Discrete State Dynamic Programming and Dynamic Games

Kenneth L. Judd, Hoover Institution

March 19, 2020

Discrete State Space Problems

- Special structure
- ► Illustrate basic algorthmic ideas

Definition

- ▶ State space $X = \{x_i, i = 1, \dots, n\}$
- ightharpoonup Controls $\mathcal{D} = \{u_i | i = 1, ..., m\}$
- $ightharpoonup Q^t(u) = \left(q^t_{ij}(u)\right)_{i,j}$: Markov transition matrix at t if $u_t = u$.

Value Function: Definition and Algorithm

► Terminal value:

$$V_i^{T+1} = W(x_i), i = 1, \dots, n.$$

▶ Bellman equation: time *t* value function is

$$V_i^t = \max_{u} \left[\pi(x_i, u, t) + \beta \sum_{j=1}^n q_{ij}^t(u) V_j^{t+1} \right], \ i = 1, \cdots, n$$

- ▶ Bellman equation can be directly computed.
 - ► Called *value function iteration*
 - It is only choice for finite-horizon problems because each period has a different value function.

Infinite Horizon Problems

- ► Infinite-horizon problems
- **Bellman** equation is now a simultaneous set of equations for V_i values:

$$V_i = \max_{u} \left[\pi(x_i, u) + \beta \sum_{j=1}^{n} q_{ij}(u) V_j \right], i = 1, \cdots, n$$

Value function iteration is now

$$V_i^{k+1} = \max_{u} \left[\pi(x_i, u) + \beta \sum_{j=1}^{n} q_{ij}(u) V_j^k \right], i = 1, \dots, n$$

- ▶ Can use value function iteration with arbitrary V_i^0 and iterate $k \to \infty$.
- Error is given by contraction mapping property:

$$\left\|V^{k}-V^{*}\right\|\leq\frac{1}{1-\beta}\left\|V^{k+1}-V^{k}\right\|$$

Algorithm 12.1: Value Function Iteration Algorithm

Objective: Solve the Bellman equation, (12.3.4).

Step 0: Make initial guess V^0 ; choose stopping criterion $\epsilon > 0$.

Step 1: For i = 1, ..., n, compute

$$V_i^{\ell+1} = \max_{u \in D} \pi(x_i, u) + \beta \sum_{j=1}^n q_{ij}(u) V_j^{\ell}.$$

Step 2: If $\parallel V^{\ell+1} - V^{\ell} \parallel < \epsilon$, then go to step 3; else go to step 1.

Step 3: Compute the final solution, setting

$$U^* = \mathcal{U}V^{\ell+1},$$

$$P_i^* = \pi(x_i, U_i^*), \quad i = 1, \dots, n,$$

$$V^* = (I - \beta Q^{U^*})^{-1} P^*,$$

and STOP.

Output:

Policy Iteration (a.k.a. Howard improvement)

- ► Value function iteration is a slow process
- ightharpoonup Linear convergence at rate β
 - ▶ Convergence is particularly slow if β is close to 1.
- ► Policy iteration is faster
 - Current guess:

$$V_i^k$$
, $i=1,\cdots,n$.

lteration: compute optimal policy today if V^k is value tomorrow:

$$U_i^{k+1} = \arg \max_{u} \left[\pi(x_i, u) + \beta \sum_{j=1}^{n} q_{ij}(u) V_j^k \right], i = 1, \dots, n,$$

ightharpoonup Compute the value function if the policy U^{k+1} is used forever, which is solution to the linear system

$$V_i^{k+1} = \pi\left(x_i, U_i^{k+1}\right) + \beta \sum_{j=1}^n q_{ij}(U_i^{k+1}) V_j^{k+1}, \ i = 1, \dots, n,$$

- Comments:
- ▶ Policy iteration depends on only monotonicity
 - ▶ Policy iteration is faster than value function iteration
 - ▶ If initial guess is above or below solution then policy iteration is between truth and value function iterate
 - ▶ Works well even for β close to 1.

Algorithm 12.2: Policy Function Algorithm

Objective: Solve the Bellman equation, (12.3.4).

Step 0: Choose stopping criterion $\epsilon > 0$.

EITHER make initial guess, V^0 , for the

value function and go to step 1,

OR make initial guess, U^1 , for the policy function and go to step 2.

 $U^{\ell+1} = \mathcal{U}V^{\ell}$ Step 1:

 $\begin{array}{ll} \text{Step 2:} & P_i^{\ell+1} = \pi\left(\mathbf{x}_i, U_i^{\ell+1}\right), & i = 1, \cdots, n \\ \text{Step 3:} & V^{\ell+1} = \left(I - \beta Q^{U^{\ell+1}}\right)^{-1} P^{\ell+1} \end{array}$

Step 4: If $||V^{\ell+1} - V^{\ell}|| < \epsilon$, STOP; else go to step 1.

- Modified policy iteration
- ▶ If *n* is large, difficult to solve policy iteration step
 - ▶ Alternative approximation: Assume policy $U^{\ell+1}$ is used for k periods:

$$V^{\ell+1} = \sum_{t=0}^{k} \beta^{t} \left(Q^{U^{\ell+1}} \right)^{t} P^{\ell+1} + \beta^{k+1} \left(Q^{U^{\ell+1}} \right)^{k+1} V^{\ell}$$

Theorem 4.1 points out that as the policy function gets close to U^* , the linear rate of convergence approaches β^{k+1} . Hence convergence accelerates as the iterates converge.

(Putterman and Shin) The successive iterates of modified policy iteration with k steps, (12.4.1), satisfy the error bound

$$\frac{\left\|V^* - V^{\ell+1}\right\|}{\left\|V^* - V^{\ell}\right\|} \leq \min\left[\beta, \ \frac{\beta(1-\beta^k)}{1-\beta} \parallel U^{\ell} - U^* \parallel + \beta^{k+1}\right]$$

Gaussian acceleration methods for infinite-horizon models

Key observation: Bellman equation is a simultaneous set of equations

$$V_i = \max_u \left[\pi(x_i, u) + \beta \sum_{j=1}^n q_{ij}(u) V_j \right], i = 1, \cdots, n$$

- Idea: Treat problem as a large system of nonlinear equations
- ► Value function iteration is the *pre-Gauss-Jacobi* iteration

$$V_i^{k+1} = \max_{u} \left[\pi(x_i, u) + \beta \sum_{j=1}^{n} q_{ij}(u) V_j^k \right], i = 1, \dots, n$$

True Gauss-Jacobi is

$$V_{i}^{k+1} = \max_{u} \left[\frac{\pi(x_{i}, u) + \beta \sum_{j \neq i} q_{ij}(u) V_{j}^{k}}{1 - \beta q_{ii}(u)} \right], i = 1, \cdots, n$$

- pre-Gauss-Seidel iteration
 - Value function iteration is a pre-Gauss-Jacobi scheme.
 - Gauss-Seidel alternatives use new information immediately
 - Suppose we have V_i^{ℓ}
 - At each x_i , given $V_i^{\ell+1}$ for j < i, compute $V_i^{\ell+1}$ in a pre-Gauss-Seidel

- Gauss-Seidel iteration
- ightharpoonup Suppose we have V_i^{ℓ}
 - ▶ If optimal control at state *i* is *u*, then Gauss-Seidel iterate would be

$$V_i^{\ell+1} = \pi(x_i, u) + \beta \frac{\sum_{j < i} q_{ij}(u) V_j^{\ell+1} + \sum_{j > i} q_{ij}(u) V_j^{\ell}}{1 - \beta q_{ii}(u)}$$

▶ Gauss-Seidel: At each x_i , given $V_j^{\ell+1}$ for j < i, compute $V_i^{\ell+1}$

$$V_i^{\ell+1} = \max_{u} \frac{\pi(x_i, u) + \beta \sum_{j < i} q_{ij}(u) V_j^{\ell+1} + \beta \sum_{j > i} q_{ij}(u) V_j^{\ell}}{1 - \beta q_{ii}(u)}$$

- lterate this for i = 1, ..., n
- ► Gauss-Seidel iteration: better notation
 - No reason to keep track of ℓ , number of iterations
 - At each x_i,

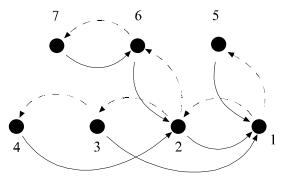
$$V_i \longleftarrow \max_{u} \frac{\pi(x_i, u) + \beta \sum_{j < i} q_{ij}(u) V_j + \beta \sum_{j > i} q_{ij}(u) V_j}{1 - \beta q_{ij}(u)}$$

lterate this for i = 1, ..., n, 1,, etc.

State versus Information Flows

Consider the following graph:

- ► Solid arrows are permissible state transitions
- ▶ Broken arrows represent information flow



Upwind Gauss-Seidel

- ► Gauss-Seidel methods in (12.4.7) and (12.4.8)
- Sensitive to ordering of the states.
 - Need to find good ordering schemes to enhance convergence.
- Example:
 - ▶ Two states, x_1 and x_2 , and two controls, u_1 and u_2
 - \triangleright u_i causes state to move to x_i , i=1,2
 - Payoffs:

$$\pi(x_1, u_1) = -1, \ \pi(x_1, u_2) = 0, \pi(x_2, u_1) = 0, \ \pi(x_2, u_2) = 1.$$

- $\beta = 0.9.$
- Solution:
 - ▶ Optimal policy: always choose u_2 , moving to x_2
 - Value function:

$$V(x_1) = 9, \ V(x_2) = 10.$$

x₂ is the unique steady state, and is stable

Converges linearly:

$$\begin{array}{l} V^1(x_1)=0,\ V^1(x_2)=1,\ U^1(x_1)=2,\ U^1(x_2)=2,\\ V^2(x_1)=0.9,\ V^2(x_2)=1.9,\ U^2(x_1)=2,\ U^2(x_2)=2,\\ V^3(x_1)=1.71,\ V^3(x_2)=2.71,\ U^3(x_1)=2,\ U^3(x_2)=2, \end{array}$$

▶ Policy iteration converges after two iterations

$$V^1(x_1) = 0$$
, $V^1(x_2) = 1$, $U^1(x_1) = 2$, $U^1(x_2) = 2$, $V^2(x_1) = 9$, $V^2(x_2) = 10$, $U^2(x_1) = 2$, $U^2(x_2) = 2$,

- Upwind Gauss-Seidel
- Value function at absorbing states is trivial to compute
 - ► Suppose *s* is absorbing state with control *u*

$$V(s) = \pi(s, u)/(1-\beta).$$

With absorbing state V(s) we compute V(s') of any s' that sends system to s.

$$V\left(s'\right) = \pi\left(s',u\right) + \beta V\left(s\right)$$

▶ With V(s'), we can compute values of states s'' that send system to s'; etc.

Alternative Orderings

It may be difficult to find proper order.

- Alternating Sweep
 - ▶ Idea: alternate between two approaches with different directions.

$$\begin{array}{ll} W & = V^k, \\ W_i & = \max_u \ \pi(x_i, u) + \beta \sum_{j=1}^n q_{ij}(u) W_j, \ i = 1, 2, 3, ..., n \\ W_i & = \max_u \ \pi(x_i, u) + \beta \sum_{j=1}^n q_{ij}(u) W_j, \ i = n, n-1, ..., 1 \\ V^{k+1} & = W \end{array}$$

- Will always work well in one-dimensional problems since state moves either right or left, and alternating sweep will exploit this half of the time.
- In two dimensions, there may still be a natural ordering to be exploited.
- Simulated Upwind Gauss-Seidel
 - It may be difficult to find proper order in higher dimensions
 - ▶ Idea: simulate using latest policy function to find downwind direction
 - Simulate to get an example path, $x_1, x_2, x_3, x_4, ..., x_m$
 - Execute Gauss-Seidel with states $x_m, x_{m-1}, x_{m-2},, x_1$

Discrete-time Dynamic Games

- A discrete-time stochastic game with a finite number of states is often just called a "stochastic game"
 - Ericson-Pakes model of industry dynamics is an example
 - ▶ Pakes-Mcguire presents a computational method
- Definition of states and actions
 - ▶ State of the game in period t is $\omega_t \in \Omega$; finite number of states
 - N players.
 - ▶ Player *i*'s action at *t* is $x_t^i \in \mathbb{X}^i$ (ω_t), the set of feasible actions
 - The players' actions in period t is $x_t = (x_t^1, \dots, x_t^N)$. As usual, x_t^{-i} denotes $(x_t^1, \dots, x_t^{i-1}, x_t^{i+1}, \dots, x_t^N)$.
- \blacktriangleright Apologies for change in notation. Here \mathbf{x}_t^i denotes actions and ω_t^i denotes states

Dynamics and payoffs

- Dynamics
 - Changes in states are determined by a Markov process
 - Law of motion is

$$\Pr\left(\omega'|\omega_{t},x_{t}\right)=\prod_{i=1}^{N}\Pr^{i}\left(\left(\omega'\right)^{i}|\omega_{t}^{i},x_{t}^{i}\right),$$

where $\Pr^{i}\left(\left(\omega'\right)^{i}|\omega_{t}^{i},x_{t}^{i}\right)$ is the transition probability for player *i*'s state.

- Payoff
 - Player *i* receives $\pi^i(x_t, \omega_t)$ when players' actions are x_t and the state is ω_t .
 - At the beginning of the next period player i receives a payoff $\Phi^i(x_t, \omega_t, \omega_{t+1})$ IF there is a change in the state. For example, I may order a machine to come tomorrow but perhaps it does not.

Nash equilibrium

▶ Bellman equation for player *i* is

$$\begin{split} V^{i}\left(\omega\right) &= \mathsf{max}_{x^{i}} \, \pi^{i}\left(x^{i}, X^{-i}\left(\omega\right), \omega\right) + \\ \beta \mathsf{E}_{\omega'}\left\{\Phi^{i}\left(x^{i}, X^{-i}\left(\omega\right), \omega, \omega'\right) + V^{i}\left(\omega'\right) | \omega, x^{i}, X^{-i}\left(\omega\right)\right\} \end{split}$$

Player strategy is

$$\begin{array}{l} X^{i}\left(\omega\right) = \arg\max_{x^{i}} \pi^{i}\left(x^{i}, X^{-i}\left(\omega\right), \omega\right) + \\ \beta \mathsf{E}_{\omega'}\left\{\Phi^{i}\left(x^{i}, X^{-i}\left(\omega\right), \omega, \omega'\right) + V^{i}\left(\omega'\right) | \omega, x^{i}, X^{-i}\left(\omega\right)\right\} \end{array}$$

Nash equilibrium is a set of Bellman and policy solutions for the set of players

Computational considerations

- ► Equilibrium is a finite set of equations, each equation being a low-dimensional optimization problem
- ► LOOKS like dynamic programming but it is not
 - This is not a contraction mapping
 - There may be multiple solutions, in which case this cannot be a contraction mapping
 - Without a contraction factor you cannot use simple stopping rule form DP
- ► The system is a set of nonlinear equations
 - Can use Gauss-Jacobi, as did Pakes and Mcguire
 - Could use Gauss-Seidel, as later people did (to save memory)
 - Different algorithms may produce different solutions

More Computational considerations

- ► Parallelization?
 - Much more dangerous, but should be tried
 - ► Gauss-Jacobi is likely less dangerous
 - Random asynchronous synchronous could be a wild ride
- ► Crazy idea: Use Newton's method. Only nut cases would try that.
- We will do that next week.