximation: We form least-squares approximations by solving either

min
β

∑

j

(

yj − F (x
j
;β)

)

2

or

min
β,γ

∑

j

(yj − F (x
j
;β, γ))

2
.

Theorem 5 : (Universal approximation theorem) Let G be a continuous function, G : R → R, such

that either

1.

∫

∞

−∞
G(x)dx is finite and nonzero and G is L

p
for 1 ≤ p < ∞, or

2. G : R → [0, 1], G nondecreasing, limx→∞ G(x) = 1, and limx→−∞ G(x) = 0 (i.e., G is a squashing

function)

Let Σ
n
(G) be the set of all possible single hidden-layer feedforward neural networks using, G as the

hidden layer activation function; that is, of the form

∑

m

j=1
β
j
G(w

j
x+ bj) for x,w

j
∈ R

n
and scalar bj.

Let f : R
n
→ R be continuous. Then for all ε > 0, probability measures µ, and compact sets K ⊂ R

n
,

there is a g ∈ Σ
n
(G) such that

sup

x∈K

|f(x)− g(x)| ≤ ε

and

∫

K
|f(x)− g(x)| dµ ≤ ε.

Remark 6 The logistic function is a popular squashing function.

38

• Neural Networks are optimal in some sense:

Theorem 7 (Barron’s theorem) Neural nets are asymptotically the most efficient approximations for

smooth functions of dimension greater than two.

• Neural network summary:

— flexible functional form

— neural networks add squashing function to basic list of operations.

— asymptotically efficient

— difficult to solve necessary global optimization problem

— do not know what points to use for approximation purposes

— Just one example of possible nonlinear functional forms, all of which add some function besides

multiplication and addition.

39

Approximation Methods: Summary

• Interpolation versus regression

— Lagrange data uses level information only

— Hermite data also uses slope information

— Regression uses more points than coefficients

• One-dimensional problems

— Smooth approximations

∗ Orthogonal polynomial methods for nonperiodic functions

∗ Fourier approximations for periodic functions

— Less smooth approximations

∗ Splines

∗ Shape-preserving splines

40

• Multidimensional data

— Tensor product methods have curse of dimension

— Complete polynomials are more efficient

— Neural networks are most efficient

• Approximation versus Statistics

— Similarities:

∗ both approximate unknown functions

∗ both use finite amount of data

— Differences

∗ approximation uses error-free data, not noisy data

∗ approximation generates data, not constrained by observations

41

