Numerical Methods in Economics
MIT Press, 1998

Notes for Chapter 6: Approximation Methods

October 20, 2010

Approximation Methods

e General Objective: Given data about a function f(x) (which is difficult to compute) construct a
simpler function g(x) that approximates f(z).

e (Questions:

— What data should be produced and used?

— What family of “simpler” functions should be used?
— What notion of approximation do we use?

— How good can the approximation be?

— How simple can a good approximation be?
e Comparisons with statistical regression

— Both approximate an unknown function

— Both use a finite amount of data

— Statistical data is noisy; we assume here that data errors are small

— Nature produces data for statistical analysis; we produce the data in function approximation

— Our approximation methods are like experimental design with very small experimental error

Local Approximation Methods

e Use information about f : R — R only at a point, zy € R, to construct an approximation valid

near

e Taylor Series Approximation

(2 —2560)2) £ (6.1.1)
(x —)

— FU (x0) + O(|z — @)
=pn () + O(|z — 20"

f(z)= fzo) + (x — m0) f'(20) +

n

e Power series: > >~ a,2"

— The radius of convergence is
0
r=sup{lzl | a2 < oo},
n=0

— > s anz™ converges for all |z| < r and diverges for all |z| > .

e Complex analysis

— f:Q C C — C on the complex plane C' is analytic on € iff

Va € Q Jr, ¢y <VHz —al <r <f(z) = ch(z—a)k>>

k=0
— A singularity of f is any a s. t. f is analytic on €2 — {a} but not on (2.
— If f or any derivative of f has a singularity at z € C, then the radius of convergence in C' of

O (ff—_ffow £ (z0), is bounded above by || 2o — 2 |.

n= n!

e Example: f(x) =z where 0 < o < 1.

— One singularity at z = 0
— Radius of convergence for power series around x = 1 is 1.
— Taylor series coeflicients decline slowly:

1 d*

_ 14 ala—1)--(a—k+1)
k! da* '

1-2

aj (%) |o=1 =

Table 6.1 (corrected): Taylor Series Approximation Errors for 2'/4

Taylor series error /4
r N: 5) 10 20 50
30 5(=1) 8(1) 33 1(12) 1.3161
20 1(=2) 5(=3) 2(-3) 8(—4) 1.1892
1.8 4(—3) 5(—4) 2(—4) 9(—9) 1.1583
15 2(—4) 3(=6) 1(—9) 0(—12) 1.1067
12 1(=6) 2(—10) 0(=12) 0(—12) 1.0466
80 2(—6) 3(—10) 0(—12) 0(—12) .9457
50 6(—4) 9(—6) 4(—9) 0(—12) .8409
25 1(=2) 1(=3) 4(-5) 3(-9) .7071
10 6(=2) 2(-2) 4(=3) 6(=5) 5623
05 1(=1) 5(=2) 2(-2) 2(-3) 4729

Rational Approximation

e Definition: A (m,n) Padé approximant of f at x, is a rational function

") = p(z)

q(x)’
where degree of p (¢)is at most m (n), and
dk

0= —~_
dax®

(p—fq)(xg), k=0,---,m+n.
e Construction

— Usually choose m =n or m =n + 1.

— The m + 1 coefficients of p and the n + 1 coeflicients of ¢ must satisfy linear conditions

— (6.1.2) plus ¢(xg) = 1 forms m + n + 2 linear conditions on the m + n + 2 coefficients

— Linear system may be singular; if so, reduce n or m by 1

1/4

e Example: (2,1) Pade approx. of x'/* at x = 1

— Construct degree m +n = 2+ 1 = 3 Taylor series

tx) =1+ @ ; b _ 3($?)_2 2 + 7($1;81> = t(x).

— Find py, p1, p2, and ¢, such that
po+pi(r—1) +pa(z— 1 —t(x)1+q(x—1)) =0 (6.1.3)

— Combine coefficients of like powers in (6.1.3) implies

21 + 70z + Hz2
40 + 56

e Pade approximation is often better; not limited by singularities

(6.1.4)

Log-Linearization, Log-Quadraticization
e Log-linear approximation

— Suppose we have an equation
f(z,e)=0
that defines x in terms of €.
— Implicit differentiation implies
de _ cfde _ ef.

SAU:—:
x xfy € T fy

&,

— Since & = d(In x), log-linearization implies log-linear approximation

. €0f5(330,€0>
Inz —Inzy = —
xOfl’('xO)gO)

(Ine — Ingy). (6.1.5)

which implies

. £0.f=(0, €0)
T = xgexp (_l’ofx(ﬂfo,) (Ine —In 60)) : (6.1.6)

e Generalization to nonlinear change of variables.
— Suppose Y (X)) implicitly defined by f(Y(X), X) = 0.
— Define x =In X and y = InY, then y(z) =InY(e").
— f(Y(X), X) = 0is equivalent to f(e?®), e®) = g(y(x),x) = 0.

— Implicit differentiation of g(y(z), z) = 0 implies y/(z) = H2L (6.1.5)
— InY(X) = y(z) also suggests the second-order approximation
(z — 20)°

Y (X) = y(x) = y(zo) + ¢ (x)(x — 20) + " (w0) (6.1.7)

— Can construct Padé expansions in terms of the logarithm.

2 Y

— There is nothing special about log function.

+ Take any monotonic A(-)
* Define z = h(X) and y = h(Y)
x Use the identity

to generate expansions

y(z)=y(xo) +y'(z)(x — m9) + ...
Y (X)=h7 (y(h(Xo)) + o/ (h(Xo))(MX) — (X)) + ...)

* h(z) = In z is natural for economists, but others may be better globally

Types of Approximation Methods

e Interpolation Approach: find a function from an n-dimensional family of functions which exactly
fits n data items

e Lagrange polynomial interpolation

— Data: (z;,vy;),i=1,..,n.
— Objective: Find a polynomial of degree n — 1, p,(z), which agrees with the data, i.e.,

vy = flxy), i1=1,.,n

— Result: If the x; are distinct, there is a unique interpolating polynomial

e Question: Suppose that y; = f (z;). Does p,(z) converge to f () as we use more points?

e Convergence Counterexample

— Suppose .
I =1

x; : uniform on [—5, 5]

— Degree 10 (11 points) result:

11-point
interpolation

Figure 1:

e Hermite polynomial interpolation

— Data: (x;,y;,v),i=1,..,n.
— Objective: Find a polynomial of degree 2n — 1, p(x), which agrees with the data, i.e.,

yi=p(z;), i=1,..n
yi=p'(x;), i=1,..,n

— Result: If the x; are distinct, there is a unique interpolating polynomial
e Least squares approximation

— Data: A function, f(z).

— Objective: Find a function g(x) from a class G that best approximates f(z), i.e.,

g =argmax || f — g|*
geG

Orthogonal polynomials
e General orthogonal polynomials

— Space: polynomials over domain D

— weighting function: w() >0

— Inner product: (= [, f w(x)dx

— Definition: {gbz} is a famlly of orthogonal polynomials w.r.t w (z) iff

(Gis ;) =0, i #]

— We like to compute orthogonal polynomials using recurrence formulas

Po(x)=1
¢ () =2
O 1(®) = (ar1 + bi) Pp() + o101 (%)
— Approximation (assuming ||¢;|| = 1):

flx)_Zai¢

—(£.6) /f w(z)de, i #]

e Legendre polynomials

— Po(o) = Gl [0 -

2n! dz"

— Recurrence formula:

Po(LU):l
Pi(x)=x
2n+1 n
Pn—l—l(x): n _:_1 T n(x) - n+1 n—l(x>7
Py ! Py
PV
11 I1
X \Pz

e Chebyshev polynomials

o [CL, b] - [_17 1]
—w(z) = (1- 562)_1/2
— Ty (z) = cos(ncos™! z)
— Recurrence formula:
To(QI?) =1
Ti(z)=z
Thii(z)=2xT,(x) — T, 1(x),
T |
x 2 T
vl « 1y
3
-1

e Laguerre polynomials

- [CL, b] - [07 OO)
—w(r) ="
— Lu(2) = 4= (2" e™)

Lo(ZU):l
Li(z)=1—=x
Lun(w)= ——= (2n+1-2) Ly(2) = —— Ly1(a)

e Hermite polynomials

e General Orthogonal Polynomials

— Few problems have the specific intervals and weights used in definitions
— One must adapt interval through linear COV
* If compact interval |a, b] is mapped to [—1, 1] by
r—a
b—a
then ¢, (—1 + 2%) are orthogonal over x € [a, b] with respect to w (—1 + 2%) iff ¢, (y)
are orthogonal over y € [—1, 1] w.r.t. w(y)

y=—1+2

 If half-infinite interval [a, oo] is mapped to [0, oo] by

r—a

r—a

then ¢, (x;“) are orthogonal over x € |a, 00| w.r.t. w (S) iff ¢; (y) are orthogonal over

y € [0, 00] w.r.t. w(y)

* If [—00, 00] is mapped to [—o0, co] by

y:(ﬂ?—u)/\/X
w(y)=e¥

T

\;XM) iff ¢, (y) are orthogonal over

e Trigonometric polynomials and Fourier series

— {cos(n#),sin(m#)} are orthogonal on |—m, 7].

— If f is continuous on |—7, 7] and f(—m) = f(m), then

1 0 (0.0} .
f(0) = 50 + nz:; a, cos(nd) + nz:; by, sin(nd)
where the Fourier coefficients are

1 m

ap=— / f(6) cos(nt)dd
™ s
1 m

by =— / f(0)sin(nd) do,
™ T

— A trigonometric polynomial is any function of the form in (6.4.4).
— Convergence is uniform.
— Excellent for approximating a smooth periodic function, i.e., f : R — R such that for some w,
fl@) = flz +w).
— Not good for nonperiodic functions
« Convergence is not uniform

*x Many terms are needed

Regression

e Data: (z;,v;),1=1,..,n.

e Objective: Find a function f(z;3) with 5 € R™, m <n, with y; = f(z;),i = 1,..,n.
e Least Squares regression:

min (yi — f (x; 5))2

BeER™

Chebyshev Regression

e Chebyshev Regression Data:
o (x;,y),i=1,..,n>m,x; are the n zeroes of T, (x) adapted to [a,]
e Chebyshev Interpolation Data:

(x:,yi),i = 1,..,n =m,x; are the n zeroes of T, (z)adapted to |a, 0]

Algorithm 6.4: Chebyshev Approximation Algorithm in R!

e Objective: Given f(x) defined on [a,], find a m-point degree n Chebyshev polynomial approxi-
mation p(x)

e Step 1: Compute the m > n + 1 Chebyshev interpolation nodes on [—1, 1]:

2k — 1
2L = —COS T , k=1 ,m.

2m

e Step 2: Adjust nodes to [a, b] interval:

b—
$k—(2k+1)(2&) +a,k=1,..,m.

e Step 3: Evaluate f at approximation nodes:

wk::f<$k)7 kzla"'am'

e Step 4: Compute Chebyshev coefficients, a;,i =0,--- ,n :

_ > et wili(21)
22121 Ti(z1)?

to arrive at approximation of f(z,y) on [a, b]:

p(z) = En:aT (2“;::2’ — 1)

1=0

a;

Minmax Approximation

e Data: (z;,v;),1=1,..,n.
e Objective: L™ fit

Brg%% mz,aX |y — f (xi; B)|]

e Problem: Difficult to compute

e Chebyshev minmax property

Theorem 1 Suppose f : [—1,1] — R is C* for some k > 1, and let I,, be the n-point (degree n — 1)
polynomial interpolation of f based at the zeroes of T, (x). Then

H J— 1, Hooé (; 10g(n+ 1) + 1)

n —k)! E/b—a\"
) (5F) 1

e Chebyshev interpolation:

— converges in L™
— essentially achieves minmax approximation
— easy to compute

— does not approximate f’

Splines
Definition 2 A function s(x) on |a,b] is a spline of order n iff
1. 5 1s C"% on |a,b], and

2. there is a grid of points (called nodes) a = o < x1 < -+ < T, = b such that s(x) is a polynomial
of degree n — 1 on each subinterval [x;, x;y1], 71 =0,...,m — 1.

Note: an order 2 spline is the piecewise linear interpolant.

e Cubic Splines

— Lagrange data set: {(z;, y;) | i =0, ---, n}.
— Nodes: The z; are the nodes of the spline
— Functional form: s(z) = a; + b; x + ¢; 2° + d; 2° on [z;_1, ;]

— Unknowns: 4n unknown coefficients, a;, b;,¢;,d;, i =1,---n.

e Conditions:
— 2n interpolation and continuity conditions:

y; =a; + b;x; + CZ-SUZ2 -+ di:c?,

1=1,.,n
R biiids + Corae 4 o
Yi =Ai4+1 + i+1T5 + Ciy1; + i+1T;
1=0,.,n—1

— 2n — 2 conditions from C? at the interior: fori =1,---n — 1,

bz’ + 262’33@’ + BdZLUZQ :bi—i—l + 2CZ'+1 T; + SdH_lLUZZ
20@ + 6d1$2 :202’_1_1 + 6d2’+1$2’

— Equations (1-4) are 4n — 2 linear equations in 4n unknown parameters, a, b, ¢, and d.

— construct 2 side conditions:

" 5" (x)* dz, among

« natural spline: §'(xrg) = 0 = s'(x,); it minimizes total curvature, f
solutions to (1-4).

« Hermite spline: s'(xg) =y, and §'(z,,) = ¢/, (assumes extra data)

x Secant Hermite spline: s'(xy) = (s(x1)—s(xg))/(x1—x0) and s'(x,) = (s(x,)—s(zp_1))/(xp—
Tp_1).

* not-a-knot: choose j = i1, 12, such that i1 +1 < ¢y, and set d; = d;;.

— Solve system by special (sparse) methods; see spline fit packages

e Quality of approximation

Theorem 3 If f € C*[xg, x,] and s is the Hermite cubic spline approzimation to f on {xg, x1,- - x,}
and h > max;{x; — z;_1}, then

5
_ < = | f@4 B
=l o £
and
V3 1
| f =5 || 216 T 21 | Y oo B2

In general, order k + 2 splines with n nodes yield O(n=%"1) convergence for f € C*a, b].

e B-Splines: A basis for splines

— Put knots at {z_x,--+ , 1,20, -+, Ty}
— Order 1 splines: step function interpolation spanned by
0, z <z,
Bzo(m) = 17 T, << Li+1,
07 Li+1 é x,

— Order 2 splines: piecewise linear interpolation and are spanned by

)
0, r < T O T 2 Xy,

Bl(zx)={ —=, x; <z <y,

Li+1—%L4

Li42—T
\ Ti+2—Ti41

, Tit1 ST < Tigo.

The Bz.l—spline is the tent function with peak at x;,.1 and is zero for + < x; and z > x; 5.
— Both B" and B! splines form cardinal bases for interpolation at the x;’s.
— Higher-order B-splines are defined by the recursive relation
k L — T k—1
B0 = (=) B

Livk — Ly

Litk+1 — X E—1
+ (B¢+1 (5'3)
Litk+1 — Ti+1

Theorem 4 Let S* be the space of all order k+1 spline functions on [xg, x,,] with knots at {xq, z1,- -+ ,x,}.
Then

1. The set
{Bf’[mo,l’n] . —k <) <n-— 1}

forms a linearly independent basis for S¥, which has dimension n + k.

2. B¥(z) > 0 and the support of BF(x) is (x;, Tithi1)-

d k k—1 k k—1
3. 45 (Bi(z)) = (m) B (2) = (557 =) Biva (@)
4. If we have Lagrange interpolation data, (y;, z;),i =1,--- ,n+k, and
Ticp1<zi<wz, 1<i<n+k,

then there is an interpolant S in S* such that y = S(z;), i = 1,..., n + k.

e Shape-preservation

— Concave (monotone) data may lead to nonconcave (nonmonotone) approximations.

— Example

e Schumaker Procedure:

1. Take level (and maybe slope) data at nodes z;
2. Add intermediate nodes z;" € [x;, ;1]

3. Run quadratic spline with nodes at the z and z nodes which intepolate data and preserves
shape.

4. Schumaker formulas tell one how to choose the z and spline coefficients (see book and correction
at book’s website)

e Many other procedures exist for one-dimensional problems
e Few procedures exist for two-dimensional problems

e Higher dimensions are difficult, but many questions are open.

e Spline summary:

— Evaluation is cheap

* Splines are locally low-order polynomial.
+ Can choose intervals so that finding which [x;, x;,1] contains a specific z is easy.
+ Finding enclosing interval for general x; sequence requires at most [log, n| comparisons
— Good fits even for functions with discontinuous or large higher-order derivatives. E.g., quality
of cubic splines depends only on f¥(x), not f©)(z).

— Can use splines to preserve shape conditions

Multidimensional approximation methods

e Lagrange Interpolation

— Data: D = {(z;,2)}Y, C R"™, where r; € R" and z; € R™
— Objective: find f: R" — R™ such that z; = f(z;).

e Counterexample:
— Interpolation nodes:
{P, P, P, P} ={(1,0),(—1,0),(0,1),(0,—1)}

— Use linear combinations of {1, z,y, xy}.
— Data: z; = f(P),i =1,2,3,4.
— Interpolation form f(z,y) = a + bx + cy + dxy

— Defining conditions form the singular system

11 00 a 21
1-100 bl | 2
10 10]ec| |z’
10 —10 d 24

— Task: Find combinations of interpolation nodes and spanning functions to produce a nonsin-
gular (well-conditioned) interpolation matrix.

Tensor products

e General Approach:

— If A and B are sets of functions over x € R", y € R, their tensor product is

A® B ={p@)Y(y) | ¢ € A, ¢ € B}.

— Given a basis for functions of x;, ' = {©! ()}, the n-fold tensor product basis for functions
of (xy,9,...,x,) is

=1

e Orthogonal polynomials and Least-square approximation

— Suppose * are orthogonal with respect to w;(z;) over [a;, b;]
— Least squares approximation of f(xy, -, x,) in ® is
{p, f)
2 (0,0)
ped ’

where the product weighting function
W(xy,xo, -+ ,xy,) = H w;(x;)
defines (-, -) over D = [];|a;, b;] in -
() gle)) = [flalglaWie)d

Algorithm 6.4: Chebyshev Approximation Algorithm in R?
e Objective: Given f(x,y) defined on [a, b] X [c, d], find the m-point degree n Chebyshev polynomial
approximation p(x, y)

e Step 1: Compute the m > n + 1 Chebyshev interpolation nodes on [—1, 1]:

2k — 1
2L = —COS T , k=1 ,m.

2m

e Step 2: Adjust nodes to |a, b] and [c, d| intervals:

b—
$k—(2k+1)(2a> +a,k=1,..,m.

d—
?Jk:—(zk+1)< 5 C) +c,k=1,...,m.

e Step 3: Evaluate f at approximation nodes:

wre = floe,y), k=1, m., £=1,---
e Step 4: Compute Chebyshev coefficients, a;;,4,j =0,--- ,n:
o e i Wi Tiz) Ty(20)
T (L T (S T (0?)

to arrive at approximation of f(z,y) on [a, b] X [c,d]:

p(z,y) :En:iaijTi (2:2:2—1)7} <2y_c—1)

d—c
i=0 j=0

Multidimensional Splines

e B-splines: Multidimensional versions of splines can be constructed through tensor products; here
B-splines would be useful.

e Summary

— Tensor products directly extend one-dimensional methods to n dimensions

— Curse of dimensionality often makes tensor products impractical

Complete polynomials

e Taylor’s theorem for R" produces the approximation

fla) =f(a”)
+Z@ 1 (2" (2 — af)

82
T35 Zzl 1 ZZQ 1 @l’zlaf% (.CU[))(I'“ o xg)l)(xlk _ 'CU?])

— For k = 1, Taylor’s theorem for n dimensions used the linear functions
Pr={l,z1,22, - , 2}
— For k = 2, Taylor’s theorem uses
Pl =PrU{z], -, T2, 120, T1T3, - -+, Ty_1Tn}.

Py contains some product terms, but not all; for example, zixs23 is not in P5.

e In general, the kth degree expansion uses the complete set of polynomials of total degree k in n
variables.

n
Py E{Q?lell?%n’z ir <k, 0<idp, - ,in}
(=1

e Complete orthogonal basis includes only terms with total degree k£ or less.

e Sizes of alternative bases

degree k Py Tensor Prod.
2 l+n+n(n+1)/2 3"
n(n+1) n(n—1)(n—2) n
3 l4n+S5~2L4nt4 = 4

— Complete polynomial bases contains fewer elements than tensor products.
— Asymptotically, complete polynomial bases are as good as tensor products.

— For smooth n-dimensional functions, complete polynomials are more efficient approximations
e Construction

— Compute tensor product approximation, as in Algorithm 6.4

— Drop terms not in complete polynomial basis (or, just compute coefficients for polynomials in
complete basis).

— Complete polynomial version is faster to compute since it involves fewer terms

Nonlinear approximation methods

e Neural Network Definitions:

— A single-layer neural network is a function of form

F(z;8)=h (Z B:9 <xi>>

where

x ¢ € R" is the vector of inputs

* h and g are scalar functions (e.g., g(z) = z)

— A single hidden-layer feedforward neural network is a function of form

F(z;8,7) = f Z”‘h (Zﬁzgw) ,

where h is called the hidden-layer activation function.

Xl 8 Xl \

Xzﬂ X2

(a) (b)

e Neural Network Approximation: We form least-squares approximations by solving either

min Z (yj — F(xj; ﬁ))z

B =
J
or

min > (y; = F(’; 8,7))*
J

Theorem 5 : (Universal approximation theorem) Let G be a continuous function, G : R — R, such
that either

1. [7°_ G(x)dx is finite and nonzero and G is LP for 1 < p < oo, or

2. G : R — [0,1], G nondecreasing, lim, .., G(x) =1, andlim,_ . ., G(x) =0 (i.e., G is a squashing
function)

Let 3"(G) be the set of all possible single hidden-layer feedforward neural networks using, G as the
hidden layer activation function, that is, of the form Z;n:l 8,G (wz+bj) for z,w’ € R" and scalar b;.
Let f : R" — R be continuous. Then for all € > 0, probability measures 1, and compact sets K C R",
there is a g € X"(G) such that

sup [f(z) —g(z)] <e
reK

and [, |f(z) —g(x)] dp <e.

Remark 6 The logistic function is a popular squashing function.

e Neural Networks are optimal in some sense:

Theorem 7 (Barron’s theorem) Neural nets are asymptotically the most efficient approximations for
smooth functions of dimension greater than two.

e Neural network summary:

— flexible functional form

— neural networks add squashing function to basic list of operations.
— asymptotically efficient

— difficult to solve necessary global optimization problem

— do not know what points to use for approximation purposes

— Just one example of possible nonlinear functional forms, all of which add some function besides
multiplication and addition.

Approximation Methods: Summary
e Interpolation versus regression

— Lagrange data uses level information only
— Hermite data also uses slope information

— Regression uses more points than coeflicients
e One-dimensional problems

— Smooth approximations

+ Orthogonal polynomial methods for nonperiodic functions

+ Fourier approximations for periodic functions
— Less smooth approximations

* Splines

* Shape-preserving splines

e Multidimensional data

— Tensor product methods have curse of dimension
— Complete polynomials are more efficient

— Neural networks are most efficient
e Approximation versus Statistics
— Similarities:
* both approximate unknown functions
« both use finite amount of data

— Differences

* approximation uses error-free data, not noisy data

* approximation generates data, not constrained by observations

