Discrete State Dynamic Programming and
Dynamic Games

Kenneth L. Judd, Hoover Institution

March 19, 2020

Discrete State Space Problems

» Special structure

» lllustrate basic algorthmic ideas

Definition

» State space X = {x;, i=1,---,n}
» Controls D = {u;|i =1,...,m}
> g;(u) = Pr(xer1 = xj|xe = xi, ur =)

> Qfu) = (q,i-(u))’_)j : Markov transition matrix at ¢ if u; = u.

Value Function: Definition and Algorithm

» Terminal value:
T+1 .
VI =W(x), i=1,--,n.
» Bellman equation: time t value function is
—max [m(x;, u, t) +ﬂz qu Vt“], 1, .,n
Jj=1

» Bellman equation can be directly computed.

» Called value function iteration
> It is only choice for finite-horizon problems because each period has
a different value function.

Infinite Horizon Problems

» Infinite-horizon problems

» Bellman equation is now a simultaneous set of equations for V;
values:

Vi=max [m(xi,u) + 8 qi(u)Vi|, i=1,n
j=1

» Value function iteration is now

> Can use value function iteration with arbitrary V2 and iterate
k — oo.

» Error is given by contraction mapping property:

o v

1 k+1 kH
<L Jlver_y
<1 5|

Algorithm 12.1: Value Function Iteration Algorithm

Objective:
Step O:
Step 1:

Step 2:
Step 3:

Output:

Solve the Bellman equation, (12.3.4).

Make initial guess V0; choose stopping criterion € > 0.
For i =1,..., n, compute

VIt = maxuep m(xi,u) + B3], q5(u) V.

If || V1 — V¥ ||< ¢, then go to step 3; else go to step 1.
Compute the final solution, setting

U =uvtt,

P;k:W(Xian*)? i=1,-,n,

Ve = (1 - QU)LP,

and STOP.

Policy Iteration (a.k.a. Howard improvement)

» Value function iteration is a slow process
» Linear convergence at rate

» Convergence is particularly slow if 3 is close to 1.
» Policy iteration is faster

» Current guess:
‘/ika i = 17 , N

> |teration: compute optimal policy today if V¥ is value tomorrow:
n
UF™ = arg max |:TF(X,', u) + BZ qi(v) ij ,i=1,---,n,
u
j=1

» Compute the value function if the policy U**? is used forever, which
is solution to the linear system

‘/’_k+1 =7 (Xi7 U;(+1) +/BZ qU(Ulk+1) \/jk+1a i= 17 s, N,
j=1

» Comments:
» Policy iteration depends on only monotonicity
> Policy iteration is faster than value function iteration

> If initial guess is above or below solution then policy iteration is
between truth and value function iterate
» Works well even for 3 close to 1.

Algorithm 12.2: Policy Function Algorithm
Objective: Solve the Bellman equation, (12.3.4).
Step 0: Choose stopping criterion € > 0.

EITHER make initial guess, V©, for the
value function and go to step 1,

OR make initial guess, U, for the
policy function and go to step 2.

Step 1: Ut =y vt

Step 2: Pf“ = (x,-, U,-“l) , i=1---,n
-1

Step3: VHL=(1-pQUTT) P

Step 4: If || VL — V¥ ||< ¢, STOP; else go to step 1.

» Modified policy iteration

» If nis large, difficult to solve policy iteration step

UZ+1

» Alternative approximation: Assume policy is used for k periods:

k+1
£
4

¢ _k) K ytt
V+1_;ﬁt(Q >P+1+6+1(Q)

» Theorem 4.1 points out that as the policy function gets close to U™,
the linear rate of convergence approaches 8™, Hence convergence
accelerates as the iterates converge.

(Putterman and Shin) The successive iterates of modified policy iteration
with k steps, (12.4.1), satisfy the error bound

B -8 6k)
1-

v —ve)

ns i H U@ U* || +Bk+1
[V*— Ve

< min |3,

Gaussian acceleration methods for infinite-horizon models

> Key observation: Bellman equation is a simultaneous set of
equations

\/,':m‘?x 7r(x,~,u)—|—ﬁz gi(w)Vi|, i=1,---,n
j=1

» |dea: Treat problem as a large system of nonlinear equations
» Value function iteration is the pre-Gauss-Jacobi iteration

k+1 _ . . k i=1....
% = max 7T(X,,U)+BZ; qi(u) Vi, i=1,---,n
J:

» True Gauss-Jacobi is
V-k+1 7T(X,'7 U) + B Zj;éi qu(u) ‘/jk

m 1 — Bqii (u) ’
» pre-Gauss-Seidel iteration
» Value function iteration is a pre-Gauss-Jacobi scheme.
> Gauss-Seidel alternatives use new information immediately
» Suppose we have VI.Z
» At each x;, given \/J.EJr1 for j < i, compute \/I.ZJr1 in a pre-Gauss-Seidel

i=1

S,

» Gauss-Seidel iteration
» Suppose we have V/

> If optimal control at state i is u, then Gauss-Seidel iterate would be

Zj<i qij(u) Vj£+1 + Zj>,' qij(u) le
1 - Bqi(u)

> Gauss-Seidel: At each x;, given V/*! for j < i, compute V/**

\/i[+1 = ﬂ—(Xl'a LI) +8

VA 706, u) + B as(u)VI + B3 ai(u)Vf
' u 1 — Bqi(u)

> lterate this for i=1,..,n

» Gauss-Seidel iteration: better notation

» No reason to keep track of £, number of iterations
» At each x;,

m(xi,u) + B3 qi(W) Vi + B3 qi(u)Vs
1 — Bqii(u)

» lterate this for i =1,..,n,1,...., etc.

Vi +— max
u

State versus Information Flows

Consider the following graph:
» Solid arrows are permissible state transitions

» Broken arrows represent information flow

7 _ 6 5

(

Upwind Gauss-Seidel

» Gauss-Seidel methods in (12.4.7) and (12.4.8)
» Sensitive to ordering of the states.

» Need to find good ordering schemes to enhance convergence.
» Example:

» Two states, x1 and x2, and two controls, u; and wu

» u; causes state to move to x;, i = 1,2

> Payoffs:
w(x1,u1) = -1, m(x1,u2) =0,
w(xe,u1) =0, w(xe,u2) =1.
> 3=00.
> Solution:

» Optimal policy: always choose up, moving to x2
> Value function:
V(x1) =9, V(x)=10.

» x5 is the unique steady state, and is stable

» Converges linearly:

VI(X]-) = 07 Vl(XZ) = 1) Ul(Xl) = 2) Ul(X2) = 27
V2(X1) = 09, V2(X2) = 19, U2(X1) = 2, U2(X2) = 2,
V3(x1) = 1.71, V3(x) = 2.71, U3(x1) =2, U3(x2) = 2,

» Policy iteration converges after two iterations

Vi(a) =0, V() =1, U'(a) =2, U'(e) =
V2(x1) = 9, V2(x) = 10, U2(x1) U2(x)

» Upwind Gauss-Seidel
» Value function at absorbing states is trivial to compute
» Suppose s is absorbing state with control u
> V(s) =mn(s,u)/(1-B).

> With absorbing state V/ (s) we compute V (s’) of any s’ that sends
system to s.

V(s')=n(s',u)+BV(s)
> With V (s’), we can compute values of states s’ that send system to
s'; etc.

Alternative Orderings

It may be difficult to find proper order.
> Alternating Sweep

> Idea: alternate between two approaches with different directions.

w = VK,

Wi = max, 7 0)+ B0, ai(@)W, i =1,2,3,..n
W; = maxy W(Xi,u)+ﬂZ]:1 gi(L)W;, i=nn-1,...,1
Vk+1 - W

> Will always work well in one-dimensional problems since state moves
either right or left, and alternating sweep will exploit this half of the
time.

» In two dimensions, there may still be a natural ordering to be
exploited.

» Simulated Upwind Gauss-Seidel

> It may be difficult to find proper order in higher dimensions
» Idea: simulate using latest policy function to find downwind direction

» Simulate to get an example path, xi1, x2, x3, X4, ..., Xm
» Execute Gauss-Seidel with states Xm, Xm—1, Xm—2, -+++, X1

Discrete-time Dynamic Games

» A discrete-time stochastic game with a finite number of states is
often just called a “stochastic game”
» Ericson-Pakes model of industry dynamics is an example
» Pakes-Mcguire presents a computational method
» Definition of states and actions
> State of the game in period t is w; € Q; finite number of states

> N players.

> Player i's action at t is x{ € X' (w;), the set of feasible actions

> The players’ actions in period t is x; = (x7,...,x"). As usual, x;”’
denotes (x¢,...,x\ 1, xi™ o X!

» Apologies for change in notation. Here x/ denotes actions and w!
denotes states

Dynamics and payoffs

» Dynamics
» Changes in states are determined by a Markov process
» Law of motion is
N

Pr |wf?Xf H I’(‘wtvxt))

i=1

where Pr' ((w')’ \wi,x{) is the transition probability for player i’s
state.
> Payoff

> Player i receives Wi(xf,wt) when players' actions are x; and the state
is Wt.

> At the beginning of the next period player i receives a payoff
Y (Xt, we, wet1) IF there is a change in the state. For example, | may
order a machine to come tomorrow but perhaps it does not.

Nash equilibrium

» Bellman equation for player i is

Vi(w) = maxa 7' (x', X (w),w) + S
6E0J' {d)l (X’,X_’ (W) ,W7UJ/) + 4 (wl) |w7Xl7 X (w)}
> Player strategy is

X' (w) = argmax, 7 (x', X7 (w) ,w) +
BE {®F (xF, X~ (W), w,) + VI (&) |w, X', X7 (w)}

» Nash equilibrium is a set of Bellman and policy solutions for the set
of players

Computational considerations

» Equilibrium is a finite set of equations, each equation being a
low-dimensional optimization problem
» LOOKS like dynamic programming but it is not
» This is not a contraction mapping
» There may be multiple solutions, in which case this cannot be a
contraction mapping
> Without a contraction factor you cannot use simple stopping rule
form DP
» The system is a set of nonlinear equations
» Can use Gauss-Jacobi, as did Pakes and Mcguire
» Could use Gauss-Seidel, as later people did (to save memory)
> Different algorithms may produce different solutions

More Computational considerations

» Parallelization?

» Much more dangerous, but should be tried
» Gauss-Jacobi is likely less dangerous
» Random asynchronous synchronous could be a wild ride

» Crazy idea: Use Newton's method. Only nut cases would try that.
> We will do that next week.

