Not your grandparents' confidence intervals

Gregor Reich (NHH) and Ken Judd (Hoover)

March 23, 2021

How can we determine the statistical properties of our estimators?

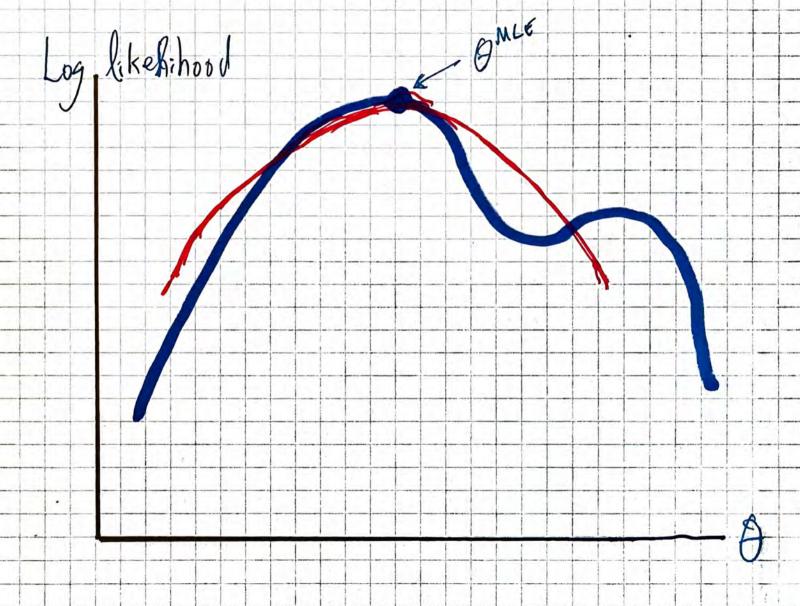
- Repeat the experiment many times
 - Pick true parameters
 - Generate synthetic data sets of various sizes
 - Apply procedures
 - Record results and fit to some class of distributions
 - Who needs theoretical econometricians?
- Problem: we aren't allowed to get the required computer power
 - We didn't build the bomb
 - Current users do not want new users
- Econometricians to the rescue
 - They develop theories
 - They use asymptotic properties to derive useful statistical tests

Problem 1

• Asymptotically, we are all dead

Problem 2

• We have finite sample problems during our finite life



Today

- Review basic statistics to remind ourselves of the subtle differences in concepts
- Describe Reich-Judd approach which avoids some of the approximations typically used
- Describe application to ... what else Zurcher bus model

Statistics and estimates

- Let f(x; θ) denote a family of probability masses or density functions over S

 potentially multivariate parameterized by θ. Suppose the random variables X¹,..., Xⁿ are independently and identically distributed according to some f(x; θ₀) for some θ₀. Let X^{1:n} = (X¹,..., Xⁿ) denote a collection of random variables for some n. The data matrix x^{1:n} = (x¹,...,xⁿ) is called a *realization* of the *random sample of size n*
- Consider a real function $h(\cdot)$; the random variable $T_n = h(X^{1:n})$ with realization $t_n = h(x^{1:n})$ is called a *statistic*. If a sequence of statistics, T_n , is used to infer an unknown parameter θ , it is called an *estimator*; when appropriate, it can be denoted by $\hat{\theta} = \hat{\theta}(X^{1:n})$. A concrete value for such an estimator based on $x^{1:n}$ is called an *estimate*, either denoted by t or θ .

Standard error and confidence interval

- Let T_n be an estimator of θ , and V be a consistent estimator of its variance var (T_n) . Then, the *standard error*, $(T) \equiv \sqrt{V}$, is a consistent estimator of its standard deviation $\sqrt{\text{var}(T)}$.
- Given a fixed $\gamma \in (0, 1)$, the two statistics $T_{n,l}$ and $T_{n,b}$ form the boundaries of a $\gamma \cdot 100\%$ confidence interval if $P(T_{n,l} \le \theta \le T_{n,l}) = \gamma \ \forall \theta \in \Theta; \ \gamma$ is called the *confidence level*, or alternatively the *coverage probability*.
- Comments
 - The main difficulty with standard errors is obtaining a consistent estimator V of the variance of the estimator T_n
 - Finding a statistic that fulfills the coverage condition is generally nontrivial. Most of the time, general statistics that rely on asymptotics will be used.
 - The correct interpretation of a confidence interval is that if the random sampling in the population were to be repeated, $\gamma \cdot 100\%$ of the confidence intervals obtained would cover the true parameter θ .
 - It is *not* correct to say that given a sample, the confidence interval contains the true parameter with $\gamma \cdot 100\%$ probability, as there is no randomness involved anymore once the sample is taken.

z-Statistic, Asymptotic Normality, Wald Confidence Interval

• If *T_n* is a consistent estimator for *θ*, the *z*-statistic will—under appropriate regularity conditions—by asymptotically (standard) normal distributed:

$$Z(\theta)\equiv \frac{T_n-\theta}{(T_n)}(0,1).$$

• The two statistics $T_n \pm z_{\frac{1+\gamma}{2}}$ form the boundary of an approximate $\gamma \cdot 100\%$ confidence interval, also referred to as the Wald confidence interval, where z is the corresponding quantile of the standard normal distribution.

Likelihood function

- The *likelihood (function)* is the joint probability or the joint density of the data, given a particular value of the parameter, written as a function of the parameter (fixing the data): $L(\theta; x) \equiv f(x; \theta)$
- The maximum likelihood estimate is defined as θ^{ML} = arg max_{θ∈Θ} L(θ; x), and the maximum likelihood estimator as θ^{ML} = arg max_{θ∈Θ} L(θ; X); both objects might be abbreviated by MLE.
- Due to the independence of the draws, the likelihood function for the sample is the product of the individual likelihoods: L(θ; x^{1:n}) = Π₁ⁿ f(xⁱ; θ).
- Every monotone transformation of L has the same extremal values
 - We often use the natural logarithm of the likelihood, called the *log-likelihood*: $I(\theta; x) \equiv \log(L(\theta; x))$.
 - Since the log of a product is a sum, maximizing the log-likelihood avoids problems of underflow.

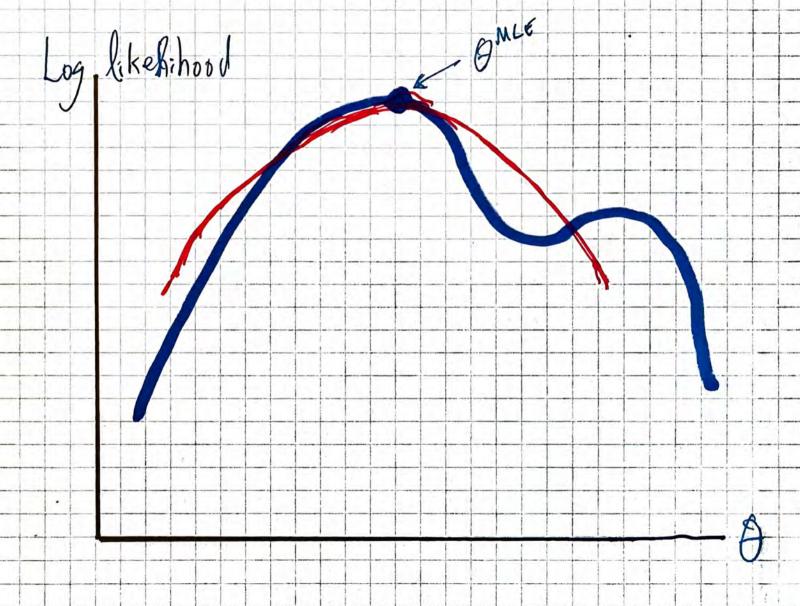
Relative likelihood

- The relative likelihood is defined by $\tilde{L}(\theta; x) = \frac{L(\theta; x)}{L(\hat{\theta}_{ML}; x)}$. In particular, $0 < \tilde{L}(\theta; x) < 1$.
- The following definitions give names to the first and second derivatives of the log-likelihood function:
 - Score function: $S(\theta; X) \equiv \frac{dl(\theta; x)}{d\theta}$
 - (Ordinary) Fisher information: $I(\theta; X) \equiv -\frac{d^2I(\theta; X)}{d\theta^2} = -\frac{dS(\theta; X)}{d\theta}$
 - Expected Fisher information: $\mathbb{E}(I(\theta_0; X))$, where the expectation is taken with respect to X (this implies that the expectation is integrated with against $f(X, \theta_0)$ at the true parameter value).
 - Observed Fisher information: $I(\hat{\theta}^{ML}; X^{1:n})$ (at the ML estimator)
- Asymptotic Normality of ML Estimator Suppose $\hat{\theta}^{ML}$ is a consistent estimator for the true parameter θ_0 , and the Fisher regularity conditions hold. Then,

$$\sqrt{n \cdot J(heta_0)}(\hat{ heta}^{ML} - heta_0)(0,1)$$

Wald statistics and confidence interval

- To test $H_0: \theta_0 = \tilde{\theta}_0$, the *Wald statistic* is defined by $\sqrt{I(\hat{\theta}^{ML}; X^{1:n})}(\hat{\theta}^{ML} \tilde{\theta}_0)$, which is asymptotically (standard) normal distributed.
- The bounds of the $\gamma \cdot 100\%$ Wald confidence interval are obtained as $\hat{\theta}^{ML} \pm z_{\frac{1+\gamma}{2}}(\hat{\theta}^{ML})$
- The Wald confidence interval is generally considered to be "too large" for a given γ .
- It is not invariant to non-linear transformations because the Wald statistic is based on a second order approximation of likelihood, and does not involve the likelihood function itself

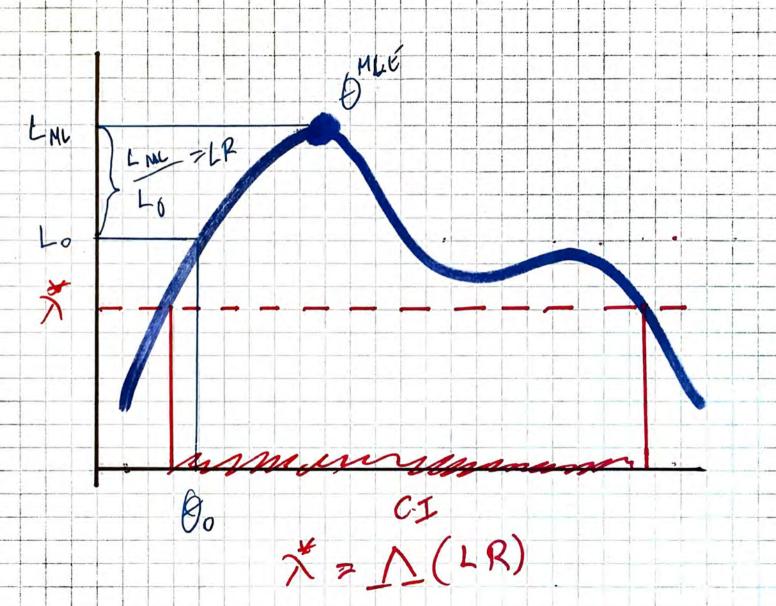


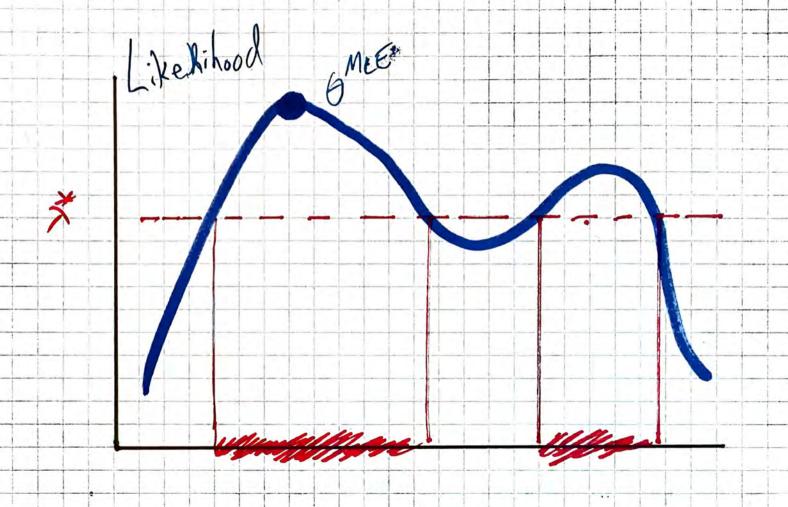
Likelihood ratio statistics

• The likelihood ratio statistic asymptotically follows a Chi-squared distribution with one degree of freedom:

$$-2(I(\hat{\theta}^{ML};X)-I(\theta_0;X))\equiv -2\tilde{I}(\theta_0;X)\chi^2(1).$$

- The set $\left\{ \theta : \tilde{l}(\theta; X) \ge -0.5\chi_{\gamma}^{2}(1) \right\}$ forms the $\gamma \cdot 100\%$ likelihood ratio (LR) confidence interval for θ , where $\chi_{\gamma}^{2}(1)$ is the corresponding quantile of the Chi-squared distribution with one degree of freedom.
- The likelihood ratio confidence interval defines a manifold.
 - Numerical methods are required to approximate its *boundary*
 - In one dimension, finding the boundary boils down to finding an even number (usually 2) of solutions to a one dimensional equation.
 - Computing these confidence intervals as the solution to the likelihood ratio statistic equaling a quantile of the Chi-squared distribution is also referred to as *test inversion*, because one seeks the one value of the likelihood ratio such that the inequality holds strictly.
- Wilk's theorem generalizes this to multiple dimensions





Reich and Judd idea

- Let's compute the likelihood level set of the Chi-squared quantile
- Yes, let's compute manifolds
- Today we stay with one dimensional manifolds
- Perhaps you will see the multidimensional version next year