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ABSTRACT
In this work, we introduce DGO, a new MATLAB toolbox for derivative-free global optimization. DGO

collects various deterministic derivative-free DIRECT-type algorithms for box-constrained, generally-
constrained, and problems with hidden constraints. Each sequential algorithm is implemented in two
different ways: using static and dynamic data structures for more efficient information storage and
organization. Furthermore, parallel schemes are applied to some promising algorithms within DGO.
The toolbox is equipped with a graphical user interface (GUI), which ensures the user-friendly use
of all functionalities available in DGO. Available features are demonstrated in detailed computational
studies using a created comprehensive library of global optimization problems. Additionally, eleven
classical engineering design problems are used to illustrate the potential of DGO to solve challenging
real-world problems.

1. Introduction
The DIRECT (DIviding RECTangles) algorithm [35] is a

well-known and widely used solution technique for
derivative-free global optimization problems. The DIRECT

algorithm is an extension to classical Lipschitz
optimization [57, 58, 64, 65, 71, 74], where the Lipschitz
constant is not assumed to be known. This property makes
DIRECT-type methods especially attractive for the solution of
various real-world optimization problems (see,
e.g., [1, 2, 7, 13, 15, 23, 46, 56, 60, 79] and the references
given therein). Moreover, a recent review and comparison
in [68] revealed that, on average, DIRECT-type algorithms’
performance is one of the best among all tested
state-of-the-art derivative-free global optimization
approaches. The DIRECT-type algorithms often outperform
algorithms belonging to other well-known classes, such as
Genetic [32], Simulated annealing [38], and Particle swarm
optimization [37].

While the original DIRECT addresses only
box-constrained optimization problems, various
DIRECT-type modifications and extensions have been
proposed. Based on the type of constraints, DIRECT-type
algorithms can be classified into four main categories:

• Box-constrained (see, e.g., [20, 21, 33, 23, 35, 44, 45,
46, 47, 60, 69] and the references given therein);

• Linearly-constrained/symmetric (see, e.g., [25, 55, 59,
60, 61] and the references given therein);

• Generally-constrained (see, e.g., [12, 19, 33, 40, 79]
and the references given therein);

• Containing hidden constraints (see, e.g., [22, 53, 77]
and the references given therein).
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MATLAB [49] is one of the most broadly used mathematical
computing environments in scientific and technical
computing. Many widely used implementations of the
original DIRECT algorithm (see, e.g., [5, 18, 22]) as well as
various later introduced DIRECT-type extensions (see,
e.g., [40, 43, 44, 60]), were developed using MATLAB.
Motivated by this, we developed a DIRECT-type global
optimization toolbox (DGO) within the MATLAB environment.
The toolbox is equipped with a graphical user interface
(GUI), which links to a DIRECTlib library and ensures the
user-friendly use of all functionalities available in DGO.

The first publicly available DIRECT implementations and
many others introduced later are typically using static data
structures for data storage and organization. Our recent
work [81] showed that the MATLAB implementation of the
same DIRECT-type algorithm based on dynamic data
structures often has a significant advantage over the
performance based on more straightforward static data
structures. Therefore, each algorithm in DGO is implemented
using both static and dynamic data structures. As various
applications can benefit from parallel computing, therefore,
the SPMD (Single Program Multiple Data) parallel scheme
(see [81] for more information on this) is used for the
parallel implementation of some approaches.
1.1. Contributions and structure

We summarize our main contributions below:
• We develop a new MATLAB toolbox for derivative-free

global optimization, consisting of 36 different DIRECT-
type algorithms (see Table 1 for the details).

• We implement each DIRECT-type algorithm using two
types of data structures, static and dynamic [28, 81].

• We design a user-friendly application with a graphical
user interface (GUI).

• We adapt the SPMD parallel scheme [81] for the
parallel implementation of selected DIRECT-type
algorithms.
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Problem type Algorithm name Description and References
DIRECT v4.0 Finkel’s implementation [18] of the original DIRECT [35] algorithm
DIRECT-restart Our implementation of the algorithm from [20] (based on Finkel’s DIRECT [18] implementation)
DIRECT-m Our implementation of the algorithm from [21] (based on Finkel’s DIRECT [18] implementation)
DIRECT-l Our implementation of the algorithm from [23] (based on Finkel’s DIRECT [18] implementation)
DIRECT-rev Our implementation of the algorithm from [33] (based on Finkel’s DIRECT [18] implementation)
DIRECT-a Our implementation of the algorithm from [42] (based on Finkel’s DIRECT [18] implementation)
DIRMIN Our implementation of the algorithm from [46] (based on Finkel’s DIRECT [18] implementation)
PLOR Our implementation of the algorithm from [52] (based on Finkel’s DIRECT [18] implementation)

Box glbSolve Björkman’s implementation [5] of the original DIRECT [35] algorithm
constrained glbSolve-sym, glbSolve-sym2 Our implementation of algorithms from [25] (based on Björkman’s glbSolve [5] implementation)

MrDIRECT, MrDIRECT075 Our implementation of algorithms from [44, 45] (based on Björkman’s glbSolve [5] implementation)
BIRECT Our implementation of the algorithm from [54] (based on Björkman’s glbSolve [5] implementation)
GB-DISIMPL-C, GB-DISIMPL-V Our implementation of algorithms from [55] (based on Björkman’s glbSolve [5] implementation)
Gb-BIRECT, BIRMIN, Gb-glbSolve Our implementation of algorithms from [56] (based on Björkman’s glbSolve [5] implementation)
DISIMPL-C, DISIMPL-V Our implementation of algorithms from [59] (based on Björkman’s glbSolve [5] implementation)
ADC Our implementation of the algorithm from [69] (based on Björkman’s glbSolve [5] implementation)
Aggressive DIRECT Our implementation of the algorithm from [1]
DIRECT-G, DIRECT-L, DIRECT-GL Our implementation of algorithms from [78]

Linearly
Lc-DISIMPL-C, Lc-DISIMPL-V Our implementation of algorithms from [60, 61] (based on Björkman’s glbSolve [5] implementation)constrained

Generally DIRECT-L1 Finkel’s implementation of the algorithm from [18]
constrained DIRECT-GLc, DIRECT-GLce, DIRECT-GLce-min Our implementation of algorithms from [79] (based on our DIRECT-GL [78] implementation)

DIRECT-NAS Finkel’s implementation of the algorithm from [22]
Hidden DIRECT-Barrier Our implementation of the algorithm from [22] (based on Finkel’s DIRECT [18] implementation)
constraints subDIRECT-Barrier Our implementation of the algorithm from [53] (based on Finkel’s DIRECT [18] implementation)

DIRECT-GLh Our implementation of the algorithm from [77] (based on our DIRECT-GL [78] implementation)

Table 1: Classification of DIRECT-type implementations (within the DGO toolbox) based on the type of problem constraints.

• We expand a library of test and engineering global
optimization problems (DIRECTlib) [80].

• Wemake MATLAB toolbox (DGO) open-source, i.e., freely
available to anyone [76].

The rest of the paper is organized as follows. Section 2
provides the classification of existing DIRECT-type
algorithms and describes in more detail algorithms
implemented within our toolbox. The parallel scheme used
in the implementation of some parallel algorithms is also
discussed here. DGO toolbox is introduced and described in
Section 3. The detailed computational study of the DGO

toolbox using classical global optimization test and
engineering design problems are presented in Sections 4
and 5, respectively. Finally, in Section 6, we conclude the
work and discuss the possible future directions.

2. Theoretical and algorithmic backgrounds
This section provides the classification of existing

DIRECT-type algorithms and describes in more detail
algorithms implemented within our DGO toolbox. For a
thorough review, we refer the reader to a recent survey [34].

The derivative-free DIRECT algorithm [35] is an efficient
deterministic technique to solve global optimization [31, 72,
82] problems subject to simple box-constraints

min
x∈D

f (x), (1)
where f ∶ ℝn → ℝ denotes the objective function and the
feasible region is an n-dimensional hyper-rectangle
D = [a,b] = {x ∈ ℝn ∶ aj ≤ xj ≤ bj , j = 1,… , n}. The
objective function f (x) is supposed to be
Lipschitz-continuous (with an unknown Lipschitz constant)

but can be nonlinear, non-differentiable, non-convex, and
multimodal.

At the initial iteration, the DIRECT algorithm normalizes
the feasible region D to be the unit hyper-cube D̄, and
refers to original space D only when evaluating the
objective function. Regardless of the dimension, the first
evaluation of the objective function is done at the midpoint
c1 of D̄. Then, the initial hyper-rectangle D̄1 is trisected
along all of its longest dimensions, as shown in Fig. 1. New
points are sampled, and the objective function is evaluated
at cj = 1∕3In ± c1, where In is identity matrix, and
j = 2,… , 2n + 1. Furthermore, D̄ trisected into 2n + 1
smaller non-overlapping hyper-rectangles, such that the
lowest function values are placed in the largest measured
hyper-rectangles.

The essential step in DIRECT is the identification of
potentially optimal (the most promising) hyper-rectangles
(POH) of the current partition, which at the iteration k is
defined as

k = {D̄k
i ∶ i ∈ Ik},

where D̄k
i = [aki ,b

k
i ] = {x ∈ ℝn ∶ 0 ≤ akij ≤ xj ≤ bkij ≤

1, j = 1,… , n,∀i ∈ Ik} and Ik is the index set identifying
the current partition k. The next partition k+1 is
obtained after the subdivision of the selected potentially
optimal hyper-rectangles from the current partition k.

The selection procedure at the initial step is trivial as
we have only one candidate D̄. To make the selection of
potentially optimal hyper-rectangles in the future iterations,
DIRECT assesses the goodness based on the lower bound
estimates for the objective function f over each
hyper-rectangle D̄k

i . The requirement of potential
optimality is stated formally in Definition 1.
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Figure 1: Visual representation of sampling and trisection techniques in DIRECT while solving two and three-dimensional Rosenbrock
test problem.

Definition 1. (Potentially optimal hyper-rectangle) Let cki
denote the center sampling point and �ki be a measure
(equivalently, sometimes called distance or size) of the
hyper-rectangle D̄k

i . Let " > 0 be a positive constant and
f̂ (ĉ) be the best currently found value of the objective
function. A hyper-rectangle D̄k

j , j ∈ Ik (where Ik is the
index set identifying the current partition) is said to be
potentially optimal if there exists some rate-of-change
(Lipschitz) constant L̃ > 0 such that

f (ckj ) − L̃�
k
j ≤ f (cki ) − L̃�

k
i , ∀i ∈ Ik, (2)

f (ckj ) − L̃�
k
j ≤ f̂ (ĉ) − "|f̂ (ĉ)|, (3)

where the measure of the hyper-rectangle D̄k
i is

�ki =
1
2
‖bki − aki ‖2. (4)

The hyper-rectangle Dk
j is potentially optimal if the

lower Lipschitz bound for the objective function computed
by the left-hand side of (2) is the smallest one with some
positive constant L̃ among the hyper-rectangles of the
current partition k. In (3), the parameter " is used to
protect from an excessive refinement of the local
minima [35, 55]. Authors obtained good results for "
values ranging from 10−3 to 10−7 in [35]. A geometrical
interpretation of the selection procedure is shown in Fig. 2.
Each subsequent iteration DIRECT performs a selection of
POHs, which are sampled, evaluated, and trisected. Almost
all DIRECT-type extensions and modifications follow the
same algorithmic framework, which is summarized
in Algorithm 1.
2.1. DIRECT-type algorithms for box-constrained

global optimization
Two broadly used public MATLAB implementations of the

original DIRECT algorithm are DIRECT v4.0 [18] and

Algorithm 1: Main steps of DIRECT-type
algorithms
1 Initialization. Normalize the search space D to be

the unit hyper-rectangle D̄, but refer to the original
space D when making function calls. Evaluate the
objective f at the center point c1. Set f̂ = f (c1),
ĉ = c1. Initialize algorithmic performance
measures, and stopping criteria.

2 while stopping criteria are not satisfied do
3 Selection. Identify the sets S of potentially

optimal hyper-rectangles (subregions of D̄).
4 Sampling. For each POH (D̄j ∈ S) sample and

evaluate the objective function at new domain
points. Update f̂ , ĉ, and algorithmic
performance measures.

5 Subdivision. Each POH (D̄j ∈ S) subdivide(trisect) and update the partitioned search
space information.

6 end
7 Return f̂ , ĉ, and performance measures.

glbSolve [5] (see Table 1). Both implementations use
vector-based static data memory management to store
information, contrary to a tree-structure used in the original
paper [35]. Interestingly, the performance (based on the
number of function evaluations) of different DIRECT

implementations using the same nine standard test
problems slightly differs [5]. The most significant
difference is how the selection of potentially optimal
hyper-rectangles (the lower convex hull, as shown in Fig. 2)
is implemented. Modified Graham’s scan algorithm [66] is
used for this in [5], but Lemma 2.3 [22] is used in [18].
Also, the numerical tolerances used in the implementations
play an essential role [5].
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Figure 2: Visualization of selected potentially optimal rectangles in the fourth iteration of the DIRECT algorithm solving two-
dimensional Rosenbrock test problem.

Many different DIRECT extensions have been suggested.
Most of them focused on improving the selection of POHs,
while others introduced new partitioning and sampling
strategies. The summary of all box-constrained proposals
considered in the DGO toolbox is given in Table 2. Most
algorithms are based on the trisection of n-dimensional
POHs, and just ADC, BIRECT, and both DISIMPL versions use
different partitioning strategies. Below we briefly review
the DIRECT-type approaches for box-constrained global
optimization implemented in the current release of the DGO

toolbox.
Adaptive diagonal curves (ADC) based algorithm was

introduced in [69]. Independently of the problem
dimension, the ADC algorithm evaluates the objective
function f (x) only at two vertices aki and bki of the main
diagonals of each hyper-rectangles D̄k

i . Additionally, a newtwo-phase technique balancing local and global information
usage has also been incorporated. When the ADC algorithm
performs a sufficient number of hyper-rectangle
subdivisions near the current best point, the two-phase
approach forces the new algorithm to switch to exploring a
larger hyper-rectangle that could contain better solutions.

BIRECT (BIsecting RECTangles) [54] is motivated by the
diagonal partitioning strategy [69, 70, 72]. The bisection is
more appropriate to the trisection because of the shape of
hyper-rectangles. Still, usual sampling strategies at the
center or the diagonal’s endpoints are not appealing for
bisection. In BIRECT, the objective function is evaluated at
two points on the diagonal equidistant between themselves
and a diagonal’s vertices. Such a sampling strategy entitles
the reuse of the sampling points in descendant
hyper-rectangles. Additionally, more comprehensive
information about the objective function is considered
compared to the central sampling strategy used in most
DIRECT-type algorithms.

In DISIMPL [59], instead of hyper-rectangles, simplicial
partitions are considered. At the first iteration, the
hyper-cube D̄ is partitioned into n! simplices by the
standard face-to-face simplicial division based on the
combinatorial vertex triangulation. After this, all simplices
share the diagonal of the feasible region and have equal
hyper-volume. In [59], we proposed two different sampling
strategies. Both are included in the DGO toolbox: i)
DISIMPL-C evaluating the objective function at the geometric
center of the simplex; ii) DISIMPL-V evaluating the objective
function on all unique vertices of the simplex. For
box-constrained problems, the number of initial simplices
increases speedily. Therefore, DISIMPL effectively can be
used only for small box-constrained problems. However,
the DISIMPL approach is auspicious (among all DIRECT-type
methods) for symmetric optimization problems [59, 60]
and problems with linear constraints [61].

In the DIRECT-restart algorithm [20], the authors
introduced an adaptive scheme for the " parameter.
Condition (3) is needed to stop the DIRECT from wasting
function evaluations on minor hyper-rectangles where only
a negligible improvement can be expected. The
DIRECT-restart algorithm starts with " = 0, and the same
value for " is maintained while improvement is achieved.
However, if five consecutive iterations have no
improvement in the best function value, the search may be
stagnated around a local optimum. Therefore, the
algorithm switches to " = 0.01 value, seeking to prevent an
excessive local search.

The authors of MrDIRECT [45] and MrDIRECT075 [41]
algorithms introduced three different levels to perform the
selection procedure:

1. At level 2, DIRECT is run as usual, with " = 10−5.
2. At level 1, the selection is limited to only 90% of D̄k

i
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in the partition k; 10% of the largest measure hyper-
rectangles, where the objective function f values are
worst, are ignored. A value of " = 10−7 is used.

3. At level 0, the selection is limited to only 10% of the
best hyper-rectangles from level 1. At this level, a
value of " = 0 is used.

Both algorithms cycle through these levels using
“W-cycle”: 21011012. The main difference between the
proposed algorithms is that MrDIRECT uses fixed " = 10−4
value at all levels, while MrDIRECT075 follows the rules
described above.

In [1], authors relaxed the criteria of selection of POHs
and proposed an aggressive version of the DIRECT algorithm.
Aggressive DIRECT’s main idea is to select and divide at
least one hyper-rectangle from each group of different
diameters (�ki ) having the lowest function value. Therefore,
using Aggressive DIRECT in the situation presented in Fig. 2,
a hyper-rectangle with the center point c3 would also be
selected and divided. The aggressive version performs
much more function evaluations per iteration compared to
other DIRECT-type methods. From the optimization point of
view, such an approach seems less favorable since it
“wastes” function evaluations by exploring unnecessary
(non-potentially optimal) hyper-rectangles. However, such
a strategy is much more appealing in a parallel
environment, as was shown in [26, 27, 29, 86].

In [23] the algorithm named DIRECT-l was proposed. In
most of DIRECT-type algorithms, the size of the
hyper-rectangle is measured by a half-length of a diagonal
(see (4)). In DIRECT-l, the measure of a hyper-rectangle is
evaluated by the length of its longest side . Such a measure
corresponds to the infinity norm and allows the DIRECT-l

algorithm to group more hyper-rectangles with the same
measure. Thus, there are fewer distinct measures, and
therefore, fewer potentially optimal hyper-rectangles are
selected. Moreover, with DIRECT-l at most one
hyper-rectangle selected from each group, even if there is
more than one potentially optimal hyper-rectangle in the
same group. Such a strategy allows a reduction in the
number of divisions within a group.

In [21], the authors concluded that the original DIRECT
algorithm is sensitive to the objective function’s additive
scaling. Additionally, the algorithm does not operate well
when the values of the objective function are large enough.
To overcome this, the authors proposed a scaling of
function values by subtracting the median of the collected
function values. DIRECT-m replaces the equation (3) in
Definition 1 to:

f (cj) − L̃�j ≤ f̂ (ĉ) − "|f̂ (ĉ) − f̂median|. (5)
Similarly, in [42], the authors extended the same idea in
DIRECT-a to reduce the objective function’s additive scaling.
At each iteration, instead of the median value (f̂median),
authors proposed to use the average value (f̂ average):

f (cj) − L̃�j ≤ f̂ (ĉ) − "|f̂ (ĉ) − f̂ average|. (6)

Another extension of the DIRECT algorithm was
proposed in [25]. Here, the authors introduced
glbSolve-sym (glbSolve-sym2) as DIRECT extensions for
symmetric Lipschitz continuous functions. When solving
symmetric optimization problems, there exist equivalent
subregions in the hyper-rectangle. To avoid exploration
over equivalent subregions, for all newly generated
hyper-rectangles, the algorithm determines which
hyper-rectangles can be safely discarded (because of the
problem’s symmetrical nature) from the further search.

In the PLOR algorithm [52], the set of all Lipschitz
constants (here with the set of potentially optimal
hyper-rectangles) is reduced to just two: with the maximal
diameter (�kmax) and the minimal one (�kmin). In such a way,
the PLOR approach is independent of any user-defined
parameters and balances equally local and global searches
during the optimization process.

In our recent DIRECT extension, DIRECT-GL [78], we
introduced a new approach to identifying the extended set
of potentially optimal hyper-rectangles. Here, using a novel
two-step-based strategy, the set of the best hyper-rectangles
is enlarged by adding more medium-measured
hyper-rectangles with the smallest function value at their
centers and, additionally, closest to the current minimum
point. The first step of the selection procedure forces the
DIRECT-GL algorithm to work more globally (compared to
the selection used in DIRECT [35]). In contrast, the second
step assures a faster and broader examination around the
current minimum point. The original DIRECT-GL version
performs a selection of potentially optimal hyper-rectangles
in each iteration twice [78], and the algorithm separately
handles the found independent sets G (using Definition 2
from [78] - DIRECT-G) and L (using Definition 3 from [78] -
DIRECT-L). Following the same trend from [81], the version
used in this paper slightly differs compared to [78]. In the
current version of DIRECT-GL, identifying these two sets is
performed in succession, and the unique union of these two
sets (S = G ∪ L) is used in Algorithm 1, Line 3. This
modification was introduced, aiming to reduce the data
dependency in the algorithm seeking a better
parallelization.

Several different globally biased (Gb-) versions of
DIRECT-type algorithms were introduced and
investigated [55, 56]. Proposed approaches are primarily
oriented for solving multidimensional optimization
problems and contain a phase that constrains itself to large
subregions. The introduced step performs until a sufficient
number of divisions of hyper-rectangles near the current
best point is done. Once those subdivisions around the
current best minima point are performed, the neighborhood
contains only small measure hyper-rectangles and all larger
ones located far away from it. Therefore, the two-phase
strategy makes the DIRECT-type algorithms examine larger
hyper-rectangles and return to the general phase only when
an improved minimum is obtained. Within this toolbox, the
proposed globally biased strategy is combined with
glbSolve, BIRECT, DISIMPL-C, and DISIMPL-V algorithmic
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frameworks.
Finally, three different hybridized DIRECT-type

algorithms are proposed (DIRECT-rev [33], DIRMIN [46],
BIRMIN [56]). In our implementation, all algorithms are
combined with the same local search routine – fmincon.
The DIRMIN algorithm suggested running a local search
starting from the midpoint of every potentially optimal
rectangle. However, such an approach likely generates
more local searches than necessary, as many of the starting
points will converge to the same local optimum. The other
authors of the DIRECT-rev and BIRMIN algorithms tried to
minimize the usage of local searches. They suggested using
fmincon only when some improvement in the best current
solution is obtained. The authors in the [33] additionally
incorporated the following two enhancements. First, in the
DIRECT-rev algorithm, selected hyper-rectangles are
trisected only on one longest side. Second, only one
potentially optimal hyper-rectangle is selected if several
equally good exist (the same diameter and objective values)
in Definition 1.
2.2. DIRECT-type algorithms for generally

constrained global optimization
The original DIRECT algorithm [35] solves optimization

problems only with bounds on the variables. In this
subsection, we consider a generally constrained global
optimization problem of the form:

min
x∈D

f (x)

s.t. g(x) ≤ 0,
h(x) = 0,

(7)

where f ∶ ℝn → ℝ, g ∶ ℝn → ℝm, h ∶ ℝn → ℝr are
(possibly nonlinear) continuous functions. The feasible
region is a nonempty set, consisting of points that satisfy all
constraints, i.e., Dfeas = D ∩ Ω ≠ ∅, where
Ω = {x ∈ ℝn ∶ g(x) ≤ 0,h(x) = 0}. As for the
box-constrained problems, it is also assumed that the
objective and all constraint functions are
Lipschitz-continuous (with unknown Lipschitz constants)
but can be nonlinear, non-differentiable, non-convex, and
multimodal.

The first DIRECT-type algorithm for problems with
general constraints was introduced in [33]. Finkel in [19]
investigated three different constraint handling schemes
within the DIRECT framework. The comparison revealed
various disadvantages of the initial proposals. Recently,
various new promising extensions for general global
optimization problems were introduced (see,
e.g., [3, 12, 40, 62, 63, 79] and the references given
therein). Below we briefly review the approaches
implemented in the current release of the DGO toolbox (see
Table 1).

An exact L1 penalty approach DIRECT-L1 [18] is
transforming the original constrained problem (7) in the

form:

min
x∈D

f (x) +
m
∑

i=1
max{
igi(x), 0} +

r
∑

i=1

i+m|ℎi(x)|, (8)

where 
i are penalty parameters. Experiments in [19]
showed promising results of this approach. Nevertheless,
the biggest drawback is the users’ requirement to set
penalty parameters for each constraint function manually.
In practice, choosing penalty parameters is an essential task
and can significantly impact the performance of the
algorithm [19, 40, 60, 61, 79].

In [79], we have introduced a new DIRECT-type
extension based on the DIRECT-GL [78] algorithm. The new
DIRECT-GLce algorithm uses an auxiliary function approach
that combines information on the objective and constraint
functions and does not require any penalty parameters. The
DIRECT-GLce algorithm works in two phases, where during
the first phase, the algorithm finds feasible points and in the
second phase improves a feasible solution. A separate step
for handling infeasible initial points is beneficial when the
feasible region is small compared to the entire search space.
In the first phase, DIRECT-GLce samples the search space and
minimizes the sum of constraint violations, i.e.:

min
x∈D

'(x), (9)
where

'(x) =
m
∑

i=1
max{gi(x), 0} +

r
∑

i=1
|ℎi(x)|. (10)

The algorithm works in this phase until at least one feasible
point (x ∈ Dfeas"'

) is found, where

Dfeas"'
= {x ∶ 0 ≤ '(x) ≤ "', x ∈ D}. (11)

When feasible points are located, the effort is switched for
improving the feasible solutions. In the second phase,
DIRECT-GLce uses the transformed problem (7):

min
x∈D

f (x) + �̃(x, f̂ feas),

�̃(x, f̂ feas) =
⎧

⎪

⎨

⎪

⎩

0, x ∈ Dfeas"'
0, x ∈ Dinf"cons
'(x) + Δ, otherwise,

(12)

where
Dinf"cons = {x ∶ f (x) ≤ f̂ feas, "' < '(x) ≤ "cons, x ∈ D},

(13)
and "cons is a small tolerance for constraint function sum,
which automatically varies during the optimization process.
An auxiliary function �(x, f̂ feas) depends on the sum of the
constraint functions and the parameter Δ = |f (x) − f̂ feas|,
which is equal to the absolute value of the difference
between the best feasible function value found so far (f̂ feas)
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MrDIRECT Performs the selection of POH on three different
sets (“levels”). MrDIRECT075 uses different "
values at each level.MrDIRECT075

Gb-glbSolve Uses an adaptive scheme for balancing the local
and global search.
Local minimization procedure fmincon is
embedded into the BIRMIN algorithm.Gb-BIRECT
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Uses an adaptive scheme for balancing the local
and global search.
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midpoints of
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and global search.
GB-DISIMPL-V Samples at

vertices of the
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Table 2: Summary of the main algorithmic characteristics of DIRECT-type methods for box constrained global optimization
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and the objective value at an infeasible center point. The
primary purpose of the parameter Δ is to forbid the
convergence of the algorithm to infeasible regions by
penalizing the objective value obtained at infeasible points.
In such a way, the formulation (12) does not require any
penalty parameters and determines the convergence of the
algorithm to a feasible solution. The value of �(x, f̂ feas) is
updated when a smaller value of f̂ feas is found. This way,
the new DIRECT-GLce algorithm divides more
hyper-rectangles with center points lying close to the
boundaries of the feasible region, i.e., the potential
solution.

The proposed DIRECT-GLce algorithm has two extensions:
The first one is DIRECT-GLc (see Table 1), which is a simplified
version of DIRECT-GLce and instead of (12) minimizing the
transformed problem:

min
x∈D

f (x) + �(x, f̂ feas),

�(x, f̂ feas) =
{

0, x ∈ Dfeas"'
'(x) + Δ, otherwise,

(14)

Experimental investigation in [79] showed that the
algorithm has the most wins among the algorithms used in
the comparison, and it can solve about 50% of the problems
with the highest efficiency. Unfortunately, DIRECT-GLc

algorithm’s efficiency decreasing, solving more challenging
problems (with nonlinear constraints and n ≥ 4), where
DIRECT-GLce is significantly better, so DIRECT-GLc should be
used only for simpler optimization problems (with linear
constraints and n ≤ 4). The second extension of the
DIRECT-GLce algorithm is DIRECT-GLce-min, where the
algorithm is incorporated with MATLAB optimization solver
fmincon. In [79] we observed, that by embedding a local
minimization procedure into DIRECT-GLce-min (see Table 1)
significantly reduces the total number of function
evaluations compared to DIRECT-GLce and can significantly
improve the quality of the final solution.
2.2.1. DIRECT-type algorithms for linearly constrained

global optimization
Let us note that all previously described algorithms for

a generally constrained problem can be directly applied to
solve linearly constrained problems. This section
emphasizes only applicable to problems with linear
constraints, but not general ones.

In [61], we have extended the original simplicial
partitioning based DISIMPL algorithm [59, 60] for such
problems with linear constraints. Simplices may cover a
search space defined by linear constraints. Therefore a
simplicial approach may tackle such linear constraints in a
very subtle way. In such a way, the new algorithms
(Lc-DISIMPL-C and Lc-DISIMPL-V) [61] perform the search
only in the feasible region, in contrast to other DIRECT-type
approaches. Nevertheless, the authors in [61] showed that
the feasible region’s calculation requires solving 2n + m
linear n-dimensional systems, and such operation is
exponential in complexity. Therefore, the proposed

algorithm can be effectively used for relatively small n and
m values.
2.3. DIRECT-type algorithms for problems with

hidden constraints
In this subsection, we consider the solution to the

constrained global optimization problem:
min

x∈Dfeas
f (x), (15)

where f ∶ ℝn → ℝ ∪ {∞} denotes an extended
real-valued, most likely “black-box” objective function. A
priori an unknown feasible region Dfeas is defined as a
non-empty set

Dfeas = D ∩Dhidden ≠ ∅,

and Dhidden are not given by explicit formulae hidden
constraints. Such a problem formulation leads to a complex
and analytically undefined feasible region.

Problems with hidden constraints often occur when the
objective function is not everywhere defined [9]. Such
situations arise, e.g., when computations within the
objective function fail [7, 10, 14, 75], or when the
evaluation of the objective function itself tests for
feasibility conditions that are not given by closed-form
inequalities [8, 39]. In the same vein as in [9], we call these
internal to f constraints as “hidden constraints,” and
assume that f fails to return a value when evaluated at
x ∉ Dfeas.

One of the first proposed modifications for such
problems was the barrier method (DIRECT-Barrier) [22].
The DIRECT-Barrier algorithm is relatively straightforward
and assigns a predefined high value to infeasible
hyper-rectangles. However, such an approach produces
other well-known problems discussed and reviewed by a
few authors [19, 60, 79]. The main issue is that the barrier
approach makes exploration around the edges of feasibility
very slow. Significant penalties used by the barrier method
ensure that no infeasible hyper-rectangle can be potentially
optimal as long as there is the same measure
hyper-rectangle with the feasible center midpoint. For
DIRECT-Barrier, the priority is the examination of regions
where feasible points are found already. Another critical
issue concluded in [19] is that hyper-rectangles, even with
the sizeable feasible region, will not be explored in a
reasonable number of function evaluations. To sum up, the
barrier approach is not the best fit for the problem (15).

The second DIRECT-type approach for hidden constraints
is based on Neighbourhood Assignment Strategy
(NAS) [22]. DIRECT-NAS’s main idea is to assign the value at
infeasible point xinf ∉ Dfeas relative to the objective values
attained in the feasible points from the neighborhood of
xinf . DIRECT-NAS iterates over all infeasible midpoints by
creating surrounding hyper-rectangles around them by
keeping the same center points in every iteration. These
hyper-rectangles are increased by doubling the length of
each dimension. If inside the enlarged region exists more
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than one feasible center point DIRECT-NAS, assigns the
smallest function value to the infeasible midpoint plus a
small epsilon f (xfeas) + �f (xfeas), where � = 10−6 was
proposed to use. If inside the enlarged region does not exist
any feasible points, DIRECT-NAS assigns the largest objective
function value found so far fmax + �, where � = 1 was
proposed to use. Such a strategy does not allow the
DIRECT-NAS algorithm to move beyond the feasible region by
punishing infeasible midpoints with large values. However,
the algorithm’s principal concern is the slow convergence,
which is caused by many additional calculations.

Another recent idea to handle hidden constraints within
the DIRECT framework is to use a subdividing step for
infeasible hyper-rectangles. The proposed
subDIRECT-Barrier [53] incorporates techniques from the
previously mentioned barrier approach. Specifically, if the
center point is identified as infeasible, then
subDIRECT-Barrier assigns a considerable penalty value to
it. An extra subdividing step is performed only in specific
iterations, during which all infeasible hyper-rectangles are
identified as potentially optimal and subdivided together
with others POHs. The sub-dividing step can decompose
the boundaries of the hidden constraints quite efficiently.
Still, subDIRECT-Barrier has several apparent drawbacks.
The algorithm performance strongly depends on when
(how often) the subdividing step is performed. Therefore
the number of new subdivisions can grow drastically,
especially for higher dimensionality problems.

The most recent version for problems with hidden
constraints DIRECT-GLh [77] is based on our previous
DIRECT-GL [78] algorithm. For hyper-rectangles with
infeasible midpoints, DIRECT-GLh assigns a value depending
on how far the center is from the current best minima xmin.
Such a technique does not require any additional
computation. Simultaneously, distances from the xmin point
are already known, as they are used to selecting potential
optimal hyper-rectangle schemes adapted from
DIRECT-GL [78]. In such a way, DIRECT-GLh does not punish
infeasible hyper-rectangles with large values (as was
suggested by previous proposals), which are close to the
xmin and assures a faster and more comprehensive
examination of hidden regions. Moreover, this approach
employs additional procedures, which use an independent
phase to efficiently handle infeasible initial points (see [77]
for experimental justification).
2.4. Implementation of parallel DIRECT-type

algorithms
We use the MathWorks official extension to the MATLAB

language – the Parallel Computing Toolbox [49]. The
Parallel Computing Toolbox provides several parallel
programming paradigms [48], like threads, parallel
for-loops and SPMD (Single Program Multiple Data).
In [81], we introduced three parallel implementations of the
DIRECT-GLce algorithm within MATLAB. We concluded that the
version based on MATLAB spmd is the most efficient and
significantly outperforms other implementations based on

parfor-loops.
Therefore, in the DGO toolbox for parallel

implementation, we used the most efficient parallel scheme,
based on [81]. Our implementations are based on the SPMD

functionality within the Parallel Computing Toolbox,
which is used to allocate the work across multiple labs in
the MATLAB software environment. Each lab stores
information on its main memory block and data is
exchanged through the message passing over the
interconnection network [49]. The master-slave paradigm
is used to implement dynamic load balancing. The
flowchart of the parallel algorithmic framework is
illustrated in Fig. 3. One lab is the master, denoted by M ,
and the other labs are slaves Wi, i = 1,… , � − 1. The
master also acts as a slave. The master lab decides which
hyper-rectangles will be sampled and subdivided and how
these tasks will be distributed among all available slave
labs. Additionally, the master lab is responsible for
stopping the algorithm. The master lab also performs load
balancing by distributing the selected hyper-rectangles to
the rest of the slave labs. When the slave labs
Wi, i = 1,… , � − 1 receive tasks from the master lab, each
performs the Sampling and Subdivision steps sequentially.
Then finds a local set of potential optimal hyper-rectangles
and sends local data for the further global Selection step
back to the master lab and becomes idle until further
instructions are received. Suppose any of the termination
conditions are satisfied. In that case, all slave labs receive
the notification that the master lab has become inactive, and
the slave labs will terminate themselves without further
messaging. We refer to [81] for a more detailed description
and analysis of parallel schemes.

3. DGO toolbox
The sequential and parallel implementation of DIRECT-

type algorithms presented in the previous sections forms the
basis for our DGO toolbox. The toolbox consists of two main
parts:

• DGO.mltbx - MATLAB toolbox package containing
implementations of DIRECT-type algorithms (from
Table 1), including an extensive DIRECTlib library of
the box and generally constrained test and practical
engineering global optimization problems, often
used for benchmarking DIRECT-type algorithms.

• DGO.mlappinstall - A single MATLAB app installer
file containing everything necessary to install and
run the DGO toolbox, including a graphical user
interface (GUI), a convenient way to use it.

3.1. Graphical user interface
After installation (using DGO.mlappinstall), DGO can

be launched from MATLAB APPS, located in the toolbar. The
graphical interface of the main DGO toolbox window is
shown in Fig. 4. Application is divided into three main
parts: i) selection of the type of test problem from the
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Figure 3: Flowchart diagram for the parallel implementations of selected DIRECT-type
algorithms.

DIRECTlib; ii) optimization problem setup and algorithmic
options; iii) quote of the DIRECT-type algorithm and the type
of implementation.

The first step is to specify the objective and constraint
functions, loading them from the integrated DIRECTlib

library or selecting them from the other problem. Examples
of the structure needed are present. All test problems from
the DIRECTlib library have up to three key features: known
globally optimal solutions, a complete description of the
problem including objective and constraint functions (if
any), and problem visualization for two-dimensional
problems. In total, DIRECTlib contains 119 test problems:
45 are bound-constrained, 35 linearly constrained, 39 with
nonlinear constraints, and 11 are practical engineering
problems. After selecting the optimization problem, the
second step is to set up the bound constraints for each
variable. At the first step, the user needs to specify the
algorithm and the type of implementation. Two
implementations are based on different data structures
(static and dynamic), and the third is a parallel version of
the algorithm. For simplicity, some toolbox options are set
to default values and not displayed in the GUI but can be
changed in the toolbox settings. After the termination
(when any of the stopping conditions are met), the Results
part displays the final solution and performance metrics.
Additionally, the convergence process is shown in the
Convergence status part.
3.2. MATLAB toolbox

After installation of the MATLAB toolbox (using
DGO.mltbx), all implemented DIRECT-type algorithms and

test problems can be freely accessed in the command
window of MATLAB. Unlike using GUI, algorithms from the
command line require more programming knowledge, and
configurations must be done manually. All algorithms can
be run using the same style and syntax:

[f_min, x_min, history] = algorithm(P, D, OPTS);

The left side of the equation specifies the output
parameters. After the termination, the algorithm returns the
best objective value (f_min), solution point (x_min), and
history of the algorithmic performance during all iterations
(history). The information presented here is: the iteration
number, the total number of objective function evaluations,
the current minimal value, and the total execution time.

On the right side, the algorithm name (algorithm) and at
least two input parameters are needed to specify. The first
one is the problem structure (P) consisting of an objective
function:

P.f = ’objfun’;
If the problem involves additional constraints, they also must
be specified:

P.constraint = ’confun’;

The second necessary parameter is the bound constraints for
each dimension/variable:

D (i,1) ≤ x_i ≤ D (i,2), i = 1...n;

The last parameter is an optional variable (OPTS) to customize
the default settings.
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Figure 4: The graphical user interface (GUI) of DGO toolbox.

4. Experimental investigation of DIRECT-type
algorithms in the DGO toolbox
This section presents the performance evaluation of

DIRECT-type algorithms on test and engineering design
problems from the DIRECTlib [80] library. DIRECTlib

consists of the box and generally constrained test and
practical engineering global optimization problems for
various DIRECT-type algorithms benchmarking. We
distinguish the following classes (types) of global
optimization problems:

• BC – Box-Constrained problems;
• LC – Linearly-Constrained problems;
• GC – Generally-Constrained problems.

A summary of all optimization problems in DIRECTlib and
their properties is given in Appendix A, Table 12. We note
that some test problems have several variants, e.g.,
Bohachevsky, Shekel, and some of them like, Alpine,
Csendes, Griewank, can be used by changing the
dimensionality of the problem. We used the following
dimensions in our experimental setting: n = 2, 5, 10, 15.

All computations were carried out on a 6-core
computer with 8th Generation Intel R CoreTM i7-8750H @
2.20GHz Processor, 16 GB of RAM, and MATLAB R2020b.
Performance analysis was carried out using physical cores
only and disabled hyper-threading.

All global minima f ∗ are known for all test problems.
Therefore, the investigated algorithms were stopped when it
was generated such the point x with whom the percent error

pe = 100% ×

{f (x)−f∗
|f∗| , f ∗ ≠ 0,

f (x), f ∗ = 0,
(16)

is smaller than the tolerance value "pe, i.e., pe ≤ "pe.Additionally, we stopped the tested algorithms when the
number of function evaluations exceeded the prescribed
maximal limit (equal to 2 × 106) or took more than twelve
hours. In any of these situations, the final result is set to
2 × 106 to further process results. Two different values for
"pe were considered: 10−2, 10−8. All algorithms were
tested using the "pe = 10−2 value. Moreover, algorithms
containing additional schemes to speed up the solution’s
refinement have been tested using the "pe = 10−8 value.Additionally, we analyze and compare the algorithms’
performance by applying the performance profiles [17] to
the convergence test (16). Performance profiles are broadly
used for benchmarking and evaluating different solvers’
performance when running on a large set of problems.
Benchmark results are generated by running a specific
algorithm � (from a group of algorithms  under
consideration) for each problem p from a benchmark set 
and recording the performance measure of interest. Such
measures could be, e.g., the number of function
evaluations, the computation time, the number of iterations,
or the memory used. In our case, we used a number of
function evaluations and the execution (computation) time
criteria.

Performance profiles asses the overall performance of
solvers using a performance ratio (�p,�)

�p,� =
t�,p

min{t�,p ∶ p ∈ }
, (17)

where t�,p > 0 is the number of functions evaluations (or the
execution time) required to solve problem p by the algorithm
� and min{t�,p ∶ � ∈ } is the smallest number of function
evaluations (or the lowest execution time) by an algorithm
on this problem. Then, the performance profile (��(�)) ofan algorithm � ∈  is given by the cumulative distribution
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Algorithm Avg. # local Failed Average results Average results (n ≤ 4) Average results (n ≥ 5) Median results
searches feval. time iter. feval. time iter. feval. time iter. feval. time iter.

DIRECT − 18∕81 502, 101 263.29 1, 586 143, 290 215.98 2, 549 739, 073 299.67 989 13, 285 0.78 52

DIRECT-restart − 23∕81 606, 569 5, 518.48 157 259, 643 2, 989.24 83 838, 163 7, 231.22 203 12, 861 1.02 48

DIRECT-m − 28∕81 771, 018 334.42 2, 380 119, 777 371.78 2, 463 1, 198, 363 292.92 2, 328 32, 859 3.20 136

DIRECT-l − 23∕81 609, 628 4, 281.41 64, 431 130, 252 921.76 21, 834 924, 655 6, 494.21 90, 841 6, 903 15.44 454

DIRECT-rev 3 8∕81 217, 082 472.69 3, 751 64, 954 423.54 3, 842 317, 752 513.42 3, 694 597 0.12 13

DIRECT-a − 41∕81 1, 020, 023 830.73 4, 648 263, 114 667.48 4, 264 1, 519, 178 910.06 4, 886 2, 000, 000 285.42 181

DIRMIN 745 6∕81 179, 687 23.61 71 65, 011 22.03 89 255, 902 25.11 60 366 0.06 2

PLOR − 29∕81 726, 480 2, 458.05 54, 604 266, 980 2, 092.23 37, 747 991, 193 2, 628.55 65, 055 2, 981 0.71 359

glbSolve − 27∕81 699, 262 472.42 2, 866 130, 403 324.49 2, 540 1, 073, 122 550.10 3, 068 13, 951 0.94 52

glbSolve-sym − 34∕81 875, 499 3, 607.52 9, 420 452, 682 1, 246.74 10, 092 1, 158, 529 5, 057.67 9, 003 81, 777 400.90 251

glbSolve-sym2 − 38∕81 943, 034 6, 388.08 8, 802 651, 078 1, 766.70 10, 591 1, 144, 618 9, 327.52 7, 693 199, 221 889.46 458

MrDIRECT − 15∕81 433, 889 111.58 1, 672 70, 799 8.76 362 677, 405 180.30 2, 500 8, 237 0.45 71

MrDIRECT075 − 14∕81 428, 846 206.14 3, 500 67, 508 18.10 504 666, 181 329.29 5, 357 6, 055 0.49 93

BIRECT − 10∕81 279, 471 1, 919.75 6, 830 65, 938 884.88 2, 643 420, 224 2, 309.96 9, 427 2, 370 1.28 72

GB-DISIMPL-C − 46∕81 1, 156, 420 3, 906.25 11, 888 234, 005 1, 887.82 15, 642 1, 763, 557 5, 103.07 9, 561 2, 000, 000 138.44 25

GB-DISIMPL-V − 36∕81 898, 337 19, 858.76 2, 110 74, 547 2, 111.40 1, 884 1, 437, 319 30, 614.41 2, 249 66, 257 4, 298.97 40

Gb-BIRECT − 12∕81 344, 351 2, 406.69 19, 318 68, 649 764.49 7, 685 525, 760 2, 810.85 26, 529 4, 994 1.56 139

BIRMIN 1 5∕81 125, 583 2, 581.75 10, 659 64, 826 1, 387.25 6, 415 166, 578 3, 390.13 13, 290 338 0.14 22

Gb-glbSolve − 26∕81 688, 955 653.24 7, 889 132, 889 1, 024.89 15, 002 1, 054, 383 414.98 3, 479 22, 541 2.39 69

DISIMPL-C − 46∕81 1, 149, 469 4, 257.54 11, 953 219, 423 1, 917.73 13, 213 1, 720, 508 5, 720.91 11, 171 2, 000, 000 126.36 23

DISIMPL-V − 34∕81 844, 074 18, 265.14 710 67, 151 1, 487.40 422 1, 352, 377 28, 374.84 888 21, 828 667.34 26

ADC − 32∕81 857, 396 4, 630.86 20, 450 95, 110 1, 449.71 8, 710 1, 357, 152 6, 314.59 27, 728 53, 375 27.58 445

Aggressive DIRECT − 14∕81 475, 259 20.89 96 167, 352 11.06 87 678, 386 27.55 101 65, 253 2.14 45

DIRECT-G − 10∕81 310, 712 45.35 355 82, 249 15.68 301 461, 360 65.04 389 11, 103 0.45 52

DIRECT-L − 16∕81 430, 980 115.71 623 66, 776 38.69 352 670, 089 167.87 791 10, 209 0.52 51

DIRECT-GL − 3∕81 152, 508 11.73 100 9, 273 0.66 47 246, 098 18.96 133 7, 737 0.32 37

Table 3: The performance of algorithms from DGO using the number of function evaluations (feval.), the total execution time
in seconds (time), and the total number of iterations (iter.) criteria on a set of box-constrained problems (from DIRECTlib)

when "pe = 10−2 value in stopping condition (16) was used.

function for the performance ratio
��(�) =

1
||

size{p ∈  ∶ �p,� ≤ �}, � ≥ 1, (18)
where || is the cardinality of  . Thus, ��(�) is the
probability for an algorithm � ∈  that a performance ratio
�p,� for each p ∈  is within a factor � of the best possible
ratio.

The performance profiles seek to capture how well the
certain algorithm � performs compared to other algorithms
from  on the set of problems from  . In particular, ��(1)gives the fraction of the problems in  for which algorithm
� is the winner, i.e., the best according to the �p,� criterion.In general, algorithms with high values for ��(�) are
preferable [17, 79].
4.1. Comparison of DIRECT-type algorithms for box

constrained optimization
In Table 3, we summarize experimental results when

"pe = 10−2 was used. The smallest number of unsolved
problems is achieved using DIRECT-GL (3∕81), while the
second-best algorithm is BIRMIN (5∕81), a hybrid version
and enriched with the local search subroutine fmincon. In
column ‘Avg. # local searches’ we report the average
number of local searches performed by each hybridized
algorithm. Hybridization with fmincon allows solving more

problems compared to, e.g., the globally biased version
Gb-BIRECT (12∕81). Among traditional DIRECT-type
algorithms, the second-best position share BIRECT and
DIRECT-G. Both algorithms failed to solve (10∕81) problems.

Furthermore, hybridization allows significantly
reducing the total number of function evaluations (see
Average results andMedian results columns). Among the
traditional algorithms, the BIRECT and PLOR were the most
effective algorithms based on the median number of
function evaluations (see Median results column).
However, for PLOR, such performance needs to be
interpreted correctly. As PLOR restricts POH set to only two
hyper-rectangles per iteration, a lower number of function
evaluations are required to get closer to the solution for
simpler (low-dimensional) problems. However, looking at
the average number of function evaluations, even restricted
to the simplest subset of problems (see Average results
(n ≤ 4)), PLOR performance is among the worst. PLOR has
failed on a larger number of simpler test problems
compared to other approaches. In contrast, DIRECT-GL is
only in a ninth-place based on the median number of
function evaluation criteria, but is the only algorithm that
solves all simpler (n ≤ 4) problems and is the best
performing algorithm, including hybridized versions.
Moreover, on average, DIRECT-GL required approximately
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Figure 5: Performance profiles on [1, 10000] of DIRECT-type algorithms from DGO toolbox on the whole set of box-constrained
optimization problems from DIRECTlib when "pe = 10−2 value in (16) was used.

84% percent fewer evaluations of the objective function
than the second-best, BIRMIN algorithm, among all
traditional DIRECT-type algorithms on a class of more
challenging problems (see Average results (n ≥ 5)). Not
surprisingly, within this class, the hybridized BIRMIN

algorithm delivers the best average performance.
Compared with the second-best DIRECT-type algorithm,
DIRECT-GL, BIRMIN requires approximately 32% percent
fewer evaluations.

Looking at the execution time (time), DIRECT-GL and
Aggressive DIRECT are the best among all traditional
algorithms. Aggressive DIRECT does not have a traditional
POH selection procedure. Instead, the algorithm selects at
least one candidate from each group of different
hyper-rectangles. Therefore, the number of selected
hyper-rectangles per iteration is larger, especially for higher
dimensionality test problems. Consequently, the number of
iterations (iter.) using Aggressive DIRECT is among the
smallest. In overall, DIRECT-GL showed the most promising
among all tested traditional DIRECT-type algorithms, while
simplicial partition-based algorithms (various DISIMPL-C

variations) are not appealing for box-constrained problems.
The performance profiles on the interval [1, 10000] of

all algorithms are shown in Fig. 5. Again, the performance
profiles confirm that the hybridized algorithms (enriched
with fmincon procedure) are more efficient than traditional

DIRECT-type approaches. The DIRMIN algorithm has the most
wins and can solve about 35% of problems with the highest
efficiency, i.e., using the minor function evaluation (see the
left side of Fig. 5). Nevertheless, when the performance
ratio increases, the DIRECT-GL algorithm starts
outperforming all algorithms, including hybridized ones.
Although DIRECT-GL delivers the best overall performance
(based on function evaluations), performance profiles in
Fig. 5 reveal that other DIRECT-type extensions (PLOR,
DIRECT-l, BIRECT, Gb-BIRECT) have more wins than
DIRECT-GL. Moreover, they can solve about 60% of problems
(mainly lower conditionality) using a smaller number of
function evaluations. The two-step-based selection strategy
in DIRECT-GL selects a more extensive set of POH. While for
more straightforward problems, this is detrimental, but it
helps locate a global solution faster to find it with higher
accuracy. In terms of execution time (see the right-hand
side in Fig. 5), DIRECT-GL is the fastest among all the
traditional DIRECT-type algorithms (excluding hybridized).

As some algorithms have integrated schemes to help
speed up the refinement of solutions with higher accuracy,
we tested them when the solution with much higher
precision ("pe = 10−8) is sought. In Table 4, we summarize
our experimental findings. First, the number of failed
problems is much higher when higher accuracy is needed
(see the Failed column in Tables 3 and 4). The smallest
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Algorithm Avg. # local Failed Average results Average results (n ≤ 4) Average results (n ≥ 5) Median results

searches feval. time iter. feval. time iter. feval. time iter. feval. time iter.

DIRECT − 41∕81 1, 092, 242 919.10 7, 843 849, 599 1, 435.78 17, 024 1, 241, 572 603.04 2, 151 2, 000, 000 271.28 227

DIRECT-restart − 29∕81 778, 771 7, 840.37 200 333, 394 4, 377.27 114 1, 035, 618 10, 191.29 252 53, 629 6.00 91

DIRECT-rev 3 13∕81 355, 126 1, 015.25 29, 551 193, 942 1, 183.78 69, 005 464, 342 929.35 5, 089 844 0.15 22

DIRMIN 897 12∕81 330, 944 40.89 86 130, 958 32.40 104 464, 196 47.09 74 501 0.09 3

glbSolve − 58∕81 1, 476, 272 1, 156.43 9, 973 859, 763 1, 695.75 18, 393 1, 855, 620 813.28 4, 753 2, 000, 000 369.45 1, 201

MrDIRECT − 36∕81 965, 988 1, 069.29 10, 761 683, 962 1, 677.14 20, 980 1, 167, 840 698.98 4, 296 500, 849 49.23 397

MrDIRECT075 − 35∕81 1, 025, 586 420.20 6, 365 201, 290 99.95 2, 459 1, 527, 193 619.43 8, 786 945, 417 138.55 749

BIRMIN 4 13∕81 323, 769 5, 113.45 18, 498 131, 825 2, 775.34 11, 067 451, 804 6, 697.01 23, 105 370 0.14 22

DIRECT-L − 21∕81 572, 673 172.35 955 133, 080 84.05 681 821, 653 232.45 1, 126 36, 489 1.73 94

DIRECT-GL − 6∕81 277, 081 29.10 242 82, 357 26.45 245 401, 651 31.66 239 28, 211 1.09 61

Table 4: The performance of selected algorithms from DGO using the number of function evaluations (feval.), the totalexecution time in seconds (time), and the total number of iterations (iter.) criteria on a set of box-constrained problems
(from DIRECTlib) when "pe = 10−8 value in stopping condition (16) was used.

number of unsolved problems is achieved using DIRECT-GL

(6∕81), where all failed test problems belong to (n ≥ 5)
class. The DIRECT-GL algorithm turns out to be more
efficient even than hybrid methods. Overall, DIRECT-GL

required approximately 16% fewer function evaluations and
took 29% less time than the second-best algorithm, BIRMIN
(see Average results column in Table 4). However, BIRMIN
algorithm has the best median value (see Median results
column), therefore solving at least half of the problems
with the best performance. Finally, let us stress the
inefficiency of the original DIRECT algorithm (DIRECT and
glbSolve implementations). As the median value is more
than 2, 000, 000, this means that DIRECT failed more than
half of the test problems to solve.

Finally, the performance profiles on the interval
[1, 10000] of the selected algorithms are shown in Fig. 6.
Once again, the performance profiles confirm that the
hybridized algorithms are more efficient than traditional
DIRECT-type approaches. However, when the performance
ratio increases, DIRECT-GL outperforms all algorithms,
including BIRMIN, in function evaluations and execution
time.
4.2. Comparison of DIRECT-type algorithms for

constrained global optimization
The comparison presented in this section was carried

out using 80 global optimization test problems with various
constraints. In DIRECTlib, 35 test problems contain linear
constraints, 39 problems have nonlinear constraints where 5
of them include equality constraints. All necessary details
about the test problems are given in Appendix A, Table 12.
We used the same stopping condition in these experimental
investigations as in the previous ones, and the value
"pe = 10−2.Let us stress that 5 of the test problems contain equality
constraints, which we transform into inequality constraints
as follows:

h(x) = 0→ |h(x) − "h| ≤ 0 (19)
where "h > 0 is a small tolerance for equality constraints. In

our experiments, it was set to 10−8.
4.2.1. Test results on problems with hidden constraints

In the first part, we compared DIRECT-type versions
devoted to problems with hidden constraints. In this
experimental part, we have used all constrained test
problems. However, we assume that any information about
the constraint functions is unavailable. In the experimental
investigation, the hidden search area (Dhidden) is defined as

Dhidden = {x ∈ D ∶ g(x) ≤ 0,h(x) = 0} (20)
Still, this information is unavailable for the tested
algorithms and used only to determine whether a certain
point is feasible or not. Obtained experimental results are
summarized in the upper part of Table 5 (see ‘Performance
of DIRECT-type algorithms for problems with hidden
constraints’). First, let us note that 13 out of the 80 test
problems contain complex constraints leading to a tiny
feasible region. As the algorithms within this class do not
use any information about constraint functions, none of the
tested algorithms could find a single feasible point for any
of these 13 test problems.

The best among all DIRECT-type algorithms for problems
with hidden constraints is DIRECT-GLh (was unable to solve
(18∕80)), while the second-best is DIRECT-NAS (failed to
solve (29∕80)). The median number of function evaluations
(see feval in Median results) is similar for both. Still,
DIRECT-GLh is the best, primarily based on the number of
iterations (iter.) and the execution time: DIRECT-GLh took
around 4.5 times fewer iterations and approximately 33
times less execution time than the second best DIRECT-NAS,
algorithm. The speed is the essential factor differentiating
DIRECT-GLh from DIRECT-NAS.

For an extra subdividing step-based subDIRECT-Barrier,
the user must define how often this step is activated.
Unfortunately, the authors in [53] did not make any
sensitivity analysis and guidance of this. In our
experiments, we start the subdividing step at
subk, k = 1, 2,… iterations. We tested three different
values for the variable sub, i.e., sub = 2, 3 and 5. Our
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Figure 6: Performance profiles on [1, 10000] of selected DIRECT-type algorithms from DGO toolbox on the whole set of box-constrained
optimization problems from DIRECTlib when "pe = 10−8 value in (16) was used.

Algorithm Parameter Failed Average results Average results (Nonlin. constr.) Average results (Lin. constr.) Median results

feval. time iter. feval. time iter. feval. time iter. feval. time iter.

Performance of DIRECT-type algorithms for problems with hidden constraints
DIRECT-NAS – 29∕80 711, 720 15, 372.02 20, 049 940, 617 20, 404.43 30, 224 445, 705 9, 523.55 8, 223 9, 124 18.68 144
DIRECT-Barrier – 46∕80 1, 192, 521 2, 908.88 38, 069 1, 226, 115 3, 699.74 50, 092 1, 153, 479 1, 989.78 24, 096 2, 000, 000 723.03 2596
subDIRECT-Barrier sub = 2 53∕80 1, 364, 353 860.50 6, 896 1, 330, 214 923.82 6, 319 1, 404, 028 786.92 7, 565 2, 000, 000 295.60 65
subDIRECT-Barrier sub = 3 48∕80 1, 240, 771 773.74 3, 623 1, 274, 469 799.58 875 1, 201, 609 743.71 6, 816 2, 000, 000 286.48 251
subDIRECT-Barrier sub = 5 47∕80 1, 229, 037 1, 359.66 11, 199 1, 337, 592 1, 514.72 10, 276 1, 102, 878 1, 179.45 12, 272 2, 000, 000 559.34 1, 294
DIRECT-GLh – 18∕80 470, 807 312.40 104 631, 983 473.22 96 283, 495 125.51 114 7, 068 0.57 32

Performance of DIRECT-type algorithms for generally constrained optimization problems
DIRECT-GLc – 11∕80 330, 659 67.46 352 492, 568 110.70 554 142, 494 17.21 117 3, 759 0.34 37
DIRECT-GLce – 7∕80 258, 462 40.02 270 388, 986 64.12 373 106, 772 12.01 149 9, 768 0.86 75
DIRECT-GLce-min – 1∕80 37, 495 6.18 35 64, 003 10.91 52 6, 689 0.68 14 123 0.06 5
DIRECT-L1 
 = 10 43∕80 1, 087, 528 228.17 1, 688 1, 216, 346 380.03 2, 736 937, 821 51.69 471 2, 000, 000 0.19 49
DIRECT-L1 
 = 102 41∕80 1, 051, 478 870.98 3, 369 1, 189, 695 1, 455.73 3, 567 890, 848 191.41 3, 139 2, 000, 000 2.49 64
DIRECT-L1 
 = 103 40∕80 1, 042, 671 1, 144.35 8, 203 1, 148, 028 1, 253.35 4, 589 920, 230 1, 017.67 12, 404 1, 564, 860 62.27 241

Performance of DIRECT-type algorithms devoted for problems with linear constraints only
Lc-DISIMPL-C – 5∕35 N/A N/A N/A N/A N/A N/A 290, 402 6, 424.68 387 443 0.12 27
Lc-DISIMPL-V – 3∕35 N/A N/A N/A N/A N/A N/A 171, 738 3, 686.81 24 16 0.01 1
N/A – not available

Table 5: The performance of DIRECT-type algorithms for problems with hidden constrains based on the number of function
evaluations (feval.), the total execution time in seconds (time), and the total number of iterations (iter.) criteria

experience showed that an extra subdividing step combined
with a traditional barrier approach based on
subDIRECT-Barrier did not significantly improve
performance (based on the number of Failed problems and
the Average results) over the original DIRECT-Barrier. The
most obvious difference is that, on average,

subDIRECT-Barrier subdivides much more POH per iteration
because of an extra subdividing step, leading to a smaller
number of iterations (iter.) and the execution time.
subDIRECT-Barrier algorithm suffers solving larger
dimension and problems where Dhidden contains nonlinear
constraints (see Average results (Nonlin. constr.)
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Figure 7: Performance profiles on [1, 200] of DIRECT-type
algorithms for problems with hidden constraints.

column). Therefore, this limits subDIRECT-Barrier

applicability primarily to low-dimensional problems.
Finally, in Fig. 7, the comparative performance of

algorithms using the performance profiles tool is
demonstrated. They confirm that the DIRECT-GLh is the most
effective optimizer in this class solves approximately 80%
of the tested problems with the highest efficiency.
4.2.2. Test results on problems with general constraints

Better performance of DIRECT-type algorithms can be
expected when the constraint function information is
known. Let us note that all DIRECT-type algorithms
considered in the previous section are included in this
analysis. The new experimental results are added in the
middle part of Table 5 (see ‘Performance of DIRECT-type
algorithms for generally constrained optimization
problems’) First, let us note that the recently proposed
DIRECT-GLc and DIRECT-GLce algorithms of this class can
much more successfully (compared to the algorithms for
problems with hidden) solve problems contain complex and
tiny feasible regions. The best average results among
traditional DIRECT-type algorithms were obtained using the
DIRECT-GLce (failed to solve 7∕80). Interestingly, the
performance based on the number of failed problems using
DIRECT-GLc is worse, but based on the median results, it
outperforms DIRECT-GLce quite clearly. This means that
DIRECT-GLc is very effective while solving simpler

problems, but the effectiveness drops when solving more
complicated problems, e.g., higher dimensionality and
nonlinear constraints.

While solving optimization problems with general
constraints, the solution point is often located on the
feasible region’s boundaries. The common problem of
several DIRECT-type algorithms is that hyper-rectangles with
infeasible midpoints situated closely to the edges of
feasibility are penalized with large values, resulting in a
low probability of being elected POH. In this way, these
algorithms converge very slowly.

Among all approaches within this class,
DIRECT-GLce-min is the only hybridized version. Again,
incorporating the local minimization procedure into
DIRECT-GLce improves the performance significantly, e.g., it
reduces the overall number of function evaluations
approximately 7 times. Moreover, DIRECT-GLce-min fails to
solve only one test problem.

Finally, in Figs. 8 and 9, the comparative performance
of DIRECT-type algorithms (except hybridized
DIRECT-GLce-min) using the performance profiles tool is
demonstrated. Performance profiles confirm the same
trends, i.e., the overall advantage of methods incorporating
constraint information versus designed explicitly for
problems with hidden constraints.
4.2.3. Test results on problems with linear constraints

In the final part, we test the performance of DIRECT-type
algorithms on problems with linear constraints. We
consider all previously tested algorithms and two
specifically designed simplicial partitions based
Lc-DISIMPL-V and Lc-DISIMPL-C [61]. The main advantage of
using simplices is that they can cover a feasible region
defined by linear constraints. Thus any infeasible areas are
not involved in the search. Moreover, for most problems
from DIRECTlib, the solution is located at the intersection of
linear constraints. Therefore Lc-DISIMPL-V finds it in the
early or even in the first iteration. The performance profiles
(see Fig. 10) reveal the overall effectiveness of the
Lc-DISIMPL-V algorithm for such problems with linear
constraints. Nevertheless, the efficiency of simplicial
partition-based algorithms suffers from the problem
dimension. Three greater dimensionality problems with
linear constraints were unsolved by the Lc-DISIMPL-V

algorithm (see the bottom part of Table 5, ‘Performance of
DIRECT-type algorithms devoted for problems with linear
constraints only’). Moreover, simplicial partition-based
implementations are pretty slow. For example, on average,
DIRECT-GLce is approximately 307 times faster than
Lc-DISIMPL-V. Moreover, DIRECT-GLce solved all test
problems with linear constraints.

5. DGO performance on engineering problems
In this section, the algorithms from DGO were tested on

eleven engineering design problems: tension/compression
spring, three-bar truss, NASA speed reducer, pressure
vessel, welded beam, and six different versions of the
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Figure 8: Performance profiles on [1, 200] of DIRECT-type
algorithms for problems with general and hidden constraints
on the whole set of constrained optimization test problems.

general nonlinear regression problem. The general
nonlinear regression problem is box-constrained, while the
others involve different types of constraints. Only the most
promising algorithms (based on the results from Section 4)
were considered. As the global minimums are known for
all these engineering problems, we used the same stopping
rule in the previous experiments. A detailed description of
all engineering problems and mathematical formulations is
given in Appendix B.
5.1. Tension/compression spring design problem

Here, we consider the tension-compression string
design problem. This problem aims to minimize the string
weight under the constraints on deflection, shear stress,
surge frequency, and limits on the outside diameter. A
detailed description of the practical problem can be found
in [36], while in Appendix B.1 we give a short description
and mathematical formulation.

A comparison of found solutions and performance
metrics by the most promising algorithms from DGO is
shown in Table 6. Four considered algorithms were able to
solve this problem. Based on the number of function
evaluation criteria, a slightly unexpectedly DIRECT-NAS was
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Figure 9: Performance profiles on [1, 200] of DIRECT-type
algorithms for problems with general and hidden constraints
on the subset of constrained optimization test problems
containing nonlinear constraints.

significantly better than other algorithms. The surprise
comes from the fact that the algorithm does not use any
information about the constraint functions. However, the
DIRECT-NAS algorithm was approximate 4 times slower than
the second-best method DIRECT-GLce.
Algorithm (input) Iterations feval Time (s) fmin
DIRECT-NAS 297 17, 659 77.46 0.012680
DIRECT-Barrier 40, 478 2, 000, 000 2, 465.81 0.012867
subDIRECT-Barrier (sub = 5) 15, 626 2, 000, 000 722.79 0.012867
DIRECT-GLh 700 2, 000, 000 214.81 0.012683
DIRECT-GLc 675 423, 209 47.53 0.012680
DIRECT-GLce 624 178, 115 20.45 0.012680
DIRECT-GLce-min 624 178, 115 20.70 0.012680
DIRECT-L1 (p = 103) 33, 571 2, 000, 000 3, 041.00 0.012867

Table 6: Performance of the most promising DIRECT-type
algorithms from DGO on a tension/compression design

problem

5.2. Three-bar truss design problem
Here, we consider the three-bar truss design problem.

The goal is to minimize the volume subject to stress
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Figure 10: Performance profiles on [1, 200] of DIRECT-type
algorithms for problems with general and hidden constraints
on the subset of constrained optimization test problems
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constraints. The detailed description of the problem is
given in [67], while in Appendix B.2, we provide a brief
description and mathematical formulation.

A comparison of found solutions and performance
metrics is shown in Table 7. Here, hybridized
DIRECT-GLce-min was the most efficient optimizer. However,
none of the algorithms had any difficulty solving this
problem, and they found the solution in less than
one-second time.
Algorithm (input) Iterations feval Time (s) fmin
DIRECT-NAS 29 339 0.05 263.915790
DIRECT-Barrier 13 125 0.02 263.915790
subDIRECT-Barrier (sub = 5) 14 161 0.02 263.915790
DIRECT-GLh 12 231 0.03 263.915790
DIRECT-GLc 17 727 0.08 263.911750
DIRECT-GLce 33 1, 055 0.13 263.915790
DIRECT-GLce-min 6 93 0.03 263.895850
DIRECT-L1 (p = 103) 17 179 0.03 263.915790

Table 7: Performance of the most promising DIRECT-type
algorithms from DGO on a three-bar truss design problem

5.3. NASA speed reducer design problem
Here we consider the NASA speed reducer design

problem. The goal is to minimize the overall weight subject
to constraints on the gear teeth’ bending stress, surface
stress, transverse deflection of the shaft, and stresses in the
shafts. A detailed description of the problem can be found
in [67], while in Appendix B.3, we provide a short
description and mathematical formulation.

A comparison of the found solutions and performance
metrics is shown in Table 8. Only two algorithms
(DIRECT-GLce and DIRECT-GLce-min) were able to tackle this
problem. Again, the hybridized DIRECT-GLce-min algorithm
showed the best performance. Note that the found solution
with DIRECT-L1 is better than the best know value fmin.However, the reported solution point is outside the feasible
region and violates a few constraints.
Algorithm (input) Iterations feval Time (s) fmin
DIRECT-NAS 6, 719 325, 691 43, 145.14 3006.874789
DIRECT-Barrier 32, 031 2, 000, 000 2, 625.88 3006.838136
subDIRECT-Barrier (sub = 5) 11, 112 2, 000, 000 1, 234.33 3006.838136
DIRECT-GLh 528 2, 000, 000 169.74 3003.135167
DIRECT-GLc 1623 2, 000, 000 373.40 3002.869474
DIRECT-GLce 254 123, 175 9.70 2996.572800
DIRECT-GLce-min 55 10, 229 0.93 2996.348212
DIRECT-L1 (p = 103) 661 26, 667 3.01 2995.382568a

a – result is outside the feasible region

Table 8: Performance of the most promising DIRECT-type
algorithms from DGO on a NASA speed reducer design

problem

5.4. Pressure vessel design problem
In this subsection, we consider a pressure vessel design

problem, and the goal is to minimize the total cost of the
material, forming, and and to weld a cylindrical vessel. A
detailed description of the problem can be found in [36],
while in Appendix B.4, we provide a short description and
mathematical formulation.

A comparison of the found solutions and performance
metrics is shown in Table 9. Four algorithms solved this
problem: DIRECT-NAS, DIRECT-GLh, DIRECT-GLce, and
DIRECT-GLce-min, and hybridized DIRECT-GLce-min was the
most efficient optimizer again. DIRECT-NAS is the best
performing and outperformed the second-best by
approximately 1.8 times, among traditional DIRECT-type
algorithms. However, the DIRECT-NAS algorithm was about
26 times slower than the second-best method (DIRECT-GLh).
As in the previous case, the DIRECT-L1 returned a better than
the best know value fmin, but the solution point lies outside
the feasible region again.
5.5. Welded beam design problem

The fifth engineering problem is the welded beam
design. Here, the goal is to minimize a welded beam for a
minimum cost, subject to seven constraints. The detailed
description is presented in [50, 51], while in Appendix B.5,
we provide a short description and mathematical
formulation.

Linas Stripinis, Remigijus Paulavičius: Paper Page 18 of 26



DGO: A new DIRECT-type MATLAB toolbox for derivative-free global optimization

Algorithm (input) Iterations feval Time (s) fmin
DIRECT-NAS 273 31, 081 126.64 7164.437307
DIRECT-Barrier 26, 379 2, 000, 000 1, 600.150 7234.041903
subDIRECT-Barrier (sub = 5) 15, 626 2, 000, 000 1, 328.98 7234.041903
DIRECT-GLh 252 55, 837 4.80 7164.437300
DIRECT-GLc 2, 358 2, 000, 000 433.87 7224.704257
DIRECT-GLce 322 88, 585 8.52 7164.437301
DIRECT-GLce-min 5 91 0.05 7163.739611
DIRECT-L1 (p = 103) 87 2, 295 0.23 7152.303079a

a – result is outside the feasible region

Table 9: Performance of the most promising DIRECT-type
algorithms from DGO on a pressure vessel design problem

A comparison of the algorithms is shown in Table 10.
In total, five algorithms were able to solve the problem, and
once again, the DIRECT-GLce-min was the most efficient one.
Again, the DIRECT-NAS algorithm showed the best
performance (based on the total number of function
evaluations) among traditional DIRECT-type algorithms, but
significantly suffered based on the execution time.
Algorithm (input) Iterations feval Time (s) fmin
DIRECT-NAS 698 86, 863 4692.00 1.724970
DIRECT-Barrier 22, 934 2, 000, 000 1, 363.24 1.728488
subDIRECT-Barrier (sub = 5) 10, 954 2, 000, 000 860.06 1.728037
DIRECT-GLh 189 158, 747 11.70 1.724970
DIRECT-GLc 211 108, 683 9.19 1.724970
DIRECT-GLce 366 104, 191 9.80 1.724970
DIRECT-GLce-min 3 163 0.06 1.724884
DIRECT-L1 (p = 103) 20, 767 2, 000, 000 1, 679.76 1.728488

Table 10: Performance of the most promising DIRECT-type
algorithms from DGO on a welded beam design problem

5.6. General nonlinear regression problem
In the final part, a general nonlinear regression design

problem is considered in the form of fitting a sum of
damped sinusoids to a series of observations. The detailed
description of the problem can be found in [24, 56, 73],
while in Appendix B.6, we provide a short description and
mathematical formulation. The problem is multimodal and
is considered challenging, especially with the increase in
the number of samples (T ). The higher number of
sinusoids (s) leads to a more accurate but at the same time
and more challenging optimization problem. Our
experiments have used three different values for s = 1, 2,
and 3 (correspond to 3, 6, and 9-dimensional problems) and
two different values, T = 10 and T = 100 for each
dimension n as was done in [56].

The obtained results are summarized in Table 11.
Solving the lowest dimension (n = 3) cases (corresponding
to s = 1, T = 10 and s = 1, T = 100) all algorithms located
the solutions correctly. Excluding the hybridized BIRMIN,
the PLOR algorithm was the most efficient one. However, in
solving bigger conditionality problems (n = 6), half of the
algorithms failed to find the correct solution. Finally, only
two tested algorithms solved all nonlinear regression design
problems: DIRECT-GL and BIRMIN.

6. Conclusion
This paper has introduced a new open-source

DIRECT-type MATLAB toolbox (DGO) for derivative-free global
optimization. The new toolbox combines various
state-of-the-art DIRECT-type algorithms for the global
solution of box-constrained, generally-constrained, and
optimization problems with hidden constraints. All
algorithms were implemented using two different data
structures: static and dynamic. Additionally, several
parallel schemes were adopted to promising algorithms.
Furthermore, an online test library DIRECTlib, containing
119 global optimization test and engineering problems, has
been presented.

The performance of various algorithms within DGO has
been investigated via a detailed numerical study using the
test problems from DIRECTlib. A further 11 examples of the
use of the DGO for engineering design optimization have
been investigated. The results demonstrate the promising
performance of DGO in tackling these challenging problems.
We also gave guidance on which algorithms to use for
certain types of optimization problems.

Motivated by the promising performance, we plan to
extend this work to facilitate the broader adoption of DGO.
We plan to include newly appearing promising DIRECT-type
algorithms within this toolbox continuously. Another
direction is extending the developed algorithms using a
hybrid CPU-GPU scheme. Finally, we will consider
advanced data structures for better data organization and
reduced communication overhead.

Source code statement
All implemented DIRECT-type algorithms (DGO toolbox)

are available at the GitHub repository:
https://github.com/blockchain-group/DGO, and can be used
under GPL version 3.

Data statement
Data underlying this article (DIRECTlib) can be accessed

on Zenodo at https://dx.doi.org/10.5281/zenodo.1218980,
and used under the Creative Commons Attribution license.
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A. DIRECTlib library
A summary of all optimization problems in DIRECTlib

and their properties is given in Table 12. The first column
denotes the problem type, and the second contains the
problem name. The third column contains the source of the
problem. The fourth through eighth columns (n, g, h, a, D)
has the dimension (n), number of inequality (g), and
equality (h) constraints, number of active constraints (a),
and optimization domain (D), respectively. Finally, the last
column contains the best known optimal solution (f ∗).
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Table 12: Key characteristics of the DIRECTlib [80] test problems for box-constrained global optimization
Problem Source Problem properties f ∗

Type Name n g h a D

BC Ackley [30, 84] n 0 0 0 [−15, 30]i, i = 1...n 0.0000
Alpine [11] n 0 0 0 [0, 10]i, i = 1...n −2.8081n
Beale [30, 84] 2 0 0 0 [−4.5, 4.5]i, i = 1...n 0.0000
Bohachevsky 1 [30, 84] 2 0 0 0 [−100, 110]i, i = 1...n 0.0000
Bohachevsky 2 [30, 84] 2 0 0 0 [−100, 110]i, i = 1...n 0.0000
Bohachevsky 3 [30, 84] 2 0 0 0 [−100, 110]i, i = 1...n 0.0000
Booth [30, 84] 2 0 0 0 [−10, 10]i, i = 1...n 0.0000
Branin [30, 16, 84] 2 0 0 0 [−5, 10]1, [10, 15]2 0.3978
Bukin [84] 2 0 0 0 [−15, 5]1, [−3, 3]2 0.0000
Csendes [11] n 0 0 0 [−10, 20]i, i = 1...n 0.0000
Colville [30, 84] 4 0 0 0 [−10, 10]i, i = 1...n 0.0000
Cross-in-Tray [84] 2 0 0 0 [−10, 10]i, i = 1...n −2.0626
Dixon-Price [30, 84] n 0 0 0 [−10,−10]i, i = 1...n 0.0000
Drop-Wave [84] 2 0 0 0 [−5.12,−6.12]i, i = 1...n −1.0000
Easom [30, 84] 2 0 0 0 [−100, 100]i, i = 1...n −1.0000
Eggholder [84] 2 0 0 0 [−512, 512]i, i = 1...n −959.6406
Goldstein & Price [30, 16, 84] 2 0 0 0 [−2, 2]i, i = 1...n 3.0000
Griewank [30, 84] n 0 0 0 [−600, 700]i, i = 1...n 0.0000
Hartman 3 [30, 84] 3 0 0 0 [0, 1]i, i = 1...n −3.8627
Hartman 6 [30, 84] 6 0 0 0 [0, 1]i, i = 1...n −3.3223
Holder Table [84] 2 0 0 0 [−10, 10]i, i = 1...n −19.2085
Hump [30, 84] 2 0 0 0 [−5, 5]i, i = 1...n −1.0316
Langermann [84] 2 0 0 0 [0, 10]i, i = 1...n −4.1558
Levy [30, 84] n 0 0 0 [−5, 5]i, i = 1...n 0.0000
Matyas [30, 84] 2 0 0 0 [−10, 10]i, i = 1...n 0.0000
McCormick [84] 2 0 0 0 [−1.5, 4]1, [−3, 4]2 −1.9132
Michalewicz [30, 84] 2 0 0 0 [0, �]i, i = 1...n −1.8013
Michalewicz [30, 84] 5 0 0 0 [0, �]i, i = 1...n −4.6876
Michalewicz [30, 84] 10 0 0 0 [0, �]i, i = 1...n −9.6601
Perm(� = 0.5) [30, 84] 5 0 0 0 [−n, n]i, i = 1...n 0.0000
Perm(� = 10) [30, 84] 8 0 0 0 [−n, n]i, i = 1...n 0.0000
Powell 4 [30, 84] 4 0 0 0 [−4, 5]i, i = 1...n 0.0000
Power Sum [30, 84] 4 0 0 0 [0, 4]i, i = 1...n 0.0000
Qing [11] n 0 0 0 [−500, 500]i, i = 1...n 0.0000
Rastrigin [30, 84] n 0 0 0 [−6.12, 5.12]i, i = 1...n 0.0000
Rosenbrock [30, 16, 84] n 0 0 0 [−5, 10]i, i = 1...n 0.0000
Rotated Ellipsoid [84] n 0 0 0 [−65.536, 66.536]i, i = 1...n 0.0000
Schwefel [30, 84] n 0 0 0 [−500, 500]i, i = 1...n 0.0000
Shekel(m = 5) [30, 84] 4 0 0 0 [0, 10]i, i = 1...n −10.1531
Shekel(m = 7) [30, 84] 4 0 0 0 [0, 10]i, i = 1...n −10.4029
Shekel(m = 10) [30, 84] 4 0 0 0 [0, 10]i, i = 1...n −10.5364
Shubert [30, 84] 2 0 0 0 [−10, 10]i, i = 1...n −186.7309
Sphere [30, 84] n 0 0 0 [−5.12, 6.12]i, i = 1...n 0.0000
Styblinski-Tang [11] n 0 0 0 [−5, 5]i, i = 1...n −39.1661n
Sum of Powers [84] n 0 0 0 [−10, 15]i, i = 1...n 0.0000
Trid [30, 84] 6 0 0 0 [−36, 36]i, i = 1...n −50.0000
Trid [30, 84] 10 0 0 0 [−100, 100]i, i = 1...n −210.0000
Zakharov [30, 84] n 0 0 0 [−5, 11]i, i = 1...n 0.0000

LC Bunnag 1 [85] 4 1 0 1 [0, 3]i, i = 1...n 0.1117
Bunnag 2 [85] 4 2 0 2 [0, 4]i, i = 1...n −6.4049
Bunnag 3 [85] 5 3 0 1 [0, 3]1, [0, 2]2,5, [0, 4]3,4 −16.3657
Bunnag 4 [85] 6 2 0 1 [0, 1]1,2,3,4,5, [0, 20]6 −213.0470
Bunnag 5 [85] 6 5 0 1 [0, 2]1,3,6, [0, 8]2, [0, 1]4,5 −11.0000
Bunnag 6 [85] 10 11 0 3 [0, 1]i, i = 1...n −268.0146
Bunnag 7 [85] 10 5 0 0 [0, 1]i, i = 1...n −39.0000
G01 [83] 13 9 0 6 [0, 10]i, [0, 100]10, i = 1...9, 11 −15.0000
Genocop 9 [85] 3 5 0 2 [0, 10]i, i = 1...n −2.4714
Genocop 10 [85] 4 5 0 0 [0, 3]1, [0, 10]2,3, [0, 1]4 −4.5280
Genocop 11 [85] 6 5 0 0 [0, 5]1,3, [0, 8]2, [0, 1]4,5, [0, 2]6 −11.0000
Horst 1 [31] 2 3 0 1 [0, 3]1, [0, 2]2 −1.0625
Horst 2 [31] 2 3 0 2 [0, 2.5]1, [0, 2]2 −6.8995
Horst 3 [31] 2 3 0 0 [0, 1]1, [0, 1.5]2 −0.4444
Horst 4 [31] 3 4 0 2 [0.5, 2]1, [0, 3]2, [0, 2.8]3 −6.0858
Horst 5 [31] 3 4 0 0 [0, 1.2]1,2, [0, 1.7]3 −3.7220
Horst 6 [31] 3 7 0 2 [0, 6]1, [0, 5.0279]2, [0, 2.6]3 −32.5784
Horst 7 [31] 3 4 0 2 [0, 6]1, [0, 3]2,3 −52.8769
hs021 [85] 2 1 0 1 [2, 50]1, [−50, 10]2 −99.9599
hs021mod [85] 7 3 0 1 [2, 50]1, [−50, 50]2, [0, 50]3, [2, 10]4, [−10, 10]5, [−10, 0]6, [0, 10]7 4.0400
hs024 [85] 2 3 0 2 [0, 5]i, i = 1...n −1.0000
hs035 [85] 3 1 0 1 [0, 3]i, i = 1...n 0.1111
hs036 [85] 3 1 0 1 [0, 20]1, [0, 11]2, [0, 15]3 −3300.0000
hs037 [85] 3 2 0 1 [0, 42]i, i = 1...n −3456.0000
hs038 [85] 4 2 0 0 [−10, 10]i, i = 1...n 0.0000
hs044 [85] 4 6 0 2 [0, 5]i, i = 1...n −15.0000
hs076 [85] 4 3 0 1 [0, 1]1,3,4, [0, 3]2 −4.6818
P14 [4] 4 4 0 2 [10−5, 3]1, [10−5, 4]2, [0, 2]3, [0, 1]4 −4.51420

Continued on next page
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Table 12 Continued from previous page
Problem Source Problem properties f ∗

Type Name n g h a D

s224 [85] 2 4 0 1 [0, 6]1, [0, 11]2 −304.0000
s231 [85] 2 2 0 0 [−10, 10]i, i = 1...n 0.0000
s232 [85] 2 3 0 2 [0, 100]i, i = 1...n −1.0000
s250 [85] 3 2 0 1 [0, 20]1, [0, 11]2, [0, 42]3 −3300.0000
s251 [85] 3 1 0 1 [0, 42]i, i = 1...n −3456.0000
zecevic2 [85] 3 2 0 1 [0, 10]i, i = 1...n −4.1249
zecevic3 [85] 2 2 0 1 [0, 10]i, i = 1...n 97.3094
zecevic4 [85] 4 2 0 1 [0, 10]i, i = 1...n 7.5575

GC circle [85] 3 10 0 3 [0, 10]i, i = 1...n 4.5742
G02 [83] 20 2 0 1 [0, 10]i, i = 1...n −0.8036
G03 [83] 10 0 1 1 [0, 10]i, i = 1...n −1.0005
G04 [83] 5 6 0 2 [78, 102]1, [33, 45]2, [27, 45]3,4,5 −30665.5386
G05 [83] 4 2 3 3 [10, 1, 200]1,2, [−0.55, 0.55]3,4 5126.4967
G06 [83] 2 2 0 2 [13, 100]1, [0, 100]2 −6961.8138
G07 [83] 10 8 0 6 [−10, 10]i, i = 1...n 24.3062
G08 [83] 2 2 0 0 [0, 10]i, i = 1...n −0.0958
G09 [83] 7 4 0 2 [−10, 10]i, i = 1...n 680.6300
G10 [83] 8 6 0 6 [100, 10, 000]1, [1, 000, 10, 000]2,3, [10, 1, 000]i, i = 4...8 7049.2480
G11 [83] 2 0 1 1 [−1, 1]i, i = 1...n 0.7499
G12 [83] 3 1 0 0 [0.2, 10]i, i = 1...n −1.0000
G13 [83] 5 0 3 3 [−2.3, 2.3]1,2, [−3.2, 3.2]3,4,5 0.0539
G16 [83] 5 38 0 4 [704.4148, 906.3855]1, [68.6, 288.88]2,

[0, 134.75]3, [193, 287.0966]4, [25, 84.1988]5
−1.9051

G18 [83] 9 13 0 6 [0, 10]i, i = 1...n −0.8660
G19 [83] 15 5 0 0 [0, 10]i, i = 1...n 32.6555
G24 [83] 2 2 0 2 [0, 3]1, [0, 4]2 −5.5080
Goldstein & Price* [53] 2 2 0 1 [−2, 2]i, i = 1...n 3.5389
Gomez [4] 2 1 0 1 [−1, 1]i, i = 1...n −0.9711
Himmelblau [6] 5 5 0 2 [78, 102]1, [33, 45]2, [27, 45]3,4,5 −31025.5602
P01 [4] 5 0 3 3 [−5, 5]i, i = 1...n 0.0293
P02a [4] 9 10 0 5 [0, 100]1, [0, 500]i, 2 = 1...n −400.0000
P02b [4] 9 10 0 5 [0, 600]1, [0, 500]i, 2 = 1...n −600.0000
P02c [4] 9 10 0 4 [0, 100]1, [0, 500]i, 2 = 1...n −750.0000
P02d [4] 10 12 0 5 [0, 300]1,2,6, [0, 100]3,5,7, [0, 200]4,8, [0, 3]9 −600.0000
P03a [4] 6 1 4 5 [0, 1]1,2,3,4, [10−5, 16]5,6 0.3888
P03b [4] 2 1 0 1 [10−5, 16]i, i = 1...n 0.3888
P04 [4] 2 1 0 1 [0, 6]1, [0, 4]2 −6.6666
P05 [4] 3 2 0 2 [0, 9.422]1, [0, 5.903]2, [0, 267.42]3 201.1600
P06 [4] 2 1 0 1 [0, 115.8]1, [10−5, 30]2 376.2900
P07 [4] 2 4 0 1 [−2, 2]i, i = 1...n −2.8284
P08 [4] 2 2 0 1 [−8, 10]1, [0, 10]2 −118.7000
P09 [4] 6 9 0 2 [10−5, 3]1, [10−5, 4]2,3, [0, 2]4,5, [0, 6]6 −13.4020
P10 [4] 2 2 0 2 [0, 1]i, i = 1...n 0.7417
P11 [4] 2 1 0 1 [0, 1]i, i = 1...n −0.5000
P12 [4] 2 2 0 0 [0, 2]1, [0, 3]2 −16.7390
P13 [4] 3 0 2 2 [10−5, 34]1, [10−5, 17]2, [100, 300]3 189.3500
P15 [4] 3 0 3 3 [10−5, 12.5]1, [10−5, 37.5]2, [0, 50]3 0.0000
P16 [4] 5 6 0 0 [0, 1.5834]1, [0, 3.625]2, [0, 1]3, [0, 3]4, [0, 4]5 0.7049
s365mod [85] 7 9 0 5 [0, 19]i, i = 1...n 52.1399
T1 [19] n 1 0 1 [−4, 4]i, i = 1...n −n
zy2 [85] 2 3 0 1 [0, 10]i, i = 1...n 2.0000

Concluded
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B. The mathematical formulation of
engineering problems

B.1. Tension/compression spring design problem
The design variables of the tension/compression spring

design problem [36] are the number of the wire diameter x1,the winding diameter x2, and active coils of the spring x3.The objective function and the mechanical constraints are
given by:

min f (x) = x21x2(x3 + 2)

s.t. g1(x) = 1 −
x32x3

71875x41
≤ 0,

g2(x) =
x2(4x2 − x1)

12566x31(x2 − x1)
+ 2.46
12566x21

− 1 ≤ 0,

g3(x) = 1 −
140.54x1
x3x22

≤ 0,

g4(x) =
x1 + x2
1.5

− 1 ≤ 0

where 0.05 ≤ x1 ≤ 0.2, 0.25 ≤ x2 ≤ 1.3, 2 ≤ x3 ≤ 15.
The best known solution x∗ = (0.05170517, 0.35710042,
11.28120672), where f (x∗) = 0.01267931. Two of the
constraint functions are active (g1 and g2).
B.2. Three-bar truss design problem

The three-bar truss design problem [67] has two design
variables and three constraints. The optimization problem is
formulated as follows:

min f (x) = 100(2
√

2x1 + x2)

s.t. g1(x) =
√

2x1 + x2
√

2x21 + 2x1x2
2 − 2 ≤ 0,

g2(x) =
x2

√

2x21 + 2x1x2
2 − 2 ≤ 0,

g3(x) =
1

x1 +
√

2x2
2 − 2 ≤ 0

where 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1. The best known solution
x∗ = (0.78867512, 0.40824832), where
f (x∗) = 263.89584535. One of the constraint functions is
active (g1).
B.3. NASA speed reducer design problem

The design variables of the NASA speed reducer design
problem [67] are the face width x1, the module of teeth x2,the number of teeth on the pinion x3, the length of the first
shaft between the bearings x4, the distance of the second
shaft between the bearings x5, the diameter of the first shaft
x6, and, finally, the width of the second shaft x7. The
optimization problem is formulated as follows:

min f (x) = 0.7854x1x22(3.3333x
2
3 + 14.9334x3 − 43.0934)

− 1.508x1(x26 + x
2
7) + 7.4777(x

3
6 + x

3
7)

+ 0.7854(x4x26 + x5x
2
7)

s.t. g1(x) =
27

x1x22x3
− 1 ≤ 0, g2(x) =

397.5
x1x22x

2
3

− 1 ≤ 0,

g3(x) =
1.93x34
x2x3x46

− 1 ≤ 0, g4(x) =
1.93x35
x2x3x47

− 1 ≤ 0,

g5(x) =
(( 745x4x2x3

)2 + 16.9 × 106)0.5

110x36
− 1 ≤ 0,

g6(x) =
(( 745x5x2x3

)2 + 157.5 × 106)0.5

85x37
− 1 ≤ 0,

g7(x) =
x2x3
40

− 1 ≤ 0, g8(x) =
5x2
x1

− 1 ≤ 0,

g9(x) =
x1
12x2

− 1 ≤ 0, g10(x) =
1.5x6 + 1.9

x4
− 1 ≤ 0,

g11(x) =
1.1x7 + 1.9

x5
− 1 ≤ 0

where
2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤
8.3, 7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5 ≤ x7 ≤ 5.5. The
best known solution x∗ = (3.5, 0.7, 17, 7.3, 7.8,
3.35021468, 5.28668323), where f (x∗) = 2996.34817613.
Three constraints are active (g5, g6 and g8).
B.4. Pressure vessel design problem

There are four design variables in the pressure vessel
design problem [36](in inches): the thickness of the
pressure vessel x1, the thickness of the head x2, the inner
radius of the vessel x3, and the length of the cylindrical
component x4. The optimization problem is formulated as
follows:

min f (x) = 0.6224x1x3x4 + 1.7781x2x23 + 3.1661x
2
1x4

+ 19.84x21x3
s.t. g1(x) = −x1 + 0.0193x3 ≤ 0,

g2(x) = −x2 + 0.00954x3 ≤ 0,

g3(x) = −�x23x4 −
4
3
�x33 + 1296000 ≤ 0,

g4(x) = x4 − 240 ≤ 0, g5(x) = 1.1 − x1 ≤ 0,
g6(x) = 0.6 − x2 ≤ 0

where 1 ≤ x1 ≤ 1.375, 0.625 ≤ x2 ≤ 1, 25 ≤ x3 ≤
150, 25 ≤ x4 ≤ 240. The best known solution x∗ = (1.1,
0.625, 56.99481866, 51.00125165), where
f (x∗) = 7163.73957163. Three constraints are active
(g1, g3 and g5).
B.5. Welded beam design problem

The welded beam design problem [50, 51] is to design a
welded beam at minimum cost, subject to some constraints
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[50, 51]. The objective is to find a minimum fabrication
cost. Considering the four design variables and constraints
of shear stress �, bending stress in the beam �, buckling
load on the bar Pc , and end deflection on the beam �. The
optimization model is summarized in the following
equation:

min f (x) = 1.10471x21x2 + 0.04811x3x4(14 + x2)
s.t. g1(x) = �(x) − 13600 ≤ 0,

g2(x) = �(x) − 3 × 104 ≤ 0,
g3(x) = x1 − x4 ≤ 0,
g4(x) = 0.10471x21 + 0.04811x3x4(14 + x2) − 5 ≤ 0,
g5(x) = �(x) − 0.25 ≤ 0,
g6(x) = P − Pc(x) ≤ 0,
g7(x) = 0.125 − x1 ≤ 0,

with:

�(x) =
√

(�1)2 + (�1)(�2)x2∕R + (�2)2,

�1 = P
√

2x1xε
, �2 = MR

J
,M = P ⟮L +

x2
2
⟯,

R =

√

x22)
4
+ (

x1 + x3
2

)2, �(x) = 6PL
x4x23

,

J = 2(
√

2x1x2(
x22
12
+ 1
4
(x1x3)2)), �(x) =

4PL3

Ex4x33
,

Pc =
4.013E

√

x23x4ε6∕36

L2
(1 −

x3
2L

√

E
4G
),

P = 6000, L = 14, E = 3 × 107, G = 12 × 106,

where 0.1 ≤ x1 ≤ 2, 0.1 ≤ x2 ≤ 10, 0.1 ≤ x3 ≤ 10, 0.1 ≤
x3 ≤ 2. The best known solution x∗ = (0.20572551,
3.47062057, 9.03666456, 0.20573141), where
f (x∗) = 1.72488430. One of the constraint functions is
active (g3).
B.6. General nonlinear regression problem

Parameter estimation in the general nonlinear
regression model [24, 56, 73] can be reduced to solving the
minimization problem:

min f (x) =
T
∑

t=1
(�(t) − �(x, t))2

with:
s
∑

q=1
�(t) = etdq sin(2�t!q + �q),

s
∑

q=1
�(x, t) = e(x3(q−1)+1t) sin(2�tx3(q−1)+2 + x3(q−1)+3)

where
−1 ≤ x3(q−1)+1 ≤ 0, 0 ≤ x3(q−1)+2,3(q−1)+2 ≤ 1, q = 1...s. dis non-positive damping coefficients, ! is frequencies, and
� is phases of the sinusoids (hereafter,
dq ∈ [−1, 0], !q ∈ [0, 1], �q ∈ [0, 1], q = 1...s). For
signal approximation, the parameter x of the problem is
determined to fit best the real-valued signal values
observed in the uniformly distributed time moments
t = 1, 2, ..., T . The best known solution f (x∗) = 0, where
x∗ = (−0.2, 0.4, 0.3), for n = 3, x∗ = (−0.2, 0.4, 0.3, −0.3,
0.3, 0.1), for n = 6, and x∗ = (−0.4, 0.6, 0.2, −0.3, 0.3, 0.1,
−0.2, 0.4, 0.3), for n = 9.
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