
Discrete State Dynamic Programming and
Dynamic Games

Kenneth L. Judd, Hoover Institution

March 19, 2020

Discrete State Space Problems

I Special structure
I Illustrate basic algorthmic ideas

Definition

I State space X = {xi , i = 1, · · · , n}
I Controls D = {ui |i = 1, ...,m}
I qtij(u) = Pr (xt+1 = xj |xt = xi , ut = u)

I Qt(u) =
(
qtij(u)

)
i,j

: Markov transition matrix at t if ut = u.

Value Function: Definition and Algorithm

I Terminal value:

V T+1
i = W (xi), i = 1, · · · , n.

I Bellman equation: time t value function is

V t
i = max

u
[π(xi , u, t) + β

n∑
j=1

qtij(u)V t+1
j], i = 1, · · · , n

I Bellman equation can be directly computed.
I Called value function iteration
I It is only choice for finite-horizon problems because each period has

a different value function.

Infinite Horizon Problems

I Infinite-horizon problems
I Bellman equation is now a simultaneous set of equations for Vi

values:

Vi = max
u

π(xi , u) + β

n∑
j=1

qij(u)Vj

 , i = 1, · · · , n

I Value function iteration is now

V k+1
i = max

u

[
π(xi , u) + β

n∑
j=1

qij(u)V k
j

]
, i = 1, · · · , n

I Can use value function iteration with arbitrary V 0
i and iterate

k →∞.
I Error is given by contraction mapping property:∥∥∥V k − V ∗

∥∥∥ ≤ 1
1− β

∥∥∥V k+1 − V k
∥∥∥

Algorithm 12.1: Value Function Iteration Algorithm
Objective: Solve the Bellman equation, (12.3.4).
Step 0: Make initial guess V 0; choose stopping criterion ε > 0.
Step 1: For i = 1, ..., n, compute

V `+1
i = maxu∈D π(xi , u) + β

∑n
j=1 qij(u)V `

j .

Step 2: If ‖ V `+1 − V ` ‖< ε, then go to step 3; else go to step 1.
Step 3: Compute the final solution, setting

U∗ = UV `+1,
P∗i = π(xi ,U

∗
i), i = 1, · · · , n,

V ∗ = (I − βQU∗)−1P∗,
and STOP.

Output:

Policy Iteration (a.k.a. Howard improvement)

I Value function iteration is a slow process
I Linear convergence at rate β

I Convergence is particularly slow if β is close to 1.

I Policy iteration is faster
I Current guess:

V k
i , i = 1, · · · , n.

I Iteration: compute optimal policy today if V k is value tomorrow:

Uk+1
i = arg max

u

[
π(xi , u) + β

n∑
j=1

qij(u)V k
j

]
, i = 1, · · · , n,

I Compute the value function if the policy Uk+1 is used forever, which
is solution to the linear system

V k+1
i = π

(
xi ,U

k+1
i

)
+ β

n∑
j=1

qij(U
k+1
i)V k+1

j , i = 1, · · · , n,

I Comments:
I Policy iteration depends on only monotonicity

I Policy iteration is faster than value function iteration
I If initial guess is above or below solution then policy iteration is

between truth and value function iterate
I Works well even for β close to 1.

Algorithm 12.2: Policy Function Algorithm
Objective: Solve the Bellman equation, (12.3.4).
Step 0: Choose stopping criterion ε > 0.

EITHER make initial guess, V 0, for the
value function and go to step 1,

OR make initial guess, U1, for the
policy function and go to step 2.

Step 1: U`+1 = UV `

Step 2: P`+1
i = π

(
xi ,U

`+1
i

)
, i = 1, · · · , n

Step 3: V `+1 =
(
I − βQU`+1

)−1
P`+1

Step 4: If ‖ V `+1 − V ` ‖< ε, STOP; else go to step 1.

I Modified policy iteration
I If n is large, difficult to solve policy iteration step

I Alternative approximation: Assume policy U`+1 is used for k periods:

V `+1 =
k∑

t=0

βt
(
QU`+1)t

P`+1 + βk+1
(
QU`+1)k+1

V `

I Theorem 4.1 points out that as the policy function gets close to U∗,
the linear rate of convergence approaches βk+1. Hence convergence
accelerates as the iterates converge.

(Putterman and Shin) The successive iterates of modified policy iteration
with k steps, (12.4.1), satisfy the error bound∥∥V ∗ − V `+1

∥∥
‖V ∗ − V `‖

≤ min

[
β,

β(1− βk)

1− β
‖ U` − U∗ ‖ +βk+1

]

Gaussian acceleration methods for infinite-horizon models
I Key observation: Bellman equation is a simultaneous set of

equations

Vi = max
u

π(xi , u) + β

n∑
j=1

qij(u)Vj

 , i = 1, · · · , n

I Idea: Treat problem as a large system of nonlinear equations
I Value function iteration is the pre-Gauss-Jacobi iteration

V k+1
i = max

u

π(xi , u) + β

n∑
j=1

qij(u)V k
j

 , i = 1, · · · , n

I True Gauss-Jacobi is

V k+1
i = max

u

[
π(xi , u) + β

∑
j 6=i qij(u)V k

j

1− βqii (u)

]
, i = 1, · · · , n

I pre-Gauss-Seidel iteration
I Value function iteration is a pre-Gauss-Jacobi scheme.
I Gauss-Seidel alternatives use new information immediately

I Suppose we have V `
i

I At each xi , given V `+1
j for j < i , compute V `+1

i in a pre-Gauss-Seidel
fashion

V `+1
i = max

u
π(xi , u) + β

∑
j<i

qij (u)V
`+1
j + β

∑
j≥i

qij (u)V
`
j

I Iterate (12.4.7) for i = 1, .., n

I Gauss-Seidel iteration
I Suppose we have V `

i

I If optimal control at state i is u, then Gauss-Seidel iterate would be

V `+1
i = π(xi , u) + β

∑
j<i qij(u)V `+1

j +
∑

j>i qij(u)V `
j

1− βqii (u)

I Gauss-Seidel: At each xi , given V `+1
j for j < i , compute V `+1

i

V `+1
i = max

u

π(xi , u) + β
∑

j<i qij(u)V `+1
j + β

∑
j>i qij(u)V `

j

1− βqii (u)

I Iterate this for i = 1, .., n

I Gauss-Seidel iteration: better notation
I No reason to keep track of `, number of iterations
I At each xi ,

Vi ←− max
u

π(xi , u) + β
∑

j<i qij(u)Vj + β
∑

j>i qij(u)Vj

1− βqij(u)

I Iterate this for i = 1, .., n, 1,, etc.

State versus Information Flows

Consider the following graph:
I Solid arrows are permissible state transitions
I Broken arrows represent information flow

Upwind Gauss-Seidel

I Gauss-Seidel methods in (12.4.7) and (12.4.8)
I Sensitive to ordering of the states.

I Need to find good ordering schemes to enhance convergence.

I Example:
I Two states, x1 and x2, and two controls, u1 and u2

I ui causes state to move to xi , i = 1, 2
I Payoffs:

π(x1, u1) = −1, π(x1, u2) = 0,
π(x2, u1) = 0, π(x2, u2) = 1.

I β = 0.9.

I Solution:
I Optimal policy: always choose u2, moving to x2
I Value function:

V (x1) = 9, V (x2) = 10.
I x2 is the unique steady state, and is stable

I Converges linearly:

V 1(x1) = 0, V 1(x2) = 1, U1(x1) = 2, U1(x2) = 2,
V 2(x1) = 0.9, V 2(x2) = 1.9, U2(x1) = 2, U2(x2) = 2,
V 3(x1) = 1.71, V 3(x2) = 2.71, U3(x1) = 2, U3(x2) = 2,

I Policy iteration converges after two iterations

V 1(x1) = 0, V 1(x2) = 1, U1(x1) = 2, U1(x2) = 2,
V 2(x1) = 9, V 2(x2) = 10, U2(x1) = 2, U2(x2) = 2,

I Upwind Gauss-Seidel
I Value function at absorbing states is trivial to compute

I Suppose s is absorbing state with control u
I V (s) = π(s, u)/(1− β).

I With absorbing state V (s) we compute V (s ′) of any s ′ that sends
system to s.

V
(
s ′
)

= π
(
s ′, u

)
+ βV (s)

I With V (s ′), we can compute values of states s ′′ that send system to
s ′; etc.

Alternative Orderings
It may be difficult to find proper order.
I Alternating Sweep

I Idea: alternate between two approaches with different directions.

W = V k ,
Wi = maxu π(xi , u) + β

∑n
j=1 qij(u)Wj , i = 1, 2, 3, ..., n

Wi = maxu π(xi , u) + β
∑n

j=1 qij(u)Wj , i = n, n − 1, ..., 1
V k+1 = W

I Will always work well in one-dimensional problems since state moves
either right or left, and alternating sweep will exploit this half of the
time.

I In two dimensions, there may still be a natural ordering to be
exploited.

I Simulated Upwind Gauss-Seidel
I It may be difficult to find proper order in higher dimensions
I Idea: simulate using latest policy function to find downwind direction

I Simulate to get an example path, x1, x2, x3, x4, ..., xm
I Execute Gauss-Seidel with states xm, xm−1, xm−2,, x1

Discrete-time Dynamic Games

I A discrete-time stochastic game with a finite number of states is
often just called a “stochastic game”
I Ericson-Pakes model of industry dynamics is an example
I Pakes-Mcguire presents a computational method

I Definition of states and actions
I State of the game in period t is ωt ∈ Ω; finite number of states
I N players.
I Player i ’s action at t is x i

t ∈ Xi (ωt), the set of feasible actions
I The players’ actions in period t is xt =

(
x1
t , . . . , x

N
t

)
. As usual, x−i

t

denotes
(
x1
t , . . . , x

i−1
t , x i+1

t , . . . , xN
t

)
.

I Apologies for change in notation. Here x it denotes actions and ωi
t

denotes states

Dynamics and payoffs

I Dynamics
I Changes in states are determined by a Markov process
I Law of motion is

Pr
(
ω′|ωt , xt

)
=

N∏
i=1

i

Pr
((
ω′
)i |ωi

t , x
i
t

)
,

where Pri
(

(ω′)
i |ωi

t , x
i
t

)
is the transition probability for player i ’s

state.
I Payoff

I Player i receives πi (xt , ωt) when players’ actions are xt and the state
is ωt .

I At the beginning of the next period player i receives a payoff
Φi (xt , ωt , ωt+1) IF there is a change in the state. For example, I may
order a machine to come tomorrow but perhaps it does not.

Nash equilibrium

I Bellman equation for player i is

V i (ω) = maxx i πi
(
x i ,X−i (ω) , ω

)
+

βEω′
{

Φi
(
x i ,X−i (ω) , ω, ω′

)
+ V i (ω′) |ω, x i ,X−i (ω)

}
I Player strategy is

X i (ω) = arg maxx i πi
(
x i ,X−i (ω) , ω

)
+

βEω′
{

Φi
(
x i ,X−i (ω) , ω, ω′

)
+ V i (ω′) |ω, x i ,X−i (ω)

}
I Nash equilibrium is a set of Bellman and policy solutions for the set

of players

Computational considerations

I Equilibrium is a finite set of equations, each equation being a
low-dimensional optimization problem

I LOOKS like dynamic programming but it is not
I This is not a contraction mapping
I There may be multiple solutions, in which case this cannot be a

contraction mapping
I Without a contraction factor you cannot use simple stopping rule

form DP
I The system is a set of nonlinear equations

I Can use Gauss-Jacobi, as did Pakes and Mcguire
I Could use Gauss-Seidel, as later people did (to save memory)
I Different algorithms may produce different solutions

More Computational considerations

I Parallelization?
I Much more dangerous, but should be tried
I Gauss-Jacobi is likely less dangerous
I Random asynchronous synchronous could be a wild ride

I Crazy idea: Use Newton’s method. Only nut cases would try that.
I We will do that next week.

