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Abstract

To recover a version of Barro’s (1979) ‘random walk’ tax smoothing outcome, we modify
Lucas and Stokey’s (1983) economy to permit only risk-free debt. This imparts near
unit root like behavior to government debt, independently of the government expenditure
process, a realistic outcome in the spirit of Barro’s. We show how the risk-free-debt-
only economy confronts the Ramsey planner with additional constraints on equilibrium
allocations that take the form of a sequence of measurability conditions. We solve the
Ramsey problem by formulating it in terms of a Lagrangian, and applying a Parameterized
Expectations Algorithm to the associated first-order conditions. The first-order conditions
and numerical impulse response functions partially affirm Barro’s random walk outcome.
Though the behaviors of tax rates, government surpluses, and government debts differ,
allocations are very close for computed Ramsey policies across incomplete and complete
markets economies.
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Introduction

This paper computes a Ramsey plan for fiscal policy in a representative household
economy without capital, a time-varying flat rate tax on labor income, and only risk-free
debt. Our model of optimal debt and taxes is ‘in between’ ones studied by Barro (1979) and
Lucas and Stokey (1983). Barro embraced an analogy with a permanent income model
of consumption to conclude that debt and taxes should follow random walks.! Lucas
and Stokey studied a Ramsey problem for an equilibrium model with complete markets,
no capital, exogenous Markov government expenditures, and state contingent taxes and
government debt. Their Ramsey plan puts serial correlation of the tax rate close to that
for the government expenditure process, contrary to the striking result of Barro that the
serial correlation of taxes is independent of the government expenditure process.

A conjecture circulates that results closer to Barro’s would emerge in a model that

2 An impediment to

eliminates complete markets and permits only risk-free borrowing.
evaluating this conjecture has been that the optimal taxation problem with only risk-
free borrowing is difficult because complicated additional constraints restrict competitive
allocations (see Chari, Christiano, and Kehoe (1995, p.366)).?

To focus on the above conjecture, we modify Lucas and Stokey’s environment by letting

the government issue or purchase only risk-free one period debt. We show how the re-

striction to risk-free borrowing imposes a sequence of measurability constraints in addition

1 Hansen, Roberds, and Sargent (1991) describe the testable implications of various models like Barro’s.
2 We heard this conjecture from V. V. Chari and Nancy Stokey.

3 Our interest in formalizing the conjecture about Barro’s model originates partly from historical episodes
which seem to pit Barro’s model against Lucas and Stokey’s. For example, see the descriptions of French
and British 18th century public finance cited in Sargent and Velde (1995). Barro’s model well accounts for
many (but not all) broad features of Britain’s deficit and debt policy, with its aversion to defaults; Lucas
and Stokey’s model does better at explaining France’s behavior, with its recurrent defaults (occasionally
low state-contingent payoffs?).
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to a single implementability constraint required under complete markets. We formulate a
Lagrangian for the Ramsey problem by which the measurability constraints introduce a
Lagrange multiplier process and a state variable (the government debt level) that would
disappear under complete markets. First order conditions associated with the saddle-
point of this Lagrangian form a system of expectational difference equations that we solve
numerically to illustrate features of the Ramsey outcome.

The incomplete debt market substantially alters the serial correlation of Ramsey taxes
relative to Lucas and Stokey’s model, separating it from that of government expenditures
and moving the outcome toward that asserted by Barro. Impulse response functions of
taxes with respect to innovations in government expenditures resemble a sum of the impulse
response in the Lucas-Stokey model (i.e., a piece proportional to the impulse response of
government expenditures) and the impulse response in Barro’s model (a flat, unit-root-like
impulse response).

Throughout this paper, we assume that the government has a commitment mechanism
that binds it to the Ramsey plan. Therefore, we say nothing about Lucas and Stokey’s

discussions of time consistency and the structure of government debt.

Physical Setup

Technology and preferences are those specified by Lucas and Stokey. Let ¢, 2, g, denote

consumption, leisure, and government purchases at time ¢. The technology is
co+xe+ g =1 (1)

Government purchases ¢g; follow a Markov process, with transition density P(¢'|lg). A

representative household ranks consumption streams according to
>0
EOZﬂtu(Ctvxt)v (2)
=0

where 5 € (0,1), and Ey denotes the mathematical expectation conditioned on time 0

information.
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The government raises all revenues through a time-varying flat rate tax 7, on labor
at time ¢. Households and the government make decisions whose time ¢ components are
functions of the history of government expenditures ¢* = (¢¢, ¢t—1,...,¢90), and of initial

government indebtedness b7 1-

Incomplete Markets with Debt Limits

Let w¢ = 1¢(1—a¢)—g¢ denote the time ¢ net-of-interest government surplus. Households
and the government borrow and lend only in the form of risk-free one-period debt. The

government’s budget and debt limit constraints are:

by =we+pibf, t20 (3)

M <V <M, t>0. (4)

Here p! is the price of a risk-free bond paying one unit of consumption in period t + 1,
and b} is the market value of the stock of government bonds issued at ¢, which pay off for
sure at t+ 1. The debt limits in (4) play their routine role in incomplete markets settings.

The household’s problem is to maximize (2) subject to the sequence of budget con-

straints

pib] + e < (L=m)(1—a) +bj_y, 20, (3)

where &) here denotes the household’s holdings of government debt. The household also
faces debt limits analogous to (4), which we assume are less stringent (in both directions)
than those faced by the government. Therefore, in equilibrium, the household’s problem
always has an interior solution. The household’s first-order conditions require that the

price of risk-free debt satisfies

Pl = Byt vt > 0, (6)
Ue,t
and that taxes satisfy
uI,t — 1 (7)
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We use the following definitions.

DEFINITIONS I: A feasible allocation is a stochastic process {e¢, x4, ¢4} satisfying (1). A
bond price process is a stochastic process {p?} whose time # element is measurable with
respect to {¢%,0% ;}. Given Y, and a stochastic process {g:}, a government policy is a

stochastic process for {¢, b } whose time ¢ element is measurable with respect to (g%, 5% ;).

DEFINITION II: Given b, and a stochastic process {g:}, a competitive equilibrium is
an allocation, a government policy, and a bond price process that solves the household’s

optimization problem and that satisfies the government’s budget constraints (3) and (4).

DEFINITION III: The Ramsey problem is to maximize (2) over competitive equilibria. A

Ramsey outcome is a competitive equilibrium that attains the maximum of (2).

We use a standard strategy of casting the Ramsey problem in terms of a constrained
choice of allocation. We use (6) and (7) to eliminate asset prices and taxes from the
government’s budget and debt constraints, and thereby deduce sequences of restrictions
on the government’s allocation in any competitive equilibrium with incomplete markets.
We shall establish the remarkable feature that incomplete markets competitive allocations
must satisfy Lucas and Stokey’s complete markets restriction on allocations, and others
besides. From now on, we use (7) to represent the government surplus in terms of the
allocation as wy = w(er, g¢) = (1 — ug ¢ /uee)(ct + g¢) — g¢.

The following proposition characterizes the restrictions that the government’s budget

and competitive behavior of households place on competitive equilibrium allocations:*

EQUILIBRIUM ALLOCATIONS PROPOSITION: Given b? |, a stochastic process for {ct, g¢, ¢}
satisfies (3), (4), (7), (6) if and only if the following constraints are satisfied:

* This proposition extends remarks of Chari, Christiano, and Kehoe (1995, p. 366), by reformulating the
measurability constraint from a ‘difference equation’ to an ‘isoperimetric’ form.
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> Ue,t
E t S =00
0> B LT (8)
t=0 ’
M < E; Zﬂ] MWt+]‘ < M for all t (9)
j=0 Ue,t

>0

Ey Z 3 eitty w4 1s measurable with
T Ue t (10)
j=0 ©

respect to information known at time ¢ — 1.

PROOF: First we show that the constraints (3), (4), and (6) imply (9) and (10). From (3)
and the household’s first-order conditions with respect to bonds we have

wi+ B E, (u bf) -

Ue,t

Using forward substitution on 4/ and also the law of iterated expectations, we have

T-1
‘uc,t—l—j T uc,t—l—T g g
E, Z B u—wtﬂ + 68" Ey w bt—l—T—l = bt—l?

=0 c,t c,t

for all T, which implies

o)
j Uc,t+)
Ey Z B’ Ny Wity — b?—lv

=0 c,t

Since according to Definition I, ¢ | is known at t—1 and (4) is satisfied, the last equation
implies that (9) and (10) are satisfied.
To prove the reverse implication, we have

>0
_ j Uc ity
By =w¢ + By Z ﬂ]u—wH—j

j=1 c,t

(. @)

: [ [ i
—1 Ye,t+1 c,t+7
i+ BB Y g tett tetki

Ue,t Ue,t+1

J=1
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Applying the law of iterated expectations, we can condition the term inside E; on infor-
mation at t 4+ 1 to get

>0
Ue,t+1 jUc t+1+75
wt + BE; » Eiq E p———wit 11

c,t =0 Ue,t+1

Ue,t+1

=w¢ + BE;

Bt—l—l

Ue
=w; + fE,; < ’t+1> By,

c,t c,t

using (10) in the last line. With formula (6) for bond prices we have:

By = wy -I-p? By,

which guarantees that (3) and (4) are satisfied precisely for 4/ | = B;. |

In the complete markets setting of Lucas and Stokey, (8) is the sole ‘implementability’
condition that government budget balance and competitive household behavior impose on
the equilibrium allocation. The incomplete markets setup leaves this restriction intact, but
adds two sequences of constraints. Constraint (10) requires the allocation to be such that
at each date t > 0, By, the present value of the surplus (evaluated at date ¢t Arrow-Debreu
prices), be known one period ahead.® ¢ Condition (9) requires that the debt constraints
be respected. Condition (8) is but the time 0 version of constraint (10).

The Ramsey problem with incomplete markets has been called a ‘computationally diffi-
cult exercise’ (Chari, Christiano, and Kehoe (1995, p. 366)) because imposing the sequence
of measurability constraints (10) seems daunting. We approach this task by composing
a Lagrangian for the Ramsey problem, and attaching a Lagrange multiplier to each mea-
surability constraint. We use the convention that variables dated ¢ are measurable with
respect to the history of shocks up to t. We incorporate condition (10) by writing it as

b | = E, Z;C:’O B ”Zv_“triwt_|_j, multiplying it by u.;, and attaching a Lagrange multiplier

5 There is a parallel ‘constraint’ in the complete markets case, since B; needs to be measurable with
respect to information at ¢ in that case. But this constraint is trivially satisfied by the definition of Ey(-).
5 This proposition is reminiscent of Duffie and Shafer’s (1985) characterization of incomplete markets
equilibrium in terms of ‘effective equilibria’ that, relative to complete markets allocations, require next-
period allocations to lie in subspaces determined by the menu of assets. In particular, see the argument
leading to Proposition 1 in Duffie (1992, p. 216-217).
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B¢ to the resulting time ¢ component. Then the Lagrangian for the Ramsey problem can
be represented, after applying the law of iterated expectations and summation by parts,

as
L=FE, Z ﬁt{u(ct, 1—c¢— gt) - ¢tuc,twt + uc,t(VltM — voeM + ’Ytb?_l)} (11)
t=0

where
ey =1 + vie — vor + Ve (12)

where ~; can be positive or negative and ¥»_; = 0. The Ramsey problem under complete
markets is the special case in which y441 = v1¢ = v2¢y = 0Vt > 0, and 7 is the (scalar)
multiplier on the time 0 present value government budget constraint: these specifications
imply that ¢y = ¥y = 0. Relative to the complete markets case, the incomplete markets
case augments the Lagrangian with the appearances of b_,, v, ¥t > 1, and M, M in the
Lagrangian, and the effects of ~¢, 114, v9¢ on ¢ in (12).

It is well known that the Ramsey problem is not recursive: because future control
variables appear in the measurability constraints, the Bellman equation does not hold and
the optimal choice at time ¢ is not a time invariant function of the natural state variables,
namely, (b7_,,¢:). Nevertheless, the Lagrangian in (11) and the constraint (12) suggest
that a recursive formulation can be recovered if ;_; is included in the state variables.
Indeed, the ‘recursive contracts’ approach described in Appendix B can be used to show
formally that the optimal choice at time t is a time invariant function of state variables
(¢—1,b)_,,g¢). This observation motivates the simulations below.

We want to investigate how far these steps move us in the direction of Barro’s tax
smoothing outcome. For t > 1, the first-order condition with respect to ¢; can be expressed
as

Uet — Uyt — Perig + (Ueet — ucx,t)(VltM — v M +vb!_,) =0, (13)
where”

Ry = (ucc,t - ucw,t)wt + UctWe,t- (14)

7 In the definition of ¢, it is understood that total differentiation of the function v = u(c,1 — ¢ — g)
with respect to ¢ is occurring. Evidently, &; = (uct — ugt) + ¢t (Uee,t — 2Ucw,t + Uzz,t) + 9t (Uze i — Uca,t) -
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It is useful to study this condition under both complete and incomplete markets.

Complete Markets

With complete markets, 11, = vo; = y441 = 0 Vt > 0 causes (13) to collapse to
Uey — Ug,t — Yokt = 0, (15)

which is a version of Lucas and Stokey’s condition (2.9) for ¢+ > 1. From its definition
(14), r; depends only on the level of government purchases at ¢. Therefore, given the
multiplier o, (15) determines the allocation and associated tax rate 7; as a function
only of the ‘natural’ time ¢ state variable g;. The sole intertemporal link is through the
requirement that ~y must take a value to assure the time 0 present value government
budget constraint. Equation (15) implies that, to a linear approximation, 7, and all other
endogenous variables mirror the serial correlation properties of the ¢, process. The ‘tax-
smoothing’ that occurs in this complete markets model is ‘across states” and is reflected in
the variability of tax rates and revenues relative to government purchases, but not in any
propagation mechanism imparting more pronounced serial correlation to tax rates than to
government purchases. Evidently, in the complete markets model, the government debt

defined as By above also inherits its serial correlation properties entirely from g¢;.

Incomplete Markets

In the incomplete markets case, ¢; changes (permanently) each period because 7, is
non-zero in all periods; being of either sign, v, causes ¥, either to increase or to decrease.
When a debt limit doesn’t bind, we can show that the multiplier ¢ is a risk-adjusted
martingale, imparting a unit-root component to the solution of (13). Taking the derivative

of the Lagrangian with respect to b7 we get

Et[uc,t+17t+1] =0.

This implies that 4 can be positive or negative, and that ; can rise or fall in the steady

state. Assuming that the debt constraints don’t bind and using (12) gives

e = (Bi[uc41]) ™ Eelue, ip1heq1].



Incomplete Markets with Debt Limits 9

Using the definition of conditional covariance, the above equation can be further decom-

posed as

Ve = Eytpegr] + (Befuc41]) ™ coviue g1, Yrga].

Notice the similarity of this equation with the expression for the generalized version of the
pure expectations theory of the term structure presented in Sargent (1987, ch. 3). Like the
forward price in the generalized version of the pure expectations theory, ), is a martingale
adjusted for the risk premium (Eq¢[uc41]) " covi[ue i41, i41]. Equation (13) shows that
this ‘approximate’ martingale result is not precisely Barro’s: (13) makes u.¢7¢ depend

also on 7:bY_, , and so distorts the pure martingale outcome.

Serial Correlation of tazes and market completeness

There is an irony here, exhibited by considering two cases: the complete markets case
of Lucas and Stokey and the case of a balanced budget (i.e., b = 0 for all t). These are
polar cases because, in the first instance, the possibilities for intertemporal and inter-state
smoothing of taxes are as large as possible, while in the second instance there is no room
for intertemporal smoothing by borrowing or lending. In both cases, the tax rate is a
function of ¢; only. Though it lies between these polar cases, our incomplete markets

model imparts an additional martingale-like component to the dynamics.

Reason for computations

So far, we have shown that the optimal tax is determined jointly by g¢, bJ_, (when the
third derivative of u with respect to ¢ doesn’t vanish), and by a state variable that has a
martingale-like behavior (namely ;). Dependence on ¢; reproduces the effects discussed
by Lucas and Stokey; dependence on 1, impels a martingale component, like Barro’s. It is
impossible to determine which effect dominates at this level of generality; for this purpose,

we resort to numerical simulations in the next section.
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Parameterized Expectations Algorithm

We shall describe computed solutions of both complete and incomplete markets economies
with a serially independent government purchase process. We have also computed solutions
for serially correlated government purchase processes, but focus on serially independent
government purchases because of the clear and sharply different implications this case

carries for the serial correlation of tax rates under the different market assumptions.

Parameterizations

In the computations, we rescaled the feasibility constraint so that ¢; + ¢ + g, = 100,

and set government purchases to have mean 30. The stochastic process for ¢; is as follows

€141
2
o

gi+1 = (1 —p)g + pgt +

where €; is an independently and identically distributed sequence distributed A(0,1), and

a 1s a scale factor. Our utility function is

1—0’1 _ 1 1—0’2 _ 1
u(e,x) = £ Ty n (xf) : (16)

1—0'1 1—0'2

Let zy = [thi—1,b!_,, 9] be the state of the economy, and y; = [cq, ¢, T4, P2, V14, Vo)’
be a vector of endogenous variables depending on the state. For the incomplete markets

economy, the Ramsey plan evidently has a non-linear state-space representation

] e

Yt — k(Zt)v

(17)

where h(z¢), k() are the policy and transition functions that we want to compute and
describe. To approximate a solution, we apply the parameterized expectations algorithm
(PEA) of Marcet (1988). We use a complete markets case as a benchmark against which

to measure the incomplete markets version.
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Complete markets economy

We start with a given b’ | and a realization for {g,}7_,. For a fixed 7y, we can solve (15)

and (1) for a realization of an allocation. We can then generate a large number N realiza-

Ue t
Ue,0

. T . o : T
tions of Y ,_, ﬂtz ’;wt, average across the N realizations to estimate Ey» ., 3

then check whether (8) is satisfied for this ~o. If not, we adjust vy and iterate until (8) is

satisfied for our fixed bg_l .

Wt

Incomplete markets economy

For our incomplete markets formulation, we can generate a long pseudo-random real-
ization for (cg, ¢, Ve, b, 111, v2¢) that satisfy the first-order conditions associated with the
Lagrangian for the Ramsey problems. For convenience, we summarize, with some slight

rewriting of some of the equations, in the following system:

w4 b?ﬂEt(u%fl) = b7, (18)

Ue g — Uyt — Vehis + (Ueer — Uer (V1 M — vagM + 4b?_ ) =0 (19)
Ey <uc,t+1(¢t+1 — Vieg1 + V2t+1)> = Ey(uc,i+1)tn (20)

e = b1 + v+ v — v (21)

(bf = M)vie = (M — b )vze = 0 (22)

vie,Vor 2 0 (23)

(bf = M),(M —b{) <0 (24)
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The structure of these equations suggests that it is natural to parameterize the two func-
tions E¢(uc41) and Eylue i41(Yi41 — Vieg1 + vorg1)]. With parameterizations in hand,
it 1s straightforward to generate simulations that satisfy versions of these equations, given
particular parameter settings for these two functions. For time periods ¢ when the con-
straints on debt don’t bind, we can find 4 from (20), then set v1; = 3y = 0, find v from
(21), ¢; from (19), and b] from (18). If b threatens to violate the upper bound, we can
set b = M, find consumption from (18), v, 71, from (19) and (21), set vo; = 0. The
treatment is symmetric at the other bound.

In implementing our calculations, we use several transformations of variables, which bear
interpretations in terms of an alternative formulation of the Ramsey problem. Details are

described in Appendix A.

Description

We shall describe our results in two ways. First, we summarize the linear structure
of the dynamics by computing moving average representations for elements of y, and z,.
We can construct this representation by imitating Wold and applying regression to the
orthogonal basis for ¢g; formed by the history of €,’s. For a long simulation, we regress v,
against {e;_,}l_, for large L, thereby estimating the impulse response function for y;.

Second, we shall display cross-sections of the Ramsey policy functions h(-), k(-) in (17).

Serially uncorrelated government purchases

The case in which government expenditures are serially independent provides a good
laboratory for bringing out the implications of allowing or prohibiting state-contingent
debt. With complete markets, the one-period state contingent debt falling due at ¢ sat-
isfies Bi(g:) = wi + BE]“>*Biy1(g1+1)]. With a serially independent ¢; process, the

We, t

expectation conditional on ¢; equals an unconditional expectation, implying

Bi(gt) = we + Ma (25)

Ue,t

where Fu.B = %ﬂg’ Equation (25) states that the gross payoff on government debt equals

a constant plus the time ¢ surplus, which is serially uncorrelated. The time t value of the
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state contingent debt with which the government leaves period t is a constant, in marginal

M, which is evidently uncorrelated with the level of government

utility units, namely,
expenditures. There is no propagation mechanism from government expenditures to debt.
With incomplete markets, the situation is very different. Government debt evolves

according to

Bt+1 = Rt[Bt - wt]v (26)

where R, = (p?)~!; recall that By, is denominated in units of time ¢ 4+ 1 consumption
goods. Since the gross real interest rate is a random variable exceeding one, this equa-
tion describes a propagation mechanism by which even a serially independent government
surplus process w; would impart close to unit root behavior to the debt level. Of course,
even with serially independent government expenditures, the absence of complete markets

causes the surplus process itself to be serially correlated, as described above.

Numerical Results

We use the parameter values (3, 01,02,1) = (.95,.5,2,1) and (g, p, o, b? ;) = (30,0, .4,0).
We set the debt limits at (M, M) = (—1000,1000).8

Complete markets

Figure 1 displays impulse response functions with the above parameter settings. The
figures confirm that every variable of interest inherits the serial correlation pattern of
government purchases. We can estimate the variance of each variable by squaring the
coefficient at zero lag, then multiplying by the innovation variance of g,. Notice that the
tax rate 7; has very low variance, as indicated by its low zero-lag coefficient of about
7 x 10™*. These impulse response functions tell us how extensively the government relies
on the proceeds of the ‘insurance’ it has purchased from the private sector. In particular,
the net-of-interest deficit is about 93 percent of the innovation to government purchases.

The deficit is covered by state-contingent payments from the private sector.

8 Because we used the parameterization described in the appendix, we actually applied the debt limits
to pi’bf rather than to b .
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. 3 .
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Figure 1. Impulse response functions for complete mar-
kets economy, serially independent government purchases.
From left to right, top to bottom, are impulse response
functions for consumption, leisure, tax rate, tax rev-
enues, and the government deficit.

consumption x10° Leisure
0 0
-0.2
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-5
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Figure 2a. Impulse response functions for incomplete
markets economy, serially independent government pur-
chases. From left to right, top to bottom, are impulse
responses of consumption, leisure, the gross real interest
rate, and the tax rate.
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Figure 2b. Impulse response function for incomplete
markets economy, serially independent government pur-
chases. From left to right, top to bottom, are impulse
responses of tax revenues, the debt level b9 | the deficit,
and the multiplier v, .

Incomplete Markets

Figures 2 through 9 display aspects of the results for the incomplete markets economy.
The impulse response function for b{ in figure 2 shows what a good approximation it is to
assert, as Barro did, that an innovation in government expenditures induces a permanent
increase in debt. This contrasts sharply with the pattern under complete markets with
serially independent ¢;, for which an innovation in government expenditures has no effect
on the present value of debt passed into future periods. Figure 2 shows that 1y is close
to a martingale. The impulse response functions for the tax rate 7, and tax revenues
deviate from the ‘random walk’ predicted by Barro only in their first-period responses.
(Barro’s random walk prediction states that these would be perfectly flat, reflecting purely
a unit root.) These impulse response functions resemble a weighted sum of the random

walk response predicted by Barro and the white noise response predicted by Lucas and
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Stokey. ®

Notice that the lag zero impulse coefficient for the tax rate is about 1/4 higher than
for the complete markets case, so that the one-step ahead prediction error variance is
correspondingly higher. Because of the near-unit root behavior of the tax rate under
incomplete markets, the j-step ahead prediction error variance grows steadily with j, at
least for a long while. The unconditional variance of tax rates under incomplete markets
is therefore much higher than under complete markets.

Figure 3 shows the histogram of b for a simulation of length 10,000. Notice how
much of the time the debt level is negative. Evidently, the government typically uses an
accumulated stock of claims on the public to ‘self-insure’. Notice that neither bound on

the debt was attained in our sample.!®

3000

2500
2000
15001

10001

5001 H 1
i _hr—\!_\"_‘ﬂ . L H!_\
-100 0

-gOO -250 -200 -150 -50 50

Figure 3. Histogram of debt levels, seri-
ally independent government purchases.

9 The impulse response functions for tax rates and for tax revenues reveal that these variables are well
approximated as univariate processes whose first differences are first order moving averages.
10 The analysis of Magill and Quinzii (1994) prompts us to conjecture that if the debt limit band (M, M)
is widened without limit, the debt limits in the Ramsey equilibrium will never bind. To attain a solution
in which the debt bounds did not bind in the sample, we computed a sequence of equilibria with wider
and wider bounds. While suggestive, Magill and Quinzii’s analysis does not apply without modification
to our Ramsey problem.
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Welfare comparison

Despite differences of behaviors for taxes, surpluses, and debts, the impulse response
functions are for consumption and leisure, respectively, in the complete and incomplete
market economies (Figures 1 and 2) are very close. The proximity of the impulse response
functions for (e, ;) implies proximity of the Ramsey allocations in the two economies.
This is confirmed by welfare calculations. We calculated the expected utility of the house-
hold to be 298.80 in the complete markets economy and 298.79 in the incomplete markets
economy. ! This comparison indicates the capacity of tax-smoothing over time to substi-

tute for tax-smoothing across states.

Decision Rules

Figures 4 through 8 display various cross-sections of the decision rules for the incomplete
markets economy. Figure 4 displays decisions and various endogenous variables as functions
of b9, holding ¢; fixed at its mean of 30, and setting > at its mean value conditional on
by .'? Figure 5 through 8 display decisions and various endogenous variables as functions
of ¢4 for various levels of 9.

The decision rules are mostly linear to a good approximation, except for the curvature

displayed by v and R.

1 For pairs of economies with p = .75, we calculated expected utilities 299.04 and 298.97.
12 1t happens that 1 and b9 are very highly correlated, so that g;,b/ are ‘nearly’ the entire state.
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Figure 4. Various variables as functions of 59, with
g = 30. From left to right, top to bottom, the vari-
ables portrayed are, respectively, consumption, leisure,
the gross real interest rate, the tax rate, the government
surplus, and the multiplier ).
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Figure 5. Various variables as functions of ¢, with
b9 = 0. From left to right, top to bottom, the vari-
ables portrayed are, respectively, consumption, leisure,
the gross real interest rate, the tax rate, the government
surplus, and the multiplier ).
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Figure 6. Various variables as functions of ¢, with
b9 = —60. From left to right, top to bottom, the vari-
ables portrayed are, respectively, consumption, leisure,
the gross real interest rate, the tax rate, the government
surplus, and the multiplier ).
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Figure 7. Various variables as functions of ¢, with
b9 = —100. From left to right, top to bottom, the vari-
ables portrayed are, respectively, consumption, leisure,
the gross real interest rate, the tax rate, the government
surplus, and the multiplier ).
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Figure 8. Various variables as functions of ¢, with
b9 = —200. From left to right, top to bottom, the vari-
ables portrayed are, respectively, consumption, leisure,
the gross real interest rate, the tax rate, the government
surplus, and the multiplier ).

Conclusions

Lucas and Stokey (1983, p. 77) drew three lessons: (1.) Budget balance in a present
value or average sense must be respected;'® (2.) No case can be made for budget balance on
a continual basis; (3.) State-contingent debt is an important feature of an optimal policy. '
Our results support 1, amplify 2, but qualify 3. Our incomplete markets Ramsey allocation
is very close to the complete markets Ramsey allocation, testimony to our Ramsey policy’s

use of ‘self-insurance’ through risk-free borrowing and lending with households.

13 According to Keynes, ‘What the government spends, the public pays for.’

1 Lucas and Stokey write:“... even those most skeptical about the efficacy of actual government policy
may be led to wonder why governments forego gains in everyone’s welfare by issuing only debt that purports
to be a certain claim on future goods.” Our calculations do not diminish the relevance of this statement as
a comment about the role of state-contingent debt in making possible a debt structure that renders their
Ramsey tax policy time-consistent.
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In affirming Barro’s characterization of tax-smoothing as imparting near-unit root com-
ponents to tax rates and government debt, our incomplete markets model enlivens a view
of 18th century British fiscal outcomes as Ramsey outcomes. The time series of debt ser-
vice and government expenditure for 18th century Britain resemble a simulation of Barro’s

model or ours, not a complete markets model. !5

Appendix A: Computations

Reformulation of Incomplete Markets

Although the measurability conditions (10) are useful in characterizing equilibria and provide an in-
teresting interpretation of the multipliers, the Ramsey problem can also be cast in a recursive contracts
framework with the original budget constraints (3). This appendix describes such an alternative formula-
tion and applies the method of parameterized expectations.

For convenience, we slightly modify the boundedness constraints to become

M < pbb? < M. (27)

We impose the implementability conditions (6) and (3) on the allocation. Associated with the Ramsey
problem is the Lagrangian:

Ug,

L=FEyYy B ulci,1—ci—ge)+ X [(1- » j) (ct +g¢) +pyb{ — g — b ] (28)
t=0 s

+ pue[ue,t pi = B teqr] 4+ 01 [M — phbd] + 024 [pf b — M]}.

for 614 > 0,683 > 0. Here Ay, piy, 614,02+ are Lagrange multipliers corresponding to (3), (6), and (27). We
have used an iterated expectations argument to incorporate (6) in (28). To obtain a recursive expression,
we use summation by parts to rewrite the Lagrangian as

Ug,

_ - t t brg g
L = Ey ;ﬁ {uler, 1 —cp —ge) + X [(1 - Uc,t) (et +g¢) + piby — ge — b]_4] (29)

we,i(pepy = pri—1 ) + 601 [M = pyb{] + 624[p7b; — M1},
with restrictions 61; > 0,65 > 0, the transition function for 4, (3), and with initial conditions

bg_l =0, p—1=0.

Arguments of Marcet and Marimon (1995) can be applied to show that (b, p;—1,g¢) form the state
variables, and that the solution of the Ramsey problem can be represented as a time-invariant function of
these state variables.

15 See Figure 2 of Sargent and Velde (1995).
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The Euler inequalities

For convenience, we introduce the transformations R = pb,Rt_l b_1 =bJ . Let & = 9[(1 —
t t t—1
Zm—’:)(ct + g¢)]/8ci). The first order conditions satisfied by the saddle point of I are given by '®

Ue,t — Uzt + Uce,t (e Rt_l —pi—1 )+ Xb =0 (30)
—014+ 020 + At = BReE; (Aig1) (31)

—Ue,t Mth_z = by BE; (A41) (32)

(by — M) 61, =0, 010> 0 (33)

(M — by)f2: = 0, fs: >0 (34)

by = —(1— Zj’j) (et +9t) + gt + Ri—1bi—q; (35)
ue  R7Y = 8 By ey (36)

and (27). The above equations are the first-order conditions with respect to consumption, debt, and
interest rate, and the Kuhn-Tucker condition.
Observe that the solution is restricted by seven equations, namely, (30), (31), (32), (33), (34), (35),
and (36). This is a system of difference equations with two expectations in it (namely, E; (A;41 R¢) and
Et (uc,i41)) that can be used to solve for the stochastic process of seven variables: {ci, Ry, bs, A¢, 014,024, pe 152 -

Equivalence of formulations

The formulation in the text is equivalent with the present one,; which can be verified by adopting the
following correspondences:

Form 1 Form 2
Kt Ue,t0t + (Uce,t — Ucat)wi (37)
A
Wi - = (38)
Ue,t
pi Ry
Y —_—t (39)
by
b, Ry_1bi_1 (40)
Ri_1bi_1 = we + by (41)

16 Along with Lucas and Stokey (1983), Chari, Christiano, and Kehoe (1994), and others, we hope that
these first-order conditions are sufficient for an allocation problem for which the concavity of the objective
function 1s at question.
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To verify the match, the key step is to show how to deduce (13) from (30). To reduce the notation, we
present the calculations only for the case in which the debt limits do not bind. Use (39) in (30) to get

Uc,t — Uzt + (Uce,t — Uea,t)(Yibs — Yr_1bi1 Re_1) + Aeby = 0.
Next use (41) and (38) to get

Uc,t — Uyt + (Uee,t — e, ) (Vi Rim1bi—1 — Yhrwir — Yy_1bi_1 Ry_1) — Yruc 16 = 0.
Use (40) to get

Uc,t — Uzt + (tee,t — Uer,t)(b_1 (Vi — Yi—1) — hrwi) — Yrue 8¢ = 0.

Rearranging gives
Ue,t — Up,t — @Z)t <(Ucc,t - Ucw,t)wt + Uc,t6t> + (Ucc,t - Ucw,t)bf_l v¢ = 0.

Using (37) gives (13).

Numerical Solution of the Ramsey Problem

The PEA algorithm replaces agents’ conditional expectations about functions of future variables with an
approximating function in state variables and coefficients on these variables. The approximating function
is used to generate T realizations of variables of interest. Next, a nonlinear least-squares routine is used
to reestimate the coefficients of the approximating function. Using these new coefficients, a new set of
economic time series is created. Iterations continue until the regression coefficients converge. For more
information about the details of PEA, see den Haan and Marcet (1990) and Marcet and Marshall (1994).

We chose to parameterize conditional expectations Et[uc 41] and Ei[R¢A¢41] appearing in (36) and
(31). The state variables are x; = [Rb;—1,u;—1,9¢]'. We use the family of approximating functions
mapping ?R‘:’_ into R4

P(Bi, x1) = exp(Pn(x1)),

where P, denotes a polynomial of degree n and the parameters 3; are the coefficients in the polynomial.
To assure that the variable in the nonlinear least squares problem are of similar orders of magnitude, we
applied function ¢ : (k,k) — (—1,1) to each state variable separately, where k& and k are prespecified
lower and upper bound for the argument of ¢, k. That is,

k—k
k‘:2_—_—1,
plk) =2—

and our ) is

Y(Bi,xt) = exp(Pr(p(xt))).

After parameterizing the two conditional expectations as finite-dimensional functions of ( Rbs_1, t1—1, g1 ),
the next step of PEA is to obtain a long simulation, a process that we manage by considering two cases:
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Unconstrained periods. Where 614y = 85 = 0 (in which case debt is not constrained), the variables can
be obtained as follows: A; is given by (31); now we have four equations left ( (32), (30), (36) and (35))
to solve for the remaining four variables (u, ¢, R, b). Notice that

/,Lth_l = — bt Et (Rt)\t+1)/uc,t~ (42)

Substitute g Ry into (30) and substitute b; from (35) to obtain one non-linear equation for ¢ which
only contains state variables. This gives one non-linear equation to be solved. Next, p, b and R can
be easily found. Once this is done, we check if M < b; < M; if that is the case, go to the next period;
otherwise, we have to solve this period as

. Constrained periods. We find b immediately by setting b; = M or b, = M . Consumption is given by

the transition equation for debt, the interest rate by the (36), u is obtained from (42), A is obtained
from (30) and 61 or #2 from (31).

In applying PEA, the usual iterations are performed to find the policy function at the steady state,

and the short run simulations to find the transition for the multipliers (as Marcet and Marimon (1992)).

To elaborate, we want to find the parameter 3; with the following property: if agents use 8y in order to

form the expectations of the Fuler equation, then (3¢,x;) is the best predictor among functions (-, x;).
The mechanics for finding 3; are the following. We start with an initial 3; = 3o .

Step 1. Fix ;. Substitute the conditional expectations in (36) and (31) by ¢ to obtain:

Uc,th_l = ﬁ"vz)(ﬁzlaxf)
—01¢ 4 020 + Nt = Bp(B7,x4),

where [3],82] = f3;.

K3

Step 2. Obtain a long series of endogenous variables that solves the Ramsey problem for this particu-

lar 3;. Call this series {z;(53;)}.

Step 3. For this series calculate the expressions inside the conditional expectations in (3) and (8) and

perform a nonlinear regression of these expressions on ¥(-,x;); let S(3;) be the result of this regression.

Bi

Step 4. Using a relaxation parameter o € (0,1] update 3; by
Bit1 = (1 — )i + aS(B:).

Step 5. Iterate the procedure until ||3; — 3i_1]|2 < €, where ||-||2 denotes the {3 norm and small € > 0.
is used to approximate 8;. By continuity, ||{z:(8;) — 2:(8;—1)}||2 < &, for small 6§ > 0.

The procedure for obtaining the short simulations is the same except that step 2 is modified as follows:
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Step 2b. Obtain a large number N of (independent) realizations of length T', that solve the Ramsey
problem; in each series the initial conditions are fixed to be xo = [Rb_1, -1, 90] .

To increase accuracy, we can increase N . Here, T is selected to be long enough for the economy to
get in the range of the steady state distribution.

The algorithm is implemented in Fortran-77 in Unix-environment.'” The NLLS-solver we used is a
modified form of the Levenberg-Marquardt algorithm documented in Morris (1990). In long simulations
we used T = 10000, and in short simulations N = 99 and T = 100. The degree of polynomial was
chosen by using the accuracy tests introduced in den Haan and Marcet (1994). It turned out that Rb;_;
and pi—1 were highly correlated, and several higher degree elements were redundant. Hence, excluding
them or p;_1 does not reduce the predictive power of the parameterized expectations.

Appendix B: Recursive Saddle Point Formulation

According to Definition III, the Ramsey problem under incomplete markets is to maximize the utility
of the household subject to measurability conditions expressed as

[oe)
Ee Y B9 ueyjwrg =t bl_y, VE>0 (43)
=0

with b7 | given. The presence of future choice variables in constraints (43) makes the problem non-
recursive in terms of the natural state variables and renders the solution time-inconsistent. Further, the
solution is not of the form ¢; = f(g¢,b)_,); rather, the policy functions are time-dependent and may have
the whole past history of ¢g’s as arguments. Finding a solution for taxes in terms of past ¢’s is, therefore,
demanding.

In this appendix, we re-formulate the problem with an eye to recovering a recursive structure and
facilitating computation. We use the apparatus of Marcet and Marimon (1996) (M&M) '8 | and keep our
notation close to theirs.

Consider the following problem

Program 1

o]
sup EO Zﬁt U(Xt,XH-l,St)
{X:} t=0

subject to

T(X:, Xeq1,S:) >0, t>0; Xg=X (44)

17 The program is available on request from the authors.

18 There are several approaches in the literature that can be used to find a recursive structure in models
where the Bellman equation is not satisfied. Nevertheless, they are not applicable without modifications to
our problem: the approach of Kydland and Prescott (1980) does not incorporate uncertainty; the recursive
formulation of Abreu, Pierce and Stachetti (1990) only provides necessary conditions for an optimum, but
is not designed for solving Ramsey problems. The M&M approach is closely related to that used for the
linear-quadratic case by Hansen, Epple, and Roberds (1985).
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[ee]
Ee Y B V(Siyj, Xigjq1) > ®(Xe, Xiq1,50), VE20 (45)
j=0
X¢41 measurable with respect to  (Sg ..., 51, 5¢). (46)

Here, the initial values So, X, the constant 3, and the mappings u,V,® and 7 are given, and {S;} is
a stochastic Markov process.
The approach uses three steps:

Step 1:
Show that solving Program 1 1s equivalent with solving

Program 2

oo
inf sup EO Zﬁt (U(Xt,XH_l,St) +/,Lt_|_1 V(St,Xt,XH—l) - Ft+1q)(Xt,Xt+1,St))
Tomr{x} =

subject to
Ht+1 = Ht + Ft_|_1 for all t, Ho — 0 (47)
and constraints (44) and (46).
This step follows from algebra. The form of Program 2 offers hope for finding a recursive approach,
because future variables appear neither in the constraints nor return functions. Nevertheless, we cannot
formulate a Bellman equation immediately for Program 2, because it is a saddle point, not a maximization,

problem. We require a theory for recursive saddle point problems.
Thus, define a

Recursive Saddle Point Problem (RSPP):

[ee]
inf sup Fy ﬁth(Xt, Xig1, tie, Hit1, St)
{red (X0} ; ' '

subject to

T(Xy, Xeg1, St) >0 (48)
Qpts peg1, Se) >0 (49)
Xo=X, po =0, So =5 (50)
(Xi41, #t41) measurable with respect to (Sg...,S5:;-1,5%), (51)

and let W be the value function for this problem;i.e., W(X, 7, S) is the value attained by the objective
function at the saddle point for the given initial conditions.

Step 2:

Show that the value function W of a RSPP satisfies the following analog of a Bellman equation:
Saddle Point Functional Fquation (SPFE)

W(X,p,S) = infsup {h(X, X', u, 4, S) + BE [W(X', u/,5")|S]}
woxi
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st. 7(X,X',8) >0
Qu, ', 8) >0
Letting f(X, x,.S) be the optimal choice in the right side of the SPFE, it can be shown that the optimal
solution to program 2 satisfies X; = f(X;_1,p¢—_1,Si_1) for all ¢ and with (X_1,p_1,S5_1) =(X,0,5).
Step 3:

Evidently, Program 2 is a special case of a RSPP, because we can take

M Xt Xeg1, pe, peg1, St) = U(Xe, Xyq1,5t) + pegr V(Se, Xi, Xyq1) — Tipr (X, Xig1)
Qu, T, w1 sy = { H =1
st ’ — _/'L/+/'L+F/

and
w=0.

Recall that Step 1 implies that the solutions to Program 1 and 2 are equivalent; therefore, the solution to
Program 1 satisfies Xy = f(X¢—1, pt—1,5:-1).

The Ramsey problem in the current paper is a special case of program 1 if we take
Xt = (e, b)), Se-1 = ge, e = n
U(Xe, Xi41) = ulei1,1 — cip1 — gi41),

V(Sy, Xiqj41) = e p41wi41
D(Xt, Xi41,5t) = e 41 bf

b — M
T(X¢, Xi41,5¢) =
b+ M

The corresponding RSPP (or Program 2) is displayed in equation (11) in the main text. Therefore, the
corresponding SPFE for the Ramsey problem is

W94, 9) = ) %nf/ ) suP{u(c/,l - = g)+ @/)/ulcw —
BTV sVy X

uer (b9y+ 1M — v M)+ BE WG ' g')|g]}

s.t. M<b' <M
vi, vy >0
V= v+
Using the framework in M&M, we conclude that the solution of the Ramsey problem satisfies:

et = h(ge, pe—1,b7_1) for all t,

and (p_1,b% ) = (0,57), where h is the decision function for the above SPFE.



28 Optimal Tazation without State-Contingent Debt

References

Abreu, Dilip, David Pearce, and Ennio Stacchetti. ‘Toward a Theory of Discounted Re-
peated Games with Imperfect Monitoring’. Econometrica, Vol. 58, No. 5, September,
1990, pp. 1041-1063.

Barro, Robert J. (1979). ‘On the determination of public debt’. .Journal of Political
Economy, Vol. 87, pp. 940-971.

Chari, V.V., Lawrence J. Christiano, and Patrick J. Kehoe (1995). ‘Policy Analysis in
Business Cycle Models’. In Thomas Cooley (ed.), Frontiers of Business Cycle Research
Princeton University Press: Princeton, New Jersey.

Christiano, L. and J. Fisher (1994). ‘Algorithms for Solving Dynamic Models with Oc-
casionally Binding Constraints’. Mimeo. Northwestern University and University of
Western Ontario.

den Haan, W. J. and A. Marcet (1990). ‘Solving a Simple Growth Model by Parameterizing
Expectations’. Journal of Business and Economic Statistics, 8, 31-34.

den Haan, W. J. and A. Marcet (1994). ‘Accuracy in Simulations’. Review of Economic
Studies, 61, 3-17.

Duffie, D. and W. Shafer (1985). ‘Equilibrium in Incomplete Markets I: A Basic Model of
Generic Existence’. Journal of Mathematical Economics, Vol. 14, pp. 285-300.

Duffie, D. (1992). ‘The nature of incomplete security markets’. In J. J. Laffont (ed.),
Advances in Economic Theory, Sixth World Congress, Vol. II Econometrica Society
Monograph, Cambridge University Press, pp. 214-262.

Hansen, Lars P., Dennis Epple, and William Roberds (1985). ‘Linear-quadratic duopoly
models of resource depletion’. In Thomas J. Sargent, ed. (ed.), Energy, Foresight, and
Strategy Washington, D.C.: Resources for the Future.

Hansen, Lars P., William Roberds, and Thomas J. Sargent (1991). ‘Time Series Impli-
cations of Present Value Budget Constraint and of Martingale Models of Consumption
and Taxes’. In Lars Peter Hansen and Thomas J. Sargent (ed.), Rational Expectations
Econometrics Westview Press, 1991.

Ketterer, J. A. and A. Marcet (1989). ‘Introduction of Derivative Securities: A General



References 29

Equilibrium Approach’. Mimeo. Carnegie-Mellon University.

Kydland, Finn E. and Edward C. Prescott (1980). ‘Dynamic Optimal Taxation, Rational
Expectations, and Optimal Control’. Journal of Economic Dynamics and Control, Vol.
2, pp. 79-91.

Lucas, Robert E. Jr. and Nancy L. Stokey (1983). ‘Optimal Fiscal and Monetary Policy
in an Economy without Capital’. Journal of Monetary Economics, Vol. 12, pp. 55-93.

Magill, Michael and Martine Quinzii (1994). ‘Infinite Horizon Incomplete Market Models’.
Econometrica, Vol. 62, No. 4, July, pp. 853-880.

Marcet, A. (1988). ‘Solving Non-Linear Stochastic Models by Parameterizing Expecta-
tions’. Mimeo. Carnegie-Mellon University.

Marcet, A. and R. Marimon (1992). ‘Communication, Commitment, and Growth’. Journal
of Economic Theory, 58, 219-250.

Marcet, A. and R. Marimon (1995). ‘Recursive Contracts’. Mimeo. Universitat Pompeu
Fabra and European University Institute.

Marcet, A. and D. A. Marshall (1988). ‘Solving Nonlinear Rational Expectations Models
by Parameterized Expectations: Convergence to Stationary Solutions’. Mimeo. No. 76,
Universitat Pompeu Fabra.

Morris, A. H., Jr. (1990). NSWC Library of Mathematics Subroutines. Naval Surface
Warfare Center, Dahlgren, Virginia.

Sargent, Thomas J. (1987). Dynamic Macroeconomic Theory. Harvard University Press.

Sargent, Thomas J. and Francois Velde (1995). ‘Macroeconomic Features of the French
Revolution’. Journal of Political Economy, Vol. 103, No. 3, pp. 474-518.





