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In an economy studied by Lucas and Stokey, tax rates inherit the serial
correlation structure of government expenditures, belying Barro’s ear-
lier result that taxes should be a random walk for any stochastic process
of government expenditures. To recover a version of Barro’s random
walk tax-smoothing outcome, we modify Lucas and Stokey’s economy
to permit only risk-free debt. Having only risk-free debt confronts the
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Ramsey planner with additional constraints on equilibrium allocations
beyond one imposed by Lucas and Stokey’s assumption of complete
markets. The Ramsey outcome blends features of Barro’s model with
Lucas and Stokey’s. In our model, the contemporaneous effects of
exogenous government expenditures on the government deficit and
taxes resemble those in Lucas and Stokey’s model, but incomplete
markets put a near—unit root component into government debt and
taxes, an outcome like Barro’s. However, we show that without ad hoc
limits on the government’s asset holdings, outcomes can diverge in
important ways from Barro’s. Our results use and extend recent ad-
vances in the consumption-smoothing literature.

It appears to have been the common practice of antiquity,
to make provision, during peace, for the necessities of war,
and to hoard up treasures before-hand, as the instruments
either of conquest or defence; without trusting to extraor-
dinary impositions, much less to borrowing, in times of
disorder and confusion. [David Hume, “Of Public Credit,”

1777]

I. Introduction

Barro (1979) embraced an analogy with a permanent income model of
consumption to conjecture that debt and taxes should follow random
walks, regardless of the serial correlations of government expenditures.'
Lucas and Stokey (1983) broke Barro’s intuition when they formulated
a Ramsey problem for a model with complete markets, no capital, ex-
ogenous Markov government expenditures, and state-contingent taxes
and government debt. They discovered that optimal tax rates and gov-
ernment debt are not random walks and that the serial correlations of
optimal tax rates are tied closely to those for government expenditures.
Lucas and Stokey found that taxes should be smooth, not by being
random walks, but in having a smaller variance than a balanced budget
would imply.

However, the consumption model that inspired Barro assumes a con-
sumer who faces incomplete markets and adjusts holdings of a risk-free
asset to smooth consumption across time and states. By assuming com-
plete markets, Lucas and Stokey disrupted Barro’s analogy.”

' Hansen, Roberds, and Sargent (1991) describe the testable implications of various
models including Barro’s.

*We have heard V. V. Chari and Nancy Stokey conjecture that results closer to Barro’s
would emerge in a model that eliminates complete markets and permits only risk-free
borrowing. An impediment to evaluating this conjecture has been that the optimal taxation
problem with only risk-free borrowing is difficult because complicated additional con-
straints restrict competitive allocations (see Chari, Christiano, and Kehoe 1995, p. 366).
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This paper recasts the optimal taxation problem in an incomplete
markets setting. By permitting only risk-free government borrowing, we
revitalize parts of Barro’s consumption-smoothing analogy. Work after
Barro, summarized and extended by Chamberlain and Wilson (2000),
has taught us much about the consumption-smoothing model. We find
that under some restrictions on preferences and the quantities of risk-
free claims that the government can issue and own, the consumption-
smoothing model allows us to reaffirm Barro’s random walk character-
ization of optimal taxation. But dropping the restriction on government
asset holdings or modifying preferences causes the results to diverge in
important ways from Barro’s.

Our interest in reinvigorating Barro’s model is inspired partly by
historical episodes that pit Barro’s model against Lucas and Stokey’s.
For example, see the descriptions of French and British eighteenth-
century public finance in Sargent and Velde (1995). Time-series graphs
of Great Britain’s debt resemble realizations of a martingale with drift
and are much smoother than graphs of government expenditures, which
show large temporary increases associated with wars. Barro’s model im-
plies behavior like those graphs whereas Lucas and Stokey’s model does
not.” Our adaptation of Lucas and Stokey’s model to rule out state-
contingent debt is capable of generating behavior like Britain’s. Section
VI illustrates this claim by displaying impulse responses to government
expenditure innovations for both Lucas and Stokey’s original model
and our modification of it.

The remainder of this paper is organized as follows. Section II de-
scribes our basic model. It retains Lucas and Stokey’s environment but
modifies their bond market structure by having the government buy
and sell only risk-free one-period debt. Confining the government to
risk-free borrowing retains Lucas and Stokey’s single implementability
restriction on an equilibrium allocation and adds stochastic sequences of
implementability restrictions. These additional restrictions emanate
from the requirement that the government’s debt be risk-free. We for-
mulate a Lagrangian for the Ramsey problem and show how the ad-
ditional constraints introduce two new state variables: the government
debt level and a variable dependent on past Lagrange multipliers. The
addition of these state variables to Lucas and Stokey’s model makes
taxes and government debt behave more as they do in Barro’s model.
First-order conditions associated with the saddle point of the Lagrangian
form a system of expectational difference equations whose solution de-
termines the Ramsey outcome under incomplete markets. These equa-

* Perhaps Lucas and Stokey’s model does better at explaining France’s behavior, with
its recurrent defaults, which might be interpreted as occasionally low state-contingent
payoffs.
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tions are difficult to solve in general. Therefore, Section III analyzes a
special case with utility linear in consumption but concave in leisure.
This specification comes as close as possible to fulfilling Barro’s intuition
but requires additional restrictions on the government expenditure pro-
cess and the government debt in order to align fully with Barro’s con-
clusions. In particular, we show that if the government’s asset level is
not restricted, the Ramsey plan under incomplete markets will eventually
set the tax rate to zero and finance all expenditures from a war chest.*
However, if we arbitrarily put a binding upper limit on the government’s
asset level, the Ramsey plan’s taxes and government debt will resemble
the outcomes asserted by Barro.

Without the binding upper bound on government assets, the multi-
plier determining the tax rate converges in the example of Section III.
Section IV introduces another example, one with an absorbing state for
government expenditures, in which that multiplier also converges, but
now to a nonzero value, implying a positive tax rate. Sections IV and V
then study the generality of the result that the multiplier determining
the tax rate converges. Together these sections show that the result is
not true for general preferences and specifications of the government
expenditure process. Section IV studies how far the martingale conver-
gence approach used in the consumption-smoothing literature can take
us. Section V takes a more direct approach to studying the limiting
behavior of the multiplier in general versions of our model. Under a
condition that the government expenditure process remains sufficiently
random, we show that, in general, the multiplier will not converge to
a nonzero value, meaning that the allocation cannot converge to that
for a complete market Ramsey equilibrium. That result establishes the
sense in which the previous examples are both special. Section VI briefly
describes linear impulse response functions of numerically approxi-
mated equilibrium allocations. The computed examples have tax rates
that combine a feature of Barro’s policy (a unit root component) with
aspects of Lucas and Stokey’s Ramsey plan (strong dependence of taxes
and deficits on current shocks).

Throughout this paper, we assume that the government binds itself
to the Ramsey plan. Therefore, we say nothing about Lucas and Stokey’s
discussions of time consistency and the structure of government debt.

* See the first section of Hume (1777). The examples in Lucas and Stokey (1983), where
the government faces a war at a known future date, also generate a behavior of debt
consistent with our epigraph from Hume.
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II. The Economy

Technology and preferences are those specified by Lucas and Stokey.
Let ¢, x, and g, denote consumption, leisure, and government purchases
at time ¢ The technology is

¢tx+g =1 (1)

Government purchases g, follow a Markov process, with transition density
P(g'|g) and initial distribution 7. We assume that (P, ) is such that
g € [Gmin» Zmax)- Except for some special examples, we also assume that
P has a unique invariant distribution with full support [ @maxl-

A representative household ranks consumption streams according to

E, >, Bulc, x,), (2)

t=0

where ¢ € (0, 1), and E, denotes the mathematical expectation con-
ditioned on time 0 information.

The government raises all revenues through a time-varying flat rate
tax 7,0n labor at time ¢. Households and the government make decisions
whose time ¢ components are functions of the history of government
expenditures g' = (g, g1, ---»g,) and of initial government indebt-
edness bf,.

Incomplete Markets with Debt Limits

Lets, = 7(1 — x,) — g, denote the time ¢ net-of-interest government sur-
plus. Households and the government borrow and lend only in the form
of risk-free one-period debt. The government’s budget and debt limit
constraints are

bEy < s, + plbs, 120, (3)
and

ML bE<M, t>0. (4)

Here p; is the price in units of time ¢ consumption of a risk-free bond
paying one unit of consumption in period ¢+ 1 for sure; bf represents
the number of units of time ¢+ 1 consumption that at time ¢ the gov-
ernment promises to deliver. When (3) holds with strict inequality, we
let the right side minus the left side be a nonnegative level of lump-
sum transfers 7, to the household. The upper and lower debt limits
M and M in (4) influence the optimal government plan. We discuss
alternative possible settings for ‘M and M below.
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The household’s problem is to choose stochastic processes {c, x,
bfY:—, to maximize (2) subject to the sequence of budget constraints

Ptbbxg'i" < (1 - Tt)(l - ‘xt) + bi] + Tt’ t20, (5)

with prices and taxes {p,”, 7, T} taken as given; here b¢ denotes the
household’s holdings of government debt. The ¢ element of consumers’
choices must be measurable with respect to (g', b%)).

The household also faces debt limits analogous to (4), which we as-
sume are less stringent (in both directions) than those faced by the
government. Therefore, in equilibrium, the household’s problem always
has an interior solution. When u, represents marginal utility with respect
to variable i, the household’s first-order conditions require that the price
of risk-free debt satisfies

» U1
P =EB—— Vviz20 (6)
and that taxes satisfy
= (7
u(:,t(l - Tl) .

Debt Limits

By analogy with Aiyagari’s (1994) and Chamberlain and Wilson’s (2000)
analyses of a household savings problem, we shall study two kinds of
debt limits, called “natural” and “ad hoc.” Natural debt limits come
from taking seriously the risk-free status of government debt and finding
the maximum debt that could be repaid almost surely under an optimal
tax policy. We call a debt or asset limit ad hoc if it is more stringent
than a natural one. In our model, the natural asset and debt limits are
in general difficult to compute. We compute and discuss them for an
important special case in Section III.

Definitions

We use the following definitions.

DEeFINITION 1. Given 4%, and a stochastic process {g}, a feasible allo-
cation is a stochastic process {c, x, g} satisfying (1) whose time ¢ elements
are measurable with respect to (g‘, b%). A bond price process {p/} and a
government policy {7, b} are stochastic processes whose time ¢ element is
measurable with respect to (g, b%,).

DEerFINITION 2. Given 0%, and a stochastic process {g}, a competitive
equilibrium is an allocation, a government policy, and a bond price pro-
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cess that solve the household’s optimization problem and that satisfy
the government’s budget constraints (3) and (4).

Because we have made enough assumptions to guarantee an interior
solution of the consumer’s problem, a competitive equilibrium is fully
characterized by (1), (3), (4), (7), and (6).

DeriNITION 3. The Ramsey problem is to maximize (2) over competitive
equilibria. A Ramsey outcome is a competitive equilibrium that attains the
maximum of (2).

We use a standard strategy of casting the Ramsey problem in terms
of a constrained choice of allocation. We use (6) and (7) to eliminate
asset prices and taxes from the government’s budget and debt con-
straints, and thereby deduce sequences of restrictions on the govern-
ment’s allocation in any competitive equilibrium with incomplete mar-
kets. Lucas and Stokey showed that under complete markets,
competitive equilibrium imposes a single intertemporal constraint on
allocations. We shall show that competitive equilibrium allocations in
incomplete markets must satisfy the same restriction from Lucas and
Stokey, as well as additional ones that impose that the government pur-
chase or sell only risk-free debt.

From now on, we use (7) to represent the government surplus in
terms of the allocation as s, = s(c, g) = [1 — (u,,/u. )¢, + g) — g. The
following proposition characterizes the restrictions that the govern-
ment’s budget and behavior of households place on competitive equi-
librium allocations.

ProrosITION 1. Take the case 7T, = 0, and assume that for any com-
petitive equilibrium S, — 0 almost surely.” Given b%,, a feasible allo-
cation {¢, g, x} is a competitive equilibrium if and only if the following
constraints are satisfied:

S u,
E, >, B'—2s, = b, )
=0 U
= -u(, j _—
M<EY B~ <M vi20, Vg € [gum Zuud s (9)
j=0

‘c,t

and

- U v . . _
E;Z B’ s.+; is measurable with respect to g
j=0 U,

Vi>0, Vg' € [Zuins Gmaxl (10)

> We assume zero lump-sum transfers for simplicity. It is trivial to introduce lump-sum
transfers. The condition on marginal utilities can be guaranteed in a number of ways.


kenjudd
Highlight

kenjudd
Highlight

kenjudd
Highlight


OPTIMAL TAXATION 1227

Proof. We relegate the proof to the Appendix.

In the complete markets setting of Lucas and Stokey, (8) is the sole
“implementability” condition that government budget balance and com-
petitive household behavior impose on the equilibrium allocation. The
incomplete markets setup leaves this restriction intact but adds three
sequences of constraints. Constraint (10) requires that the allocation be
such that, at each date >0,

uc,t+j
S
t+j
ur,t

B,=E>,B
j=0

the present value of the surplus (evaluated at date ¢ Arrow-Debreu
prices), be known one period ahead.® Condition (9) requires that the
debt limits be respected. Condition (8) is the time 0 version of constraint
(10).

We approach the task of characterizing the Ramsey allocation by com-
posing a Lagrangian for the Ramsey problem.” We use the convention
that variables dated ¢ are measurable with respect to the history of shocks
up to t. We attach stochastic processes {v,, v,};_, of Lagrange multipliers
to the inequality constraints on the left and right of (9), respectively.
We incorporate condition (10) by writing it as

U

c,t+j
S,
t+72
u J

bE, = E DB
j=0

ot

multiplying it by wu, and attaching a Lagrange multiplier ', to the
resulting time ¢ component. Then the Lagrangian for the Ramsey prob-
lem can be represented, after application of the law of iterated expec-
tations and Abel’s summation formula (see Apostol 1974, p. 194), as

L=FE, DB Tulc, 1 = ¢, g) — Vs, + u, (v, M — vy, M+ b )], (11)
t=0

where

lpt = l//t—l tor,— vty (12)

® There is a parallel constraint in the complete markets case in which B, must be meas-
urable with respect to g’ But this constraint is trivially satisfied by the definition of
E(+). Proposition 1 is reminiscent of Duffie and Shafer’s (1985) characterization of in-
complete markets equilibrium in terms of “effective equilibria” that, relative to complete
markets allocations, require next-period allocations to lie in subspaces determined by the
menu of assets. In particular, see the argument leading to proposition 1 in Duffie (1992,
pp- 216-17).

7 Chari et al. (1995, p. 366) call the Ramsey problem with incomplete markets a com-
putationally difficult exercise because imposing the sequence of measurability constraints
(10) seems daunting. For a class of special examples sharing features with the one in Sec.
III, Hansen et al. (1991) focus on the empirical implications of the measurability con-
straints (10).
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for ., = 0. Here v, <0, with equality only if the government’s assets
are large enough for the payouts on them to sustain the highest possible
value of g at all periods with zero taxes. The multipliers ¢, <0 for ¢>
0; v, can be either positive or negative for ¢>0. To see why v,<0,
differentiate the Lagrangian with respect to 4¢,, and notice that u, gy,
can be regarded as the effect on the welfare of the representative house-
hold of an increase in the present value of government purchases. The
nonpositive random multiplier ¥, measures the effect on the represen-
tative household’s welfare of an increase in the present value of gov-
ernment expenditures from time ¢ onward. The multiplier v, measures
the marginal impact of news about the present value of government
expenditures on the maximum utility attained by the planner.®

The Ramsey problem under complete markets amounts to a special
case in which v,,, = v, = »,, = 0 for all >0, and 7, is the (scalar)
multiplier on the time 0 present value government budget constraint:
these specifications imply that ¥, = ¢, = v, for complete markets. Rel-
ative to the complete markets case, the incomplete markets case aug-
ments the Lagrangian with the appearances of b¢,, v, v,, v,, for all
t>1, and M and M in the Lagrangian, and the effects of v, »,, v, on
Y, in (12).°

We want to investigate whether the additional constraints on the Ram-
sey allocation move us toward Barro’s tax-smoothing outcome. For ¢ >
1, the first-order condition with respect to ¢, can be expressed as

U, — Uy, — lth + (uu,t - u(-x,t)(VltM_ V2zM+ 'Ytbég—l) = O> (13)
where'”

K, = (uu,t - urx,t)st + UrSe, (14)

® The present value is evaluated at Arrow-Debreu prices for markets that are reopened
at time ¢ after g, is observed.

? As is often the case in optimal taxation problems, it is not easy to establish that the
feasible set of the Ramsey problem is convex, so it is not easy to guarantee that the saddle
point of L is the solution to the optimum. But since the first-order conditions of the
Lagrangian are necessary and our solutions rely on only the first-order conditions of the
Lagrangian, it is enough to check (as we do) that only one solution to the first-order
conditions of the Lagrangian can be found.

Because future control variables appear in the measurability constraints, the optimal
choice at time ¢ is not a time-invariant function of the natural state variables (6%,, g) as
in standard dynamic programming. Nevertheless, the Lagrangian in (11) and the con-
straint (12) suggest that a recursive formulation can be recovered if ¥, , is included in
the state variables. Indeed, this fits the “recursive contracts” approach described in Marcet
and Marimon (1998); they show, under some assumptions, that the optimal choice at time
tis a time-invariant function of state variables (, 1, %, g,). Appendix B of Marcet, Sargent,
and Seppald (1995) describes in detail how to map the current problem into the recursive
contracts framework.

"In the definition of «, it is understood that total differentiation of the function
u = u(c, 1 — c— g) with respect to ¢ is occurring. Evidently,

K, = (un - uxl) + ["l(urr,t —2u,,+ u\u) + &(uxx,; - urx.t)'

ox,t
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It is useful to study this condition under both complete and incomplete
markets.

Complete Markets

Complete markets amount to v,, = »,, = 7,,, = 0 for all t> 0, which
causes (13) to collapse to

U, — Uy, — YoK, = 07 (15)

which is a version of Lucas and Stokey’s condition (2.9) for ¢{> 1. From
its definition (14), k, depends on the level of government purchases
only at ¢. Therefore, given the multiplier v,, (15) determines the allo-
cation and associated tax rate 7, as a time-invariant function of g, only.
Past g% do not affect today’s allocation. The sole intertemporal link
occurs through the requirement that v, must take a value to satisfy the
time 0 present value government budget constraint. Equation (15) im-
plies that, to a linear approximation, 7, and all other endogenous var-
iables mirror the serial correlation properties of the g, process."' The
“tax smoothing” that occurs in this complete markets model occurs
“across states” and is reflected in the diminished variability of tax rates
and revenues relative to the taxes needed to balance the budget in all
periods, but not in any propagation mechanism imparting more pro-
nounced serial correlation to tax rates than to government purchases.
Evidently, in the complete markets model, the government debt B, also
inherits its serial correlation properties entirely from g. For example,
if g, is first-order Markov, then B, is a function only of g, (see Lucas and
Stokey 1983).

Incomplete Markets

In the incomplete markets case, equation (12) suggests that i, changes
(permanently) each period because v, is nonzero in all periods. Being
of either sign, v, causes ¥, to increase or to decrease permanently. The
multiplier ¥, is a risk-adjusted martingale, imparting a unit root com-
ponent to the solution of (13). Taking the derivative of the Lagrangian
with respect to b, we get

Bl vl = 0. (16)

This implies that vy, can be positive or negative and that ¥, can rise or

"'If utility is quadratic as in some examples of Lucas and Stokey, 7, is a linear function
of g, and all variables inherit their serial correlation directly from g.
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fall in a stochastic steady state. Assuming that the debt constraints do
not bind at ¢, »,,,,, ¥,,,;, = 0, and using (12) gives

lpt = (Et[ur,tﬂ]) 71Et[u5,t+l¢t+l]' (17)

With the definition of conditional covariance, equation (17) can be
further decomposed as

¢z = Et[¢t+1] + (Et[u(',[+l]) - Coyv, (un,t+17 \[/zﬂ)-

Equation (13) shows that this approximate martingale result is not pre-
cisely Barro’s, first, because ¥ is not a pure martingale and, second,
because (13) makes 7, depend also on v,b2,, and so distorts the pure
martingale outcome. In Section IV, we pursue how much information
can be extracted from (17).

Example 1: Serially Uncorrelated Government Purchases

The case in which government expenditures are independently and
identically distributed (i.i.d.) provides a good laboratory for bringing
out the implications of prohibiting state-contingent debt. With complete
markets, the one-period state-contingent debt falling due at ¢ satisfies

o

Uit
> B~
j=1

ml—l(gl) = Bz =% + El Siaj)»

Uy,

where m, ;(g) means the quantity of claims purchased at ¢t — 1 contin-
gent on g, = g With a serially independent g, process, and since both
consumption and s are time-invariant functions of g, the expectation
conditional on g, equals an unconditional expectation, constant through
time, implying

uc,sz—l(gt) = ur,tst + BE’MCB, (18)

where Eu B = Eu,s/(1 — (8). Equation (18) states that, measured in mar-
ginal utility units, the gross payoff on government debt equals a constant
plus the time ¢ surplus, which is serially uncorrelated. In marginal utility
units, the time ¢ value of the state-contingent debt with which the gov-
ernment leaves every period is a constant, namely, BEu B. The one-
period rate of return on this debt is high in states when the surplus s,
is pushed up because g, is low, and it is low in states when high govern-
ment expenditures drive the surplus down. There is no propagation
mechanism from government purchases to the value of debt with which
the government leaves each period, which is constant.'?

'? For serially correlated government spending, it can be shown that the portfolio m is
time-invariant. This follows, e.g., from Marcet and Scott (2001, proposition 1).
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With incomplete markets, the situation is very different. Government
debt evolves according to

B, = 1(B,~ s), 19)

where 7, = (p)) 7' and B,,, is denominated in units of time ¢+ 1 con-
sumption goods. Since the gross real interest rate ris a random variable
exceeding one, this equation describes a propagation mechanism by
which even a serially independent government surplus process s, would
influence future levels of debt and taxes. In fact, if the government tried
to implement the complete markets solution, which generates an i.i.d.
surplus, equation (19) is explosive in debt, and with probability one,
debt will go to plus or minus infinity; therefore, the complete markets
solution is not implementable, so that even with i.i.d. government ex-
penditures, the absence of complete markets causes the surplus process
itself to be serially correlated, as described above.

Reason for Examples

So far, we have shown that the optimal tax is determined jointly by g,
b¢,, and a state variable that resembles a martingale, namely ¢, De-
pendence on g induces effects like those found by Lucas and Stokey.
Dependence on ¢, impels a martingale component, like that found by
Barro. It is impossible to determine which effect dominates at this level
of generality. To learn more, we now restrict the curvature of the one-
period utility function to create a workable special example.

III. An Example Affirming Barro

In the Ramsey problem, the government simultaneously chooses taxes
and manipulates intertemporal prices. Manipulating prices substantially
complicates the problem, especially with incomplete markets. We can
simplify by adopting a specification of preferences that eliminates the
government’s ability to manipulate prices. This brings the model into
the form of a consumption-smoothing model (e.g., Aiyagari 1994; Cham-
berlain and Wilson 2000) and allows us to adapt results for that model
to the Ramsey problem. We shall establish a martingale result for tax
rates under an arbitrary restriction on the level of risk-free assets that
the government can acquire.

Example 2: Constant Marginal Utility of Consumption

We assume that u(c, x) = ¢+ H(x), where H is an increasing, strictly
concave, three times continuously differentiable function. We assume
H'(0) = < and H'(1) <1 to guarantee that the first-best has an interior
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solution for leisure, and H"(x)(1 — x) > 2H"(x) for all x € (0, 1) to guar-
antee existence of a unique maximum level of revenue."”

Making preferences linear in consumption ties down intertemporal
prices. Then (6) and (7) become

p =28 (20)
and
Hx)=1-1. (21)

Equation (20) makes the price system independent of the allocation.
Government revenue is R(x) = [1 — H'(x)](1 — x) with derivatives

R(x) = —H"(x)(1 — x) — [1 — H'(x)] (22)
and
R'(x) = —H"(x)(1 — x) + 2H"(x). (23)

Our assumptions on H guarantee that R” < 0. Hence Ris strictly concave.
Letting x, be the first-best choice for leisure satisfying H'(x;) = 1, we
know that x; < 1. Since R'(x;) > 0 and R(x;) = R(1) = 0, strict concavity
of R implies that there is a unique x, € (x,, 1) that maximizes the
revenue and satisfies R'(x,) = 0. The government wants to confine x,
to the interval [x,, x,]. Concavity of R implies that R’ is monotone and,
therefore, that R is monotone increasing on [x;, x].

Natural Debt Limits

Aiyagari and others define an agent’s “natural debt limit” to be the
maximum level of indebtedness for which the debt can be repaid almost
surely, given the agent’s income process. Here the natural debt limit
for the government is evidently

— 1
M T v—— [R(’x ) - max]‘
1-g ¥ 8
To discover a natural asset limit, we write the government budget con-
straint with zero revenues and transfers at the maximum government
expenditure level as

btgfl = _gmax + pbbtg’

where p’ = B. Evidently the natural asset limit for the government is
M = —g.../(1 = B). The government has no use for more assets because
it can finance all expenditures from interest on its assets even in the
highest government expenditure state.

'* The latter assumption is satisfied, e.g., if H” > 0.
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Imposing ¢, 2> 0 gives a natural borrowing limit for the consumer,

b < H'(x,)(1 = x,) ’
1-p

where the numerator is the lowest after-tax income of the household.
We assume that parameters are such that b°> —M.

Ramsey Problem and an Associated Permanent Income Model

Under this specification, the Ramsey problem acquires the form of the
consumption-smoothing problem. Because the revenue function is mon-
otone on [x, x], we can invert it to get the function x = x(R) for
R e R = [0, R(x,)]. This means that utility can be expressed in terms
of revenue and, since the term 1 — g, is exogenous, it can be dropped
from the objective of the government to let us express the government’s
one-period return function as W(R) = —x(R) + H(x(R)). Notice that
W(R) equals minus the deadweight loss from raising revenues R and
thus matches Barro’s one-period return function.

With these assumptions, W(R) is a twice continuously differentiable,
strictly concave function on R. To see this, note that

W'(R)
WII(R)

[H'(x(R)) — 1]¥'(R),
[H'(x(R)) — 11x"(R) + H'"(x(R))[x'(R)]*.

The fact that R" <0 implies that x” >0, and since H is concave, the
formula above for W’ implies that W is concave. Furthermore, W(R)
has a strict maximum at R = 0, associated with the first-best tax rate of
x; = 0.

Then the Ramsey problem can be expressed as

max E, E B'W(R) (24)
Rebfy  1=0
subject to
bE2 B '(g,+ b, — R) (25)
and
bf e [M, M]. (26)

We restrict revenues to be in R and the sequence of revenues to be in
the infinite Cartesian product R”.
We can map our model into the consumption problem by letting R
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play the role of consumption, W(R) the one-period utility function of
the consumer, g, exogenous labor income, and 4 the household’s debt."

As Chamberlain and Wilson (2000) describe, the solution of the con-
sumption problem depends on the utility function, the relation of the
interest rate to the discount factor, and whether there persists sufficient
randomness in the income process. Problem (24)-(26) corresponds to
a special consumption problem with a finite bliss level of consumption
and the gross interest rate times the discount factor identically equal
to unity. For such a problem, if income remains sufficiently stochastic,
then under the natural debt limits, consumption converges to bliss con-
sumption and assets converge to a level sufficient to support that
consumption.

As we shall see in the next subsection, there is a related result for
the general case of the Ramsey plan under incomplete markets: tax
revenues converge to zero and government assets converge to a level
always sufficient to support government purchases from interest earn-
ings alone, with lump-sum transfers being used to dispose of earnings
on government-owned assets. To sustain randomly fluctuating tax rates
in the limit requires arresting such convergence. Putting a binding up-
per limit on assets prevents convergence, as we shall show by applying
results from the previous section to the special utility function of this
section.

Incomplete Markets, “Natural Asset Limit”
For example 2, the definition of k, in (14) implies
k, = —R'(x) <0 for x, € [x;, x,]. (27)

The variables (7, x, ¥,) are then determined by (12), which we repeat
for convenience, and the following specialization of (13):

l//l = 1)[/t—l tv, - Vo, +, (28)
and
,=1-H(x) = —yR(x). (29)

Under the natural asset limit and the ability to make positive lump-sum
transfers, »,, = 0. Then (12), u, = 1, and (16) imply that

E_ b2y, (30)

Inequality (30) asserts that the nonpositive stochastic process ¢, is a

' See Aiyagari (1994), Chamberlain and Wilson (2000), and their references for treat-
ments of this problem. Hansen et al. (1991) pursue the analogy between the consumption-
and tax-smoothing problems.
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submartingale.I5 It is bounded above by zero. Therefore, the submar-
tingale convergence theorem (see Loéve 1978) asserts that y, converges
almost surely to a nonpositive random variable. There are two
possibilities.

1. If the Markov process for g has a unique nontrivial invariant dis-
tribution, then our lemma 3 in Section V shows that ¥, converges almost
surely to zero. In that case, (29) implies that 7, converges to the first-
best tax rate 7, = 0, and leisure converges to the first-best x,. The level
of government assets converges to the level g,.../(1 — @) sufficient to
finance g, from interest earnings. Transfers are eventually zero when
g, = Zuax DUt positive when g, < g,...

2. If the Markov process for g has an absorbing state, then ¢, can
converge to a strictly negative value; ¥ converges when g, enters the
absorbing state. From then on, taxes and all other variables in the model
are constant.

Barro’s Result under an Ad Hoc Asset Limit

Thus, under the natural asset limit, this example nearly sustains Barro’s
martingale characterization for the tax rate, since ¥, is a martingale and
taxes are a function of ¥, But the government accumulates assets, and
in the limit, the allocation is first-best and taxes are zero. We now show
that imposing an ad hoc asset limit makes outcomes align with Barro’s
even in the limit as ¢ grows, at least away from corners. When M >
—guax/(1 — B), the lower limit on debt occasionally binds. This puts a
nonnegative multiplier »,, in (12) and invalidates the martingale im-
plication (30). This markedly alters the limiting behavior of the model
in the case in which the Markov process for g has a unique invariant
distribution. In particular, rather than converging almost surely, ¥, can
continue to fluctuate randomly if randomness in g persists sufficiently.
Off corners (i.e., if »,,,, = »,,,, = 0 almost surely given information at
), ¥, fluctuates as a martingale. But on the corners, it will not. If we
impose time-invariant ad hoc debt limits M and ‘M, the distribution of
government debt will have a nontrivial distribution with randomness
that does not disappear even in the limit. Also, ¥ will have the following
type of “inward-pointing” behavior at the boundaries. If government
assets are at the lower bound and g,,, = g..., then taxes are set at
1 — H'(x,) and government assets stay at the lower bound. If g, <
Zmax then taxes will be lower and government assets will drift up. If
government assets are at the upper bound and g,,, = g,.,,, then just
enough taxes are collected to keep assets at the upper bound; if
gis1 > Emins then assets will drift downward.

' Inequality (30) differs from (17) because here we allow the asset limit to bind.
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F16. 1.—Outcomes for an incomplete markets economy in example 1 with natural debt
limits on government assets.

In the case in which g, is i.i.d., by using an argument similar to those
in Huggett (1993) and Aiyagari (1994), one can show that an ergodic
distribution of assets exists. Figures 1 and 2 illustrate the difference
between natural and ad hoc asset limits. They show simulations of two
economies in each of which government expenditures follow a two-state
Markov process and the consumers have quasi-linear preferences. The
two economies are identical except for their debt limits. In both econ-
omies, H(x) = 0.05log (x), and g, can take only values 0.1736 (war) or
0.05 (peace) with the transition matrix

0.5 0.5
0.1 0.9

In the economy displayed in figure 1, the government faces natural asset
and debt limits, (M, M) = (—3.472, 8.584), whereas in the figure 2
economy it faces more stringent ad hoc limits, (M, M) = (-1, 1). The
different asset limits lead to dramatically different results in the out-
comes. While the first economy displays convergence to the first-best,
the second economy exhibits Barro-like random walk behavior of taxes
and debt within boundaries.
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F1G6. 2—Outcomes for the incomplete markets economy in example 1 with an ad hoc
limit on assets.

Complete Markets: Constant Tax Rales

For comparison, it is useful to describe what the allocation and taxes
would be under complete markets in example 2. In the complete mar-
kets case, restrictions (25) and (26) are replaced by the following version
of Lucas and Stokey’s single implementability constraint:

bE, = E@Oﬁ’(& - 2)- (31)

The policy that maximizes (24) subject to (31) sets revenues and tax
rates equal to constants and transfers to zero. This can be shown directly,
but it is instructive to show it simply by applying the results earlier in
this section. Then equations (27) and (15) imply

=1-H(x) = —7R(x). (32)

Recall that R'(x) > 0 for x € [x,, x,) and that v, < 0. The restrictions on
R(x) on [x,, x,] derived above imply that there is a unique x, = x“* that
solves (32). Thus, under complete markets, the tax rate and leisure are
constant over time and across states.

Although the incomplete markets economy under the natural asset
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limits eventually obtains the first-best allocation, with taxes and hence
the distortions that they bring converging to zero, at time 0 the con-
sumers are better off in the complete markets economy with its persis-
tent distortions. The explanation, of course, is that it takes a long time
for the incomplete markets economy to reach the first-best. In the ex-
ample presented in figure 1, it takes about 200 periods before the econ-
omy converges to the first-best.

Example 2 ties down wu,, by assuming linear utility. The next two
sections study whether taxes can be expected to converge under more
general utility specifications.

IV. Nonconvergence of v,

Example 2 showed how a martingale property under the natural debt
and asset limits guaranteed that Y converges almost surely. Furthermore,
in that case, the limit would often be zero.

In this section we explore whether it is possible to obtain a general
result about convergence by exploiting the martingale property of ..
We study the interaction of the convergence of ¥, and u,, under more
general preferences. We shall show that if we can determine the as-
ymptotic behavior of the predictability of u_, then we can also show
convergence of Y, We proceed to ask whether , can converge when
u,, does not. We show that, in general, if u,, does not converge, as
happens in most models, then we can say very little about convergence
of ¥,

We have already argued that if the debt limits can bind, then ¥, should
not be expected to converge. Throughout this section we assume that
the natural debt and asset limits are imposed, so that the asset and debt
limits never bind.'® Then (17) holds, and it is convenient to rewrite it
as

1l+1

V= B

V|- (33)

We also assume throughout this section that u,(c, x) > 0 for all feasible
¢, X.

With terminology common in finance, (33) and the fact that
Elu.,./Elu. 1] =1 make ¢ a “risk-adjusted martingale.” Risk-
adjusted martingales converge under suitable conditions. One strategy
to prove convergence involves finding an equivalent measure that sat-
isfies a particular boundary condition (see, e.g., Duffie 1996, chap. 4).

' Some standard regularity conditions need to be imposed in order to guarantee ex-
istence of natural debts limits, in particular, to guarantee that the interest rate is bounded
away from zero.
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We follow a related approach of Chamberlain and Wilson (2000) and
give an example in which the required boundary condition is satisfied.
We shall also show that, unfortunately, the standard boundary conditions
are violated in the general case.

Martingale Convergence

We begin with what seems like an encouraging result. Let

u

(X

Lemma 1. {04} is a martingale. Therefore, it converges almost surely
to a random variable 6y that is finite with probability one.

Proof. By assumption, the debt limits are never binding, and (33) holds
for all periods with probability one. Multiplying both sides of (33) by
0, we have

9t¢t = Et[otﬂ\btﬂ] (34)

almost surely. Since 6,> 0, 64, <0, and this product converges almost
surely to a finite variable by theorem A of Loéve (1978, p. 59). Q.E.D.

Lemma 1 implies convergence of {, only if we can say something
about the asymptotic behavior of 6. In particular, if 6, converges to a
nonzero limit, then lemma 1 allows us to conclude that ¥, converges.'”
This can be guaranteed in an interesting special case.

Example 3: Absorbing States Imply That , Converges

Assume that {g} has absorbing states in the sense that g, = g, , almost
surely for ¢ large enough, so that fluctuations cease and wu,(w) =
E,_ [u.](w). Since Lucas and Stokey also consider examples with ab-
sorbing states, it is instructive to compare in what sense the incomplete
markets equilibrium replicates the complete markets one.

The arguments of Lucas and Stokey show that given an initial level
of debt b, the Lagrange multiplier is constant through time. Let us
make this dependence explicit and denote by v, (b¢,) the multiplier
that obtains given a level of initial debt under complete markets.

Under incomplete markets, since 0 < u,, <, it is clear that §, con-
verges to a positive number almost surely. Then lemma 1 implies that
¥, = V., almost surely and the limiting random variable ., plays the role
of Lucas and Stokey’s single multiplier for that tail allocation. Once g
has reached an absorbing state, the incomplete markets allocation co-

' This is the same proof strategy of Chamberlain and Wilson (2000). Our lemma 1 is
analogous to their theorem 1. However, in their model, 0, is exogenous.
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incides with the complete markets allocation that would have occurred
under the same shocks, but for a different initial debt. More precisely,
for each realization w, the incomplete markets allocations coincide with
those under complete markets, under the assumption that initial debt
under complete markets had been equal to a value b(w) satisfying
Yo" (b(@) = Y(w).

The value of .. depends on the realization of the government ex-
penditure path. If the absorbing state is reached after many bad shocks
(high g), the government will have accumulated high debt, and con-
vergence occurs to a complete market economy with high initial debt.
One can state sufficient conditions to guarantee that the absorbing state
is reached with positive probability before the first-best is attained, so
that P(,. < 0) > 0. This will be the case, for example, if the initial level
of debt is sufficiently high and if there is a positive probability of reach-
ing the absorbing state in one period. But even with an absorbing state,
a Markov process (B, ) can put a positive probability on an arbitrarily
long sequence of random government expenditures that gives the gov-
ernment the time and incentive to accumulate enough assets to reach
the first-best.

Therefore, in example 3, taxes always converge. It is easy to construct
examples in which there is a positive probability of converging to a
Ramsey (Lucas and Stokey) equilibrium with nonzero taxes. But if 0,
converges to zero, lemma 1 becomes silent about convergence of i, and
the Ramsey allocation under risk-free government debt.”® So our next
task is to say something about the asymptotic behavior of 6.

LEmMMA 2. (a) {0} is a nonnegative martingale. Therefore, §, > 6 almost
surely for a random variable 6 that is finite with probability one. (5) Fix
a realization w. If 6(w) = 0(w) >0, then U ()/1E,  [u, J(w) =1 as t—=
o0

Proof. To prove part a,

U i+1

Et[uc,t+1]

To prove part b, notice that if §(w) = 6(w) > 0, then

E[6,.,] = 6.E, =0,

logfw) = 2, flogu,, (@) —logE, , [u, ()]} = logf(w) > —=
7=1
as ¢—.  Convergence of this sum implies logu, (w) —
logE,_ [u, (w)] = 0 and u, (w)/{E,_ [u,](w)} = 1 as t—= . QE.D.
There are three interesting possibilities for the asymptotic behavior

¥ Note that Chamberlain and Wilson do not have many results for the case in which
0, converges to zero, a possibility that they exclude by making the appropriate assumptions
on their (exogenous) interest rate.



OPTIMAL TAXATION 1241

of the allocations under incomplete markets: (i) convergence to the
first-best (as in example 2), (ii) convergence to a Lucas and Stokey
equilibrium (as in example 3), and (iii) convergence to a stationary
distribution (different from the distributions of cases i and ii). Part a
of lemma 2 might appear to be a hopeful, positive result that will help
us in discerning which of these cases occurs, since convergence of 0,
together with lemma 1 may allow us to conclude something about con-
vergence of ¥, But corollary 1 shows that, in general, 0, converges to
zero under all the cases above, in which case lemma 1 is silent about
convergence of the allocations.

COROLLARY 1. (a) If the allocation converges to a stationary distri-
bution with u,, # E, ,[u,] with positive probability, then §,— 0 almost
surely. (b) If, for any multiplier vy, > 0, the complete markets Ramsey
equilibria converge to a distribution such that u ' # E,[u."] with
positive probability, then §, = 0 almost surely.

Proof. Part a: In this case, u,,/E,_,[u,,] does not converge to one almost
surely. Then the contrapositive of part b of lemma 2 implies that the
probability that 0, has a positive limit is equal to zero.

Part b: Consider a realization for which 6(w) > 0. Then lemma 1 im-
plies that y(w) converges, v, converges to zero, and the first-order con-
ditions for optimality indicate that the Ramsey allocation converges to
a complete markets equilibrium. Hence marginal utility converges to
some complete market Ramsey equilibrium, under the assumption
stated in part b ., /E, |[u,,] cannot converge to one, and the statement
is implied by the contrapositive of part & of lemma 2. Q.E.D.

Notice that the conditions of part b of corollary 1 are satisfied if u
has some curvature and g has persistent randomness. In example 2, u
has insufficient curvature, and in example 3, g has insufficient random-
ness, so that is why convergence of ¥ could occur in those cases.

One can interpret this corollary as saying that in the general case we
are unable to use lemma 1 to determine the asymptotic behavior of the
allocations. This is a negative conclusion, because it means that the
martingale approach cannot be used in some important cases. For ex-
ample, we could be interested in exploring the possibility that (¢, b,
g) converges to a stationary nondegenerate distribution. At this point
we cannot say whether this is the case. But if this were the case, then
part a of the corollary would imply that lemma 1 is silent, so the mar-
tingale approach could not be used. In Section V, we shall show that if
part b applies, convergence to complete markets allocation is not a
possibility."

" There is a literature in finance stating conditions to guarantee that risk-adjusted
martingales converge. But the case §,— 0 corresponds to the case in which the boundary
conditions for existence of the equivalent measure used in that approach fail to hold, so
that approach is also unavailable to study the limiting properties of the model. See Duffie
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V. Another Nonconvergence Result

In Section IV, we discovered that the martingale approach is often in-
conclusive about the asymptotic behavior of the equilibrium. However,
in example 3 the incomplete markets Ramsey allocation and tax policy
converge to their complete markets counterparts. In this section, we
explore whether the convergence in example 3 can be extended to
more general government expenditure processes. It cannot. By working
directly with the government budget constraints, under general con-
ditions on the government expenditure process, we rule out conver-
gence to the Ramsey equilibrium under complete markets (to be called
the Lucas-Stokey equilibrium). Thus we strengthen the results of the
last section by ruling out another type of convergence.

The budget constraint of the government without lump-sum transfers
and for any debt limits can be rewritten as

b b = (i_ 1)
t —1 p,b

Here g,— 7(1 — x,) is the net-of-interest or “primary deficit.” Let D(f,
g) = [g,— 71— x)1/(1 — p//), where the f superscript denotes the
Lucas-Stokey equilibrium with a multiplier v, = f

DEFINITION 4. Given f, we say that D(f, g,) is sufficiently random if there
exists an e > 0 such that, for ¢ large enough and any constant K, either

8 — Tz(l - xl)

- + 08, (35)

PID(f, g)>K+eforall j=1t....t+k|g 1 ....g) >0 (36)
or
P(D(f, g) <K—eforall j=+t ..,t+k[g ., ....g) >0 (37)

for all k> 0 for almost all realizations.*

Clearly, D(f, g,) is insufficiently random if g, converges almost surely,
as in example 3. But if g, is stationary with positive variance, most utility
functions imply that D is sufficiently random for all f*

Notice that convergence of the incomplete markets allocation to the
Lucas-Stokey equilibrium requires that y, converges to a nonzero value
and that the multipliers » of the debt limits become zero. The following
lemma shows that if there is sufficient randomness in D, the incomplete
markets allocation cannot converge to a Lucas-Stokey allocation.

LEMMA 3. Assume that the interest rate is bounded away from zero

(1996) for a precise description of the conditions that the equivalent measure approach
requires.

* Notice that e can depend on f; the ¢ “large enough” can depend on e, f, but they have
to be uniform on K and k.

* For stationary g, insufficient randomness could occur only if the complete markets
solution implied a constant D.
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with probability one. Also, assume that the first-order conditions for
optimality in the Ramsey problem (13) define a continuous function
mapping (¥, v, b%,) to the endogenous variables (7, x, p). Then

Pw: Y(w) 2 s(w) <0 as ¢t and
D(s(w), g, sufficiently random) = 0.

Furthermore, for a particular realization in which y(w) = s(w), we have
bi(w) = D(s(w), g)-

Proof. Consider a realization w such that y(w) = s(w) < 0. In this case,
W — ¥,.1)(w) = 0 and (13) implies that (7, x, p’) converge to the Lucas-
Stokey equilibrium with Lagrange multiplier s(w), and

‘ g~ t(l - X,)

T (@) = DGs(w), g/)‘ = 0.

Now if D(s(w), g,) is sufficiently random, there is an e >0 (possibly de-
pendent on s(w)) as in the definition of sufficient randomness. Since
the endogenous variables converge to the Lucas-Stokey equilibrium with
Lagrange multiplier s(w), there is a ¢ such that, for all > ¢, we have
g — (1 —x;) €
‘ 1_7#,(0)) — D(s(w), gi(w)) <3
Now if D(s(w), g,) is sufficiently random, either (36) or (37) is satisfied.

Let us say that for K = —b2, itis (36) that occurs. Using equation (35),
we have that with positive probability

1
bf — b, > (17; - 1) [D(G(w), gr(w) — ; + b;f’ll

1 o e o
>[7_b—1 E—b,{l—§+b§,1

for all > ¢, where the first inequality follows from convergence to the
Lucas-Stokey equilibrium and the second inequality from equation (36)
for K = —b¢,. This equation for { = ¢implies that b — 5%, > 0 so that,
by induction, —6¢, + b, >0 and

1 €
bE— bE > (—,— 1)—
i 2

for all i > ¢ Since 1/p; is larger than, and bounded away from, one, this
equation implies that the debt grows without bound and that the upper
bound of debt would be violated with positive conditional probability.
Similarly, if we had (37) holding for K = —b#,, the lower bound on
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debt would be violated. Therefore, with sufficient randomness of D, it
is impossible for the allocation to converge to a Lucas-Stokey allocation.
Q.E.D.

Summary

In general, with sufficient randomness we can rule out the example 3
outcome that the Ramsey allocation with only risk-free debt converges
to a Ramsey allocation with state-contingent debt. But at least two in-
teresting possibilities remain: i, may have a nondegenerate distribution
in the limit or it may converge to the first-best, as in example 2 under
the natural asset limit.

To illustrate features of the model that we cannot tell analytically,
next we describe simulations.

VI. Numerical Examples

Sections IV and V tell why it is generally difficult to characterize the
Ramsey allocation for the incomplete markets economy for more gen-
eral preferences than those for example 2. It is reasonable to emerge
from Sections III, IV, and V with the prejudice that in the general case
the allocation would exhibit behavior somehow between those of ex-
amples 2 and 3. The results in this section support that prejudice by
presenting approximate Ramsey plans for both complete and incom-
plete markets economies with a serially independent government pur-
chase process.

From the point of view of someone used to solving dynamic pro-
gramming problems by discretizing the state space and iterating on the
Bellman equation, obtaining numerical solutions of this model seems
daunting. First of all, the solution is time-inconsistent, so that the policy
function (as a function of the history of the states g) changes every
period. Second, there are several endogenous continuous state variables,
so that discretization is very costly computationally, and linear approx-
imations are likely to be inexact. We approach the first issue by using
the framework of recursive contracts to characterize the (time-incon-
sistent) optimal solution by a recursive dynamic Lagrangian problem
with few state variables. As we argued in Section II, a sufficient set of
state variables is (g, 6%, ¥,,). Then we can solve the first-order con-
ditions by numerically approximating the law of motion with some con-
tinuous flexible functional form.*

* See Marcet et al. (1995) for a description of these and other computational details.
(Their paper can be found at ftp://zia.stanford.edu/pub/sargent/webdocs/research/
albert8.ps.) To approximate a solution, we apply the parameterized expectations algorithm
of Marcet (1988). This approach is convenient since it avoids discretization of the state
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F1G6. 3.—Impulse response functions for the complete markets economy, serially inde-
pendent government purchases in the numerical example of Sec. VI. From left to right,
top to bottom, are impulse response functions for consumption, leisure, tax rate, tax
revenues, and the government deficit.

Parameters

We rescaled the feasibility constraint so that ¢, + x, + g, = 100 and set
government purchases to have mean 30. The stochastic process for g,
is

€1

g1 =8

s
o
where ¢, is an i.i.d. sequence distributed ‘N (0, 1), and « is a scale factor.
Our utility function is

-1 x'r—1
u(e, x) = — +1 . (38)
1

1—o0,

We set (8, a;, 05, 1) = (.95, .5, 2, 1), (g o, b%,) = (30, .4, 0), and (M,
M) = (—1,000, 1,000).

For the complete markets Ramsey plan, figure 3 displays linear im-
pulse response functions to the innovation in government expenditures.

variables, and in our problem we have at least two endogenous continuous state variables.
A number of other approaches to solve this kind of first-order condition are also available
in the literature.
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F16. 4—Impulse response functions for the incomplete markets economy, serially in-
dependent government purchases in the numerical example of Sec. VI. From left to right,
top to bottom, are impulse responses of consumption, leisure, the gross real interest rate,
and the tax rate.

The impulse responses confirm that every variable of interest inherits
the serial correlation pattern of government purchases. We can estimate
the variance of each variable by squaring the coefficient at zero lag and
then multiplying by the innovation variance of g. Notice that the tax
rate 7, has very low variance, as indicated by its low zero-lag coefficient
of about 7 x 107", These impulse response functions tell us how ex-
tensively the government relies on the proceeds of the “insurance” it
has purchased from the private sector. In particular, the net-of-interest
deficit is about 93 percent of the innovation to government purchases.
The deficit is covered by state-contingent payments from the private
sector.

Figures 4 and 5 display linear impulse responses for the incomplete
markets economy. The impulse response function for 5 shows what a
good approximation it is to assert, as Barro did, that an innovation in
government expenditures induces a permanent increase in debt. This
contrasts sharply with the pattern under complete markets with serially
independent g, for which an innovation in government expenditures
has no effect on the present value of debt passed into future periods.
Figure 5 shows that ¥, is well approximated by a martingale. The impulse
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F16. 5.—Impulse response function for the incomplete markets economy, serially in-
dependent government purchases. From left to right, top to bottom, are impulse responses
of tax revenues, the debt level #% the deficit, and the multiplier .

response functions for the tax rate 7, and tax revenues deviate from the
“random walk” predicted by Barro mainly in their first-period responses.
(A random walk would have a perfectly flat impulse response function.)
These impulse response functions resemble a weighted sum of the ran-
dom walk response predicted by Barro and the white-noise response
predicted by Lucas and Stokey.”

Notice that the lag zero impulse coefficient for the tax rate is about
one-fourth higher than for the complete markets case, so that the one-
step-ahead prediction error variance is correspondingly higher. Because
of the near—unit root behavior of the tax rate under incomplete markets,
the jstep-ahead prediction error variance grows steadily with j, at least
for a long while. The unconditional variance of tax rates under incom-
plete markets is therefore much higher than under complete markets.

Another way to see the difference between complete and incomplete
markets is to compare autoregressions for tax rates. Table 1 presents

* The impulse response functions for tax rates and for tax revenues reveal that these
variables are well approximated as univariate processes whose first differences are first-
order moving averages.
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TABLE 1
AUTOREGRESSIONS OF THE TAX RATE
Complete Markets Incomplete Markets
E[7] .3108 2776
std(7) .0018 .0191
a 3125 .0031
b —.0054 9888
)is 2.9128 x 10~° .9944

the first two unconditional moments for tax rates and the results from
a least-squares regression

7, =a+ b1, t¢

for both economies, where ¢, is a least-squares residual that is orthogonal
to 7,_,. The enormous differences in 4 and R* are a testimony to the
presence of a unit root component under incomplete markets.

Under complete markets the tax rate inherits the serial correlation
properties of the exogenous shocks, and under incomplete markets tax
rates have serial correlation coefficients near unity. Notice also that while
taxes are, on average, lower under incomplete markets, they are also
much more volatile.

Welfare Comparison

Despite differences of behavior for taxes, surpluses, and debts, the im-
pulse response functions for consumption and leisure, respectively, in
the complete and incomplete market economies are very close. The
proximity of the impulse response functions for (¢, x,) implies proximity
of the Ramsey allocations in the two economies. This is confirmed by
some welfare calculations. We calculated the expected utility of the
household to be 298.80 in the complete markets economy and 298.79
in the incomplete markets economy. In order to make the consumer
indifferent between complete markets and incomplete markets, his con-
sumption in the incomplete markets economy would have to be in-
creased by only 0.0092 percent in all periods.* This comparison indi-
cates the capacity of tax smoothing over time to substitute for tax
smoothing across states.

* For similar pairs of economies with first-order autoregressive government expenditures
with first-order autoregressive coefficient p = .75 and the same values of the other pa-
rameters, we calculated that indifference would be achieved by increasing consumption
by 0.0409 percent.
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F16. 6.—Simulation of peace and war economy with complete markets

War Finance under Complete and Incomplete Markets

We computed another example with regime-switching government ex-
penditure shocks. Now the conditional mean of the government ex-
penditure process follows a two-state Markov process. In particular, the
stochastic process for g, is

where ¢, continues to be i.i.d. N(0, 1), and g, can have two different
realizations, 30 and 42.5, corresponding to a peace state and a war state,
respectively. We assume that both g, and g, are observed. The probability
of remaining in peace next period given that the current state is peace
is set to .99, and the probability of remaining in war next period given
that the current state is war is set to .9. In other words, a large war
happens with low probability (10 percent), but when it happens it lasts
for some time (10 years). All other parameter values were set as above,
except for o = .25. We used the same algorithm as earlier in the section,
except that now agents distinguish between peacetime and wartime.
Figures 6 and 7 illustrate the difference between complete and in-
complete markets in war finance. They show simulations of two econ-
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F16. 7.—Simulation of peace and war economy with incomplete markets

omies with identical parameter values and government expenditure pro-
cesses but different market structures. Under complete markets (fig. 6),
when the economy goes to war, taxes are increased immediately as gov-
ernment expenditures rise. Similarly, when expenditures fall at the war’s
end, taxes decrease immediately. Notice that the actual tax increase is
relatively small.

Under incomplete markets (fig. 7), during peacetime the government
runs surpluses and lends to the consumers. War is financed by both
considerable increases in taxes and borrowing from the public. Once
the war ends, taxes are cut and the government debt is paid down at
the same relatively fast pace.

The much higher persistence and variance of the government ex-
penditure process make the welfare loss associated with incomplete mar-
kets higher than in the previous example. The expected utility of the
household is 297.26 in the complete markets economy and 295.7 in the
incomplete markets economy. To make the consumer indifferent be-
tween complete markets and incomplete markets, his consumption in
the incomplete markets economy would have to be increased by 0.96
percent of his current consumption.
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VII. Concluding Remarks

Lucas and Stokey (1983, p. 77) drew three lessons: (1) Budget balance
in a presentvalue sense must be respected.” (2) No case can be made
for budget balance on a continual basis. (3) State-contingent debt is an
important feature of an optimal policy under complete markets.*> Our
results support lesson 1, amplify lesson 2, but may qualify lesson 3,
depending on the persistence and variance of government purchases.
For our first computed example, which has serially uncorrelated gov-
ernment expenditures, the welfare achieved by the incomplete markets
Ramsey allocation is close to the complete markets Ramsey allocation,
testimony to the efficacy of the incomplete market Ramsey policy’s use
of “self-insurance.” The government uses debt as a buffer stock, just as
savings allow smooth consumption in the “savings problem.” For a gen-
eral equilibrium version of a model whose residents all face versions of
the savings problem, Krusell and Smith (1998) display incomplete mar-
kets allocations close to ones under complete markets.”’

The analogy to the literature on the savings problem helps us to
understand why our two computed examples differ in how close their
Ramsey allocations are under complete and incomplete market struc-
tures. For a given random expenditure process, the proximity of the
complete and incomplete markets Ramsey allocations will depend sen-
sitively on (a) the persistence of the government expenditure process
and the volatility of innovations to it, (b) the curvature of the house-
hold’s utility function, and (¢) the debt and asset limits set for the
government.” More persistent government expenditure processes are
more difficult for a government to self-insure, as our calculations for

* According to Keynes (1924, pp. 68-69), “What a government spends the public pays
for.”

* Lucas and Stokey write that “even those most skeptical about the efficacy of actual
government policy may be led to wonder why governments forego gains in everyone’s
welfare by issuing only debt that purports to be a certain claim on future goods” (p. 77).
Our computations do not diminish the relevance of this statement as a comment about
the role of state-contingent debt in making possible a debt structure that renders their
Ramsey tax policy time-consistent.

*” Angeletos (2000) and Buera and Nicolini (2001) show how, if randomness has only
finitely many possible outcomes and enough longer-term risk-free bonds are available, the
Ramsey planner can implement Lucas and Stokey’s allocation. The planner puts state-
contingent fluctuations into the term structure of interest rates and exchanges longer-
for shorter-term debt in order to duplicate the state-contingent payoffs on government
debt required by Lucas and Stokey. Buera and Nicolini show that very large transactions
can be required. Schmitt-Grohé and Uribe (2001) solve a Ramsey problem for an economy
with sticky prices and a government that issues only one-period risk-free nominal debt.
They compute very small welfare reductions from their market frictions (sticky prices and
incomplete state-contingent debt).

* Thus, for their settings of other parameters, Krusell and Smith’s allocations under
complete and incomplete markets would be brought even closer together if they replaced
the no-borrowing constraint they impose with the natural debt limits.
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the war and peace economy illustrate, increasing the relevance of Lucas
and Stokey’s lesson 3 for highly persistent processes.

In affirming Barro’s characterization of tax smoothing as imparting
near—unit root components to tax rates and government debt, our in-
complete markets model enlivens a view of eighteenth-century British
fiscal outcomes as Ramsey outcomes. The time series of debt service
and government expenditure for eighteenth-century Britain resemble
a simulation of Barro’s model or ours, not a complete markets model
(see Sargent and Velde 1995, fig. 2).

Appendix
Proof of Proposition 1

First we show that the constraints (3), (4), and (6) imply (9) and (10). From
(3) and the household’s first-order conditions with respect to bonds, we have

ur,t+1
s, T BE|——bf| = bZ..

ot

Using forward substitution on §f and also the law of iterated expectations, we
have

-1
Uu, Uu,
jotti T ot Ty . _ g
Etz B ‘Sl+j+ 6 E/[ b/+’l‘71 - bl*l
j=0 et

U (]

for all 7, which implies

ELE Bjuuﬂszﬂ‘ = bi,.
j=0 u,,
Since, according to definition 1, 6%, is known at ¢{— 1 and (4) is satisfied, the
last equation implies that (9) and (10) are satisfied.
To prove the reverse implication, take any feasible allocation that satisfies (8),
(9), and (10); we have

B,

U,
s HE2 B s (A1)

l

N Uerr1 Ui
5+ BE, Y, I et (A2)
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u(:,z c,t+1

Applying the law of iterated expectations, we can condition the term inside E,
on information at ¢+ 1 to get

A U1 o, i U1+ N
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using (10) in the last equality. With formula (6) for bond prices, we have

B, = s,+ p'B,.\,
which guarantees that (3) and (4) are satisfied precisely for ¢, = B. Q.E.D.
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