
Optimal Dynamic Fiscal Policy with Endogenous Debt

Limits

Kenneth L. Judd∗, Philipp Müller†, and Şevin Yeltekin‡
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Abstract

Governments use debt to smooth revenues relative to spending. An important con-

cern of economic policy is the debt capacity of an economy. We study this problem using

the basic Aiyagari, Marcet, Sargent, and Seppälä (2002) incomplete market, dynamic

fiscal policy model but with important changes. First, we assume that government

spending is flexible. Second, we use a dynamic programming formulation for the gov-

ernment’s dynamic problem. Third, we use global optimization methods which can

handle possible nonconvexities and binding constraints. Fourth, we compute the en-

dogenous debt limit without imposing any artificial limit. These new features lead to

substantially different results compared to the previous literature. First, there is no

tendency to accumulating a war chest large enough to allow taxation to disappear.

Second, there are multiple ergodic sets in the long-run distribution of debt. Third, al-

lowing for flexibility in government spending substantially increases an economy’s debt

capacity. Basically, if a country has a strong reputation for honoring its debt it can use

both its taxing capacity and spending flexibility to accumulate substantial debt.

1 Introduction

With the recent growth in the level of government debt worldwide, the ability of a fiscal

system to finance government expenditures has been a focal point in public debates. Central

to these debates is the natural debt limit, i.e. the level of public debt that’s sustainable

in the long run, and the design of fiscal policy that is consistent with that limit. In much
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of the earlier work on dynamic fiscal policy, the upper limit on debt is determined in an

ad-hoc manner. Aiyagari et al. (2002)’s (AMSS) seminal paper on fiscal policy in incomplete

markets revisited earlier work of Barro (1979) and Lucas and Stokey (1983) (LS) to study the

implications on tax policy. Their aim was to use a general equilibrium model, as did LS, but

allow only safe debt to make it comparable to the Barro model. Their results implied that

taxes should roughly follow a random walk, as Barro argued. They also presented examples

where the long-run tax rate is zero, and any spending is financed out of its asset income (i.e.,

government holds debt of the people). However, their approach had some weaknesses. First,

it imposed an artificial limit on government debt and therefore did not address the question

of an endogenous, natural debt limit. Second, it assumed, as much of the literature prior

to it did, government spending to be exogenous. Third, it was based on only the first-order

conditions of the government’s dynamic optimization problem, ignoring the nonconvexities

that arise naturally in optimal taxation models. Fourth, it assumed that government policy

could be well approximated with a low-degree polynomial. We relax the assumptions on

debt and spending, and use computational methods that aim for global optimality and allow

for arbitrarily complex government decision rules. While we focus on the models examined

in AMSS, we build a framework that can address a wider range of fiscal policy issues in a

self-consistent manner. In particular, we derive the endogenous limits on debt and allow for

endogenous government spending.

Our approach involves recasting the policy problem as an infinite horizon dynamic pro-

gramming problem (see, e.g., Judd (1999)). The government’s value function may not be

concave and it can also very high curvature, particularly as debt approaches its endogenous

limit. In dynamic taxation problems, the government’s problem is a mathematical program

with complementary constraints (MPCC). We explicitly use the MPCC formulation, which

is essential in order to do the necessary global optimization analysis of the government’s

problem. Our MPCC approach uses the computational algorithms that were developed only

in the past twenty years, and allows us to solve the problem reliably and accurately. The

resulting dynamic programming problem is challenging in terms of both formulation and its

use of computational resources. Using our combination of computational tools and more

general economic assumptions, we re-address questions regarding optimal taxation and debt

management in a more realistic setup. These tools allow us to determine debt limits implied

by assumptions on the primitives of the economic environment and to assess how the level of

debt affects both tax policy and general economic performance, and the time series properties

of tax rates and debt levels.

Our results show that under the more general framework of endogenous government debt

limits and spending has substantially different implications than earlier analyses have sug-
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gested. First, the behavior of optimal policy is, over long horizons (e.g., 1000 years), much

more complex than simpler models imply. In particular, the long-run distribution of debt is

multimodal, and the long-run level of debt is history-dependent. If initial debt is low enough

and government spending is not hit with large shocks, then the government will accumulate

a ”war chest” which allows long-run tax rates to be zero. However, if, in the same model,

initial debt is high and/or the government gets hit with a long series of bad spending shocks,

then debt will rise to a high level and will not fall even if government remains low forever. In

the second case, governments with large debt levels will avoid default by reducing spending

and use taxes to finance a persistently high debt.

We examine the case of fixed government spending and find that the results are dramat-

ically affected. In particular, we illustrate a case where if spending shocks are of moderate

size (less than US historical experience) no positive level of debt is feasible. That is, if a

government begins with positive debt then there is a sequence of spending shocks such that

there is no feasible tax and borrowing policy to finance those expenditures. In such cases,

exogenous spending assumptions imply that governments must have their endowed war chests

in the beginning and cannot with probability one build up its war chest. These examples

illustrate clearly that any analysis of fiscal policy that wants examine historical fiscal policy

must consider making spending flexible.

The application of our methodology is not limited to optimal tax problems. Optimal

macroeconomic policy problems, as well as social insurance design typically involve solving

high-dimensional dynamic programming problems. Solving such problems is a complicated,

but very important task, as the policy recommendations depend crucially on the accuracy

of the numerical results. In much of the optimal macroeconomic policy and social insur-

ance literature, accuracy of the numerical solutions is unclear. Additionally, most solution

approaches ignore feasibility issues and impose ad-hoc limits on state variables such as gov-

ernment debt. An accurate approach to solving dynamic policy models requires the ability

to handle the high-dimensional nature of the problems as well as the unknown, feasible state

space. The methodology offered in this paper can be used for computing high-dimensional

dynamic policy problems with unknown state spaces.

2 Related Fiscal Policy Literature

Many OLG models in the 1970’s use dynamic optimization to analyze labor versus consump-

tion versus capital taxation. Barro (1979) presented the original paper describing the time

series process of optimal taxation. Under the assumption of a quadratic loss function to the

government of tax rates, he showed that optimal tax policy will impose smoothly changing
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taxes in response to unanticipated shocks to government expenditures. Therefore, a shock

to government expenditures—permanent or temporary—would be financed by a permanent

increase in taxes. Lucas and Stokey (1983) examined similar issues in a general equilibrium

model with complete state-contingent asset markets. In that world, tax rates depend on the

movement of elasticities, and state-contingent assets absorb spending shocks.

AMSS tries to put Barro on a microeconomic foundation. They also find tax-smoothing

but also present a case where the optimal policy accumulates government assets so that in

the long run, all government expenditures can be financed out of a “war chest”.

Our environment is similar to AMSS. We assume that the government can only issue

one-period risk-free debt. The government can use a flat labor tax rate to extract resources

from the representative agent. However, unlike AMSS, we do not assume that government

spending is exogenous. Assuming exogenous spending substantially simplifies the analysis

but is not a correct description of US history. The United States chose to enter WWI even

though it faced no threat to its territory. WWII began with an attacks on the US Navy in

both the Pacific and Atlantic, but the US and UK decided to go far beyond protecting their

territories and their right to travel in international waters. We doubt that the exogenous

spending assumption accurately describes any country’s history.

We also do not put ad-hoc limits on the government debt, but endogenously determine

the sustainable amount of debt. Debt is ultimately limited by the ability of the government to

raise funds from taxation and keep expenditures under control. In our model, both taxation

and expenditure control is used by the government to make credible its commitment to pay

its debts.

A major focus in this paper is determining what debt policies are feasible. TB and LS

focus on the properties of feasible policies. KP recognizes the importance of determining

feasible policies. They give an excellent discussion of the problems of finding the feasible

region, and we implement many of their ideas.

AMSS, TB, and LS formulate the optimal policy problem in similar ways. TB examines

only the deterministic case and formulates the problem as an optimal control problem and

analyzes the resulting Hamiltonian. LS takes a similar approach, formulating the solution as

a time series system of Euler equations and constraints. AMSS uses the recursive contract

method of MM, which is very similar to LS.

We explicitly use a utility function to model government spending choices. AMSS also has

a utility function, but a strange one. Essentially, they assume that utility is zero if spending

equals some target and is minus infinity at any other level of spending.

In a pointwise sense, their utility function is the limit of ours. Suppose that the target

is gbar. Our utility function is -B(g-gbar)**2. At g=gbar, both of us get zero utility. For
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any other value of g, our utility diverges to -infinity as B goes to infinity. Therefore, our

family of utility functions converges to their utility function pointwise. Therefore, we can

mimic their fixed level of spending with a high value for B. Despite the pointwise convergence

fact, our results show that the limiting solutions for the value function and policy functions

do not converge to theirs as B increases. In the space of value and policy functions, there

is a discontinuity as B approaches infinity. The AMSS specification of exogenous spending

cannot be viewed as a tractable simplification of the more general case. That model is

an unrepresentative special case that does not provide results that are robust to sensible

alternatives. (This is a criticism that applies to many others also).

KP used a dynamic programming formulation of the optimal policy problem. This allowed

them to discuss feasibility in a compact and clear manner. We follow the original approach

of KP and express the dynamic problem of the government recursively with two endogenous

state variables: debt and the private shadow price of wealth.

TB-LS-AMSS use only the first-order conditions. They all recognize that this assumes

away nonconcavities that would give multiple solutions to first-order conditions. We do not

rely on any concavity assumptions when we formulate the government’s problem, and use

global optimization methods that can handle the non-concave value functions and/or the

nonconvex constraints sets that easily arise in optimal taxation problems.

3 The Economy

The economy is inhabited by a government and a continuum of identical households, all are

assumed to be infinitely-lived. Consumers are endowed with one unit of time in each period,

provide labor ` to produce market consumption goods c or public goods g. Time not spent

in formal labor activities, 1− `, can be spent at home, dedicated to leisure activities or home

production.

3.1 Consumers

Utility for each consumer is a function of personal consumption, c, labor, `, and government

consumption, g. Furthermore, the utility of government consumption depends shock z ∈ R
to its taste ḡ(z) which follows a finite Markov process, with transition matrix π(z′|z). We can

handle the more general case, but we will follow the literature and assume utility is additively

separable in consumption, government spending and labor and takes the form:

u(c, `, g, z) = uc(c) + u`(`) + ug(g, z). (1)
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We use the following parameterized specification for the utility function:

u(c, `, g, z) =
(c+ c)1−σ1

1− σ1
+ η

(1− `)1−σ2
1− σ2

− θ(g − ḡ(z))σ3 , (2)

where θ, η, and c are positive parameters. Assuming c > 0 implies that the revenue-

maximizing tax rate is strictly less than unity. With this utility specification, marginal

utility is finite when c=0. This allows for labor supply to be zero in response to high taxes

and ensures the existence of a Laffer curve. The last term in the utility specification reflects

the disutility households get from government spending that deviates from the taste shock

z. The case where g is set (exogenously) exactly equal to z may seem to be the same as

assuming θ = ∞. However, as θ increases towards infinity, the government can still choose

any former feasible policy, which—while being heavily penalized—is still feasible. Consumers

evaluate the dynamic consumption, labor and government spending streams according to

E0

∞∑
t=0

βt u(ct, `t, gt, zt), (3)

where β ∈ (0, 1) and E0 denotes the mathematical expectation operator conditioned on time

0 information.

The only assets in the economy are non-contingent, real, risk-free one-period government

bonds with net supply of 0. A bond at time t promises to deliver one unit of consumption

at t + 1, and has price pb,t. At each time t, bt is the payout of debt at beginning of current

period and bt+1 is the number of bonds issued, which in turn mature at the beginning of time

t + 1 . When b > 0, the government is in debt. When b < 0, the consumers are in debt to

the government. Consumers pay a time-varying flat rate tax τt on their labor income. All

consumers receive a transfer payment trt ≥ 0 in each period. The budget constraint of a

consumer at time t is given by

(ct + pb,tbt+1)− (bt + trt + (1− τt)`t) ≤ 0, (4)

For each consumer, the fiscal policy Φ ≡ {τ, tr, g}, and taste shock z are exogenous

variables and the only endogenous state variable is the consumer’s bond holdings. Consumers

maximize their expected discounted payoff

max
{bt+1,ct,`t}

E0

{
∞∑
t=0

βtu(ct, `t, gt, zt)|Φt

}
(5)

given fiscal policy Φ and taste shock z, subject to the sequence of intertemporal budget

constraints given by Equation 4, and the non-negativity constraint on consumption, ct ≥ 0.
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The labor supply, consumption, and debt decisions, `, c and b, of the consumer depend

not only upon the current state of the economy, z, and current fiscal policy Φ, but also upon

future fiscal policy. Until the sequences of fiscal policies are specified, the current equilibrium

decisions of the consumers cannot be determined. Suppose the optimal policy sequence

chosen at time 0, {Φ0
t}
∞
t=0, exists and is unique. The optimal policy will be time inconsistent

in the sense that the policy {Φ0
t}
∞
t=s will not be optimal at time s > 0. The reason it is not

optimal is because current equilibrium decisions of the consumer are functions of the current

state, current policy decisions, and anticipated future policy actions. The time inconsistency

severely complicates the computation of the optimal policy. Standard recursive methods

are no longer applicable as shown, e.g., by Kydland and Prescott (1977). In what follows

we outline a possible computational procedure following Kydland and Prescott (1980), and

point out the difficulties involved.

To obtain restrictions imposed by the rational expectations equilibrium assumption, we

formulate the Lagrangian for the consumer

L = E0

{
∞∑
t=0

βtu(ct, `t, gt, zt)− λt(ct + pb,tbt+1 − bt − trt − (1− τt)`t) + µtct | Φt

}
,

where λt is the multiplier on the t-period budget constraint and µt is the multiplier on t-period

non-negativity constraint on consumption. The first-order conditions from the consumer

problem are:

FOCc : − λt + uc′(ct) + µt = 0, (6)

FOC` : (1− τt)λt + u`′(`t) = 0, (7)

Euler : β
∑
zt+1

λt+1π(zt+1|zt)− pb,tλt = 0, (8)

Budget : − bt + ct − trt − `t(1− τt) + pb,tbt+1 = 0, (9)

KKTc : µtct = 0, (10)

µt ≥ 0, ct ≥ 0. (11)

Given our assumptions on the utility function, the consumer’s problem is concave, so the

first-order conditions are both necessary and sufficient.

The constraint given by Equation 8 has both the current shadow price λt and the next

period shadow price λt+1. Future policies affect λt+1, which in turn affect consumers’ choices

in period t. When the government decides its policies, it must take into consideration the
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effect of its future policies on consumers’ behavior in earlier periods.

3.2 Government

Each period t, the government collects labor tax revenue, pays off its old debt, bt, issues new

debt, bt+1, spends gt, and makes lump-sum transfers, trt. Its period t budget constraint is:

(τtlt + pb,tbt+1)− (bt + trt + gt) = 0, (12)

We use bt for payouts of debt at the beginning of period t. The government’s plan at time

t for debt payments at t+1 is denoted bt+1 and b∗t+1 represents the period demand for (and

purchases of) real debt. In equilibrium, the two will be equal: bt+1= b∗t+1.

We assume a linear technology for consumption goods c and government goods g. With

linear technology, the real wage w is normalized to 1. The economy-wide resource constraint

at t is given by

(1− `t) + ct + gt = 1. (13)

The timing of the moves is as follows. After the realization of the current spending shock

z, the government makes its tax and spending decisions τ, tr, g, chooses market price for bonds

pb, the shadow price for the next period, and recommends allocations for the consumer c, `, b∗.

The consumers solve their own optimization problem, given the fiscal policy choice and will

pick the same allocation as suggested by the government, if it’s in their interest to do so.

To ensure that consumers follow through with his plan, the government chooses fiscal policy

and consumer allocations that are consistent with consumers’ optimal choices of consumption

and labor. Additionally, these policies must deliver the shadow price λ∗ and debt b∗ from the

consumer’s problem.

In the recursive formulation of the government’s problem, we drop the t subscripts and use

superscript + to denote next period’s variables. The shock z, is an exogenous state variable,

and the endogenous state variables for the government problem are b and λ. The dynamic

programming problem the government solves is the following.

V (b, λ, z) = max u(c, `, g, z) + βE[V (b+, λ+, z+)] (14)

subject to its budget constraint

(τ`+ pbb
∗)− (b+ tr + g) = 0,
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aggregate resource constraint

` = c+ g,

promise-keeping constraints for λ and b

λ∗ = λ

b∗ = b+,

and the first-order conditions from the household’s problem,

−λ∗ + uc′(c) + µ = 0

(1− τ)λ∗ − u`′(1− `) = 0

β
∑
z+

λ+π(z+|z)− pbλ∗ = 0

−b+ c+ tr − `(1− τ) + pbb
∗ = 0

µc = 0,

non-negativity constraints,

c, `, g, pb, λ
∗, λ+, µ, tr ≥ 0,

and the government feasibility constraint

(b+, λ+) ∈ Ω(z+),

where Ω(z+) is the set of (b, λ) for which there exists a policy sequence with an equilibrium

in state z+.

The constrained optimization problem defined by Equation 14 is not a standard dynamic

programming problem. First and foremost, the set of feasible b and λ combinations, Ω, is

unknown. Second, the constraint set is not convex. Third, the value function may not be

concave. These issues present nontrivial computational challenges which we address next.

4 Computational Algorithm

Solving the dynamic policy problem of the government presents many computational chal-

lenges. Before approximating the government’s value function, we must study the unknown
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domain. More precisely, we must identify the combinations of b and λ that are economically

feasible. This feasibility issue was recognized by Kydland and Prescott (1980) who suggested

an iterative procedure that embeds the dynamic programming problem of the government

into a fixed point problem for finding the a priori unknown feasible region Ω(z), but did not

provide an actual algorithm. They acknowledged that

“This formulation leads to unusual constraints, however, and the problem of

actually computing an optimal policy would appear quite formidable even for

relatively simple parametric structures.”

Determining the feasible domain is not the only computational issue. The set Ω(z) may

not be rectangular or even convex, which further complicates the approximation of the value

function because the value function is likely to badly behave along the “feasible” boundary.

In particular, the marginal value of debt will be close to the marginal social cost of revenue,

which will diverge as the revenue approaches the maximum possible. The approximation

procedure for the value function must be flexible enough to handle such a possibility.

Due to the computational difficulties described above, we use discrete state dynamic

programming to approximate the value function and policy function. It may appear natural

to uniformly discretize the promised marginal utility of consumption λ and government debt

b for peace and war. For utility functions satisfying the Inada conditions, however, λ tends

towards infinity for c → 0. Instead, we discretize the consumption c uniformly from cmin to

1. The grid is then non-uniformly spaced in λ with λ ∈ [uc′(1 + c), uc′(cmin)]. The b domain

depends on the utility function. We choose cmin = 0.01.

The log-log utility function specification allows for a closed-form solution of the opti-

mization problem for any policy (b+, {λ+}z+). Note that the |(b+, {λ+}z+)| = 1 + |z+|.
We exemplary derive the closed-form solution for c = 0.1 and flexible g: First we focus on

the non-negativity constraint on tr and assume that tr > 0. Solving for the unconstrained

problem, τ equals

τtr>0 =
−100 + 410λ− 100ḡ(z)λ− 219λ2 ± 10

√
100− 20λ+ 200ḡ(z)λ+ 3λ2 − 20zλ2 + 100ḡ(z)2λ2

200λ− 219λ2 + 200zλ2
.

(15)

We can discard the “−” case as it yields imaginary numbers for the utility. Next we check

our assumption tr > 0 with

tr =
100− 55λ− 50bλ+ 50λτ + 48b+E[λ+]

50λ
. (16)

If tr ≥ 0 is indeed non-binding, we can proceed, otherwise, set tr = 0. In this case, we
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calculate

τtr=0 =
−100 + 410λ− 100ḡ(z)λ− 219λ2 ± 10

√
100− 20λ+ 200ḡ(z)λ+ 3λ2 − 20ḡ(z)λ2 + 100ḡ(z)2λ2

200λ− 219λ2 + 200ḡ(z)λ2
.

(17)

Using the correct τ from above, the remaining choice variables follow as

c = − 1

10
+

1

λ
(18)

` = 1− 50− 5λ− 50bλ+ 48b+E[λ+]

100− 5λ− 50bλ+ 48b+E[λ+]
(19)

p = β
E[λ+]

λ
(20)

g =
1000− 50(13 + 10b)λ+ 55(1 + 10b)λ2 + 48b+(10− 11λ)E[λ+]

10λ(5(−20 + λ+ 10bλ)− 48b+E[λ+])
. (21)

We check the inequality constraints τ ≤ 1 and g, pb, ` ≥ 0. If any constraint is violated, the

policy (b+, {λ+}z+) is infeasible.

The algorithm starts with identifying the numerically feasible region Ω̃(z) ⊆ Ω(z) by

iteratively improving the k-th guess approximation of the feasible region Ω̃k(z) until we found

its fixed point, i.e., Ω̃k+1(z) = Ω̃k(z).1 To initialize, we set the policies to “stay where you

are” and evaluate the policies. This yields an initial distribution of feasible/infeasible states

Ω̃k(z) with k = 0. We find Ω̃k+1(z) by evaluating for each infeasible point all possibly feasible

policies in the search space (b+, {λ+}z+) ∈ Ω̃k(z). While the initial search space comprises

all feasible points in the state space Ω̃k(z), it can be reduced to the “newly” feasible points

after the first iteration. Note that this procedure is possible without loss of accuracy. This

iterates until we have found the fixed point.

If the set of feasible points converged, the algorithm continues alternating policy improve-

ment and iteration steps. The policy improvement searches for each point the optimal policy

globally in Ω̃(z). The policy iteration iterates until the L1-error is less than 10−13. Both

steps alternate until there is no policy improvement.

1Note that the numerically feasible region Ω̃(z) is a subset of the actual feasible region Ω(z) due to the
discretization of the state space.
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Case # σ1 σ2 σ3 c exogenous g ḡ b bounds c bounds
1 1.0 1.0 2 0 No {0.09, 0.27} [-10, 12] [0.01, 1]
2 1.0 1.0 - 0 Yes {0.09, 0.27} [-10, 12] [0.01, 1]
3 1.0 1.0 2 0.1 No {0.09, 0.27} [-10, 12] [0, 1]
4 1.0 1.0 - 0.1 Yes {0.09, 0.27} [-10, 12] [0, 1]

Table 1: Experiment setup

5 Results

In this section, we present the computational results from a variety of parameterizations of

our model. The utility function for the consumers, as mentioned before, takes the form

u(c, `, g, z) =
(c+ c)1−σ1

1− σ1
+ η

(1− `)1−σ2
1− σ2

− θ(g − z)σ3 . (22)

For all of the cases reported, we set η = 1 and θ = 100. The discount factor β is fixed at

0.96. The transition matrix equals in all cases

Π =

[
0.9787 0.0213

0.3333 0.6667

]
, (23)

roughly following Buera and Nicolini (2004) in their calibration of Π to the US experiences

in the last century: roughly a war twice a century with an average duration of 3 years. All

experiments were run on an NVIDIA Tesla V100 GPU.

Table 1 reports the specifics of the four cases we compute. The bounds on debt b bounds

and consumption c are the state spaces that include both the economically feasible and

infeasible points. For each case, we display the endogenously determined, economically fea-

sible/infeasible regions inside these sets. For expositional reasons, all plots are plotted in

the (λ, b) domain with λ = uc(c); the log-log cases plotted with log1 0(λ). In cases 1 and

3, government spending g is a choice variable. In cases 2 and 4, government spending is

constrained to equal the exogenous shocks and these cases provide a direct comparison to

the results in AMSS.

5.1 Feasible Regions

Figure 1 displays the feasible/infeasible regions for all cases in Table 1. In cases 1 and 3—

endogenous government spending and c̄ ∈ {0, 0.1}—the feasible region is non-convex; as λ

increases, higher debt levels become infeasible. In other words, as debt levels increase, high
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shadow values of debt cannot be supported in equilibrium. In cases 2 and 4—exogenous

government spending and c̄ ∈ {0, 0.1}—the feasible region is convex and restricted to the

second quadrant; the government cannot borrow from the households. This is sensitive to

the exogenous government spending specification as shown in Appendix A.1.

5.2 Simulations

The central question we want to answer is how debt evolves over time, as the economy receives

low and high spending shocks. Is there a tendency to always lower debt and accumulate a

war chest? If a war shock hits the economy today is there always an accumulation of debt?

We now display the answers for Case 3.

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 1: Numerically feasible regions Ω̃(z) for cases in Table 1.
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5.2.1 Perpetual Simulations

We display the paths followed if the economy begins with (b, λ) = (binit, linit) and proceeds

with no change in the expenditure state for 50 periods.

In perpetual peace in Figure 2, we see that both the b and λ paths move quickly to their

long-run values. Notice that for any fixed initial λ, the long-run value of (b, λ) depends on

the initial value of b. There is no drift to a war chest nor to high debt. It appears that there

are many (b, λ) points that do not change as long as the state is peace.

The perpetual war case in Figure 3 is different. We find that it takes many periods for

some long-run state is achieved. For most initial levels of debt, there is a gradual climb in

debt. Future graphs will also show that there are declines in consumption and government

expenditure. The intuition is clear. When in war, there is a 1/3 chance of peace the next

period. Therefore, it is natural to use debt to finance a level of expenditure that is thought

to be high relative to future expenditure. However, if the state remains war, the rise in debt

has to hit a ceiling.

If b starts sufficiently low, then b is a war chest, no taxes are necessary and b will remain

at a war chest level. We see that for low initial values for b. However, if b starts above the

war chest level, then b will climb slowly to a limit, which appears to be roughly the same for

all initial positive levels of initial b.

Not only do these results overturn the AMSS ”always build a war chest” result, they

may seem counter intuitive at first. Perpetual wars do not seem to wipe out war chests and

perpetual peace does not seem to wipe out positive debt. The answer lies in the ability of

the government to choose the level of spending, instead of being exogenously constrained to

always spend the amount corresponding to the spending shock.

5.2.2 Long-run States

We next display the movement of debt and λ for a stochastic path of peace and war, generated

according to the Markov transition matrix we assumed. We simulated the model for a large

collection of initial (b, λ) values. We found four kinds of long-run states.

If the initial b is small, then we converge to two points in (b, λ) space, one for peace and

one for war, where the level of b is the same for each. This is the war chest situation where

b is constant but λ changes because consumption much respond to the change in taste for

government expenditure. We do not display that simple case.

In each of the next figures, we show six point plots. The first shows the (b, λ) states

visited for the first one hundred periods, as indicated by the label 1 ≤ t ≤ 100. Each of the

five other plots displays the points visited over some later period of time.
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Figure 2: Perpetual Peace
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Figure 3: Perpetual Peace
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Figure 4 displays a rather strange evolution. There is not much movement but the last

4250 periods are spent at just four points. This is a rather fragile result that happens for

only a few initial states.

Figure 5 is typical if initial debt is positive or slightly negative. There is a slow drift

towards high debt. In fact, the last 4250 periods are spent close to the boundary of the

feasible state. Note that this drift is very slow. The long-run ergodic states are so far in the

future that they are irrelevant for any discussion of what happens when debt is small.

Figure 6 is also a knife edge case arising for a few initial conditions. The initial debt level

is too high to be a war chest, but only barely so. In this case we find that there still is a drift

up in debt but the debt level increases only by 0.5 over the course of 5000 periods.

6 Conclusion

We can solve the AMSS model with high precision if we use the dynamic programming

approach advocated by Kydland and Prescott (1980). When we assume exogenous spending

as done in AMSS, we find that the feasible region for debt is small for historically reasonable

assumptions for government spending. In fact, it is easy to find cases where no positive initial

level of debt is feasible.

We, however, assume that government expenditure is flexible and chosen according to a

utility function. This is a far more reasonable assumption about government spending. We

find that the set of feasible debt levels is substantially larger. The reason is clear: flexibility

in spending allows the government to credibly borrow funds because its creditors know that

spending will be cut if necessary to honor the debt.

Our base example also displays behavior inconsistent with simple autoregressive mod-

els. While the solution is stationary because it is a Markov chain, the convergence to the

stationary state is so slow that it takes longer than 5000 periods for it to be apparent.

The final point we make is that it is feasible to solve such models with high accuracy with

modern algorithms, software, and hardware. As this project proceeds, we will build a large

library of plots displaying results for a large number of cases. This will allow us to determine

how the key parameters affect the results. We will not rely on a couple of cases to make

assertions about why the results are what they are. With this library (which will be posted

in the web), we will be able to explore alternative hypotheses based on the data provided by

the library of simulations.
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(e) 501 ≤ t ≤ 1000
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(f) 1001 ≤ t ≤ 5000

Figure 4: All points in the state space that are visited.
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(e) 501 ≤ t ≤ 1000
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(f) 1001 ≤ t ≤ 5000

Figure 5: All points in the state space that are visited.
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(e) 501 ≤ t ≤ 1000
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Figure 6: All points in the state space that are visited.
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A Appendix

A.1 Exogenous Government Spending

In this section, we present additional results for the exogenous government spending case—

the standard AMSS economy. Specifically, we look at the cases presented in Table 2.

Case # σ1 σ2 c exogenous g ḡ b bounds c bounds
5 1.0 1.0 0 No {0.09, 0.27} [− 10, 12] [0.01, 1]
6 1.0 1.0 0 No {0.045, 0.135} [− 5, 7] [0.01, 1]
7 1.0 1.0 0 No {0.0225, 0.0675} [] [0.01, 1]

Table 2: Experiment setup

We study the feasible region for cases 5-7 with Π being a symmetric Markov transition

matrix with a 50%, 66.67% and 80% probability of “staying-where-you-are”, denoted as cases

a, b, and c, respectively. I.e., case 5b denotes case 5 with the symmetric matrix with 66.67%

“staying-where-you-are” probability. Figure 7 depicts the feasible regions.

Cases 5(a-c) and 6(a-c) are consistent with Section 5: The feasible regions are restricted

to the second quadrant, i.e., the government cannot take up any debt. Changes in the

Markov transition matrix do not qualitatively change this result. For very low government

spending—in peace as well as in war—as in case 7(a-c), the results change qualitatively. It

is now feasible for the government to borrow from the household and build up some debt.

The same pattern holds as in the endogenous g case: with λ increasing, higher debt levels

become infeasible.

[We are going to expand this by time-series simulations]

A.2 Endogenous Government Spending: Alternative Utility Functions

For alternative utility functions, we have not solved for closed-form solutions. In this case,

we cannot employ GPUs efficiently and solve the dynamic programming problem on a clus-

ter as alternative solution approach. In the following, we present the tools we use for the

computation, the cases, and their implied feasible regions. In later versions of this paper, we

analyse the time-series simulations for these cases as well.
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(a) Case 5a (b) Case 5b (c) Case 5c

(d) Case 6a (e) Case 6b (f) Case 6c

(g) Case 7a (h) Case 7b (i) Case 7c

Figure 7: Numerically feasible regions Ω̃(z) for cases in Table 2 and transition proability
matricies Π for cases a, b, and c.

We have not solved for a closed-form solution for the case where either σ1 6= 1 or σ2 6= 1.

Instead, we employ a combination of tools to efficiently solve the individual optimization

problems. As optimizer, we use IPOPT by Wächter and Biegler (2006) in combination with

the automatic differentiation tool CasADi by Andersson, Gillis, Horn, Rawlings, and Diehl

(2018). The code is in written in Python, and we use Numba by Lam, Pitrou, and Seibert

(2015) for just-in-time compilation. We rely on heuristics to accelerate the algorithm. In

the future, we will approximate the solution to the individual optimization problem and use

GPU computing for these utility functions as well.

We investigate the cases presented in Table 3. Recall the utility function from Equation
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2

u(c, `, g, z) =
(c+ c)1−σ1

1− σ1
+ η

(1− `)1−σ2
1− σ2

− θ(g − ḡ(z))σ3 .

Case # σ1 σ2 c exogenous g ḡ b bounds c bounds
8 0.5 0.5 0.1 No {0.09, 0.27} [− 10, 12] [0.01, 1]
9 0.5 1.0 0.1 No {0.09, 0.27} [− 10, 12] [0.01, 1]
10 1.0 0.5 0.1 No {0.09, 0.27} [− 10, 12] [0.01, 1]

Table 3: Experiment setup

he utility functions are now combinations of sqrt utility functions and log utility functions.

Figure 8 depicts the feasible regions in this case. The general feasible debt level is in case 8

and 9 lower than before, but qualitatively, they show the same pattern as before: The level

of feasible debt shrinks with increasing λ.

(a) Case 8 (b) Case 9 (c) Case 10

Figure 8: Numerically feasible regions Ω̃(z) for cases in 3
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