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Road Map: Structural estimation and discrete decision
problems

Lecture 2: Constrained versus unconstrained optimization approaches
PART I: The Nested Fixed Point Algorithm (NFXP)
PART II: Mathematical Programming with Equilibrium Constraints
(MPEC)
Leading example: Rust’s Engine replacement model
Matlab implementation

Lecture 3-5: CCP estimation based on the Hotz-Miller inversion (Miller)
Conditional Independence and the Inversion Theorem
Identification in Discrete Choice Models
CCP Estimators

Lecture 6-7: Machine Learning of Dynamic Discrete Choice
Lecture 8: Matlab implementation of CCP, NPL, BBL and MSM
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Structural Estimation in Microeconomics

Methods for solving Dynamic Discrete Choice Models
Rust (1987): MLE using Nested-Fixed Point Algorithm (NFXP)
Hotz and Miller (1993): CCP estimator - (two step estimator)
Keane and Wolpin (1994): Simulation and interpolation
Rust (1997): Randomization algorithm (breaks curse of
dimensionality)
Aguirregabiria and Mira (2002): Nested Pseudo Likelihood (NPL).
Bajari, Benkard and Levin (2007): Two step-minimum distance
(equilibrium inequalities).
Arcidiacono Miller (2002): CCP with unobserved heterogeneity (EM
Algorithm).
Norets (2009): Bayesian Estimation (allows for serial correlation in ε)
Su and Judd (2012): MLE using constrained optimization (MPEC)
and MUCH more
Any estimator method or solution algorithm of DDC models must
confront Harold Zurcher
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PART I

Rust (ECTA, 1987):

OPTIMAL REPLACEMENT OF GMC BUS ENGINES:
AN EMPIRICAL MODEL OF HAROLD ZURCHER
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Overview of Rust (1987)

The economic question: For how long should one continue to operate
and maintain a bus before it is optimal to replace or rebuild the engine?

Optimal replacement decision: Solution to a dynamic optimization
problem that formalizes the trade-off between two conflicting objectives:

minimizing replacement costs
minimizing operating and maintenance cost as well as unexpected
engine failures

(quality of engine declines over time, but replacing it is costly)

Empirical question: Did the decision maker (the superintendent of
maintenance, Harold Zurcher) behave according to the optimal
replacement rule implied by the dynamic discrete choice model?

Structural estimation: Using data on monthly mileage and engine
replacements for a sample of GMC busses, Rust estimate the structural
parameters in the engine replacement model using NFXP
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Overview of Rust (1987)

Main contributions
1 Development and implementation of Nested Fixed Point Algorithm
2 Formulation of assumptions, that makes dynamic discrete choice

models tractable.
3 Bottom-up approach: Micro-aggregated demand for machines
4 An illustrative application in a simple model of engine replacement.
5 The first researcher to obtain ML estimates of discrete choice

dynamic programming models

Policy experiments:
How does changes in replacement cost affect

the distribution of mileage
the demand for engines

6 / 74



Introduction Bus Engine Replacement and NFXP NFXP vs MPEC

General Behavioral Framework

The decision problem
The decision maker chooses a sequence of actions to maximize
expected discounted utility over a finite horizon

Vθ (st) = sup
Π

E

 ∞∑
j=0

βjU (st+j , dt+j ; θ1) |st , dt


where

Π = (ft , ft+1, .., ) , dt = ft (st , θ) ∈ C (xt) = {1, 2, .., J}
β ∈ (0, 1) is the discount factor
U (st , dt ; θ1) is a choice and state specific utitty function
E summarizes expectations of future states given st and dt
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Rust’s Assumptions

Assumption (CI)

State variables, st = (xt , εt) obeys a (conditional independent) controlled
Markov process with probability density

p(xt+1, εt+1|xt , εt , d , θ2, θ3) = q(εt+1|xt+1, θ3)p(xt+1|xt , d , θ2)

Assumption (AS (additive separability))

U (st , d) = u (xt , d ; θ1) + εt (d)

Assumption (XV)

The unobserved state variables, εt are assumed to be multivariate iid.
extreme value distributed

Object of interest: θ = (β, θ1, θ2, θ3)
The vector of structural parameters to be estimated.
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The Dynamic Programming Problem

Under AS, the optimal decision solves the following DP problem

Vθ(xt , εt) = max
d∈C(xt)

[u(xt , d , θ1) + εt(d) + βE (Vθ(xt+1, εt+1)|xt , εt , d)]

Under (CI) and (XV) we can integrate out the unobserved state
variables, such that the unknown function, EVθ, no longer depends
on εt .

EVθ (x , d) = Γθ(EVθ) (x , d)

=

∫
y

ln

 ∑
d′∈D(y)

exp [u(y , d ′; θ1) + βEVθ (y , d ′)]

 p (dy |x , d , θ2)

(CI): significantly reduces the dimension of the state space
(XV): allows us to integrate out the unobserved state variables, εt ,

Γθ is a contraction mapping with unique fixed point EVθ, i.e.
‖Γ (EV )− Γ (W )‖ ≤ β ‖EV −W ‖
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Zurcher’s Bus Engine Replacement Problem

Choice set: Binary choice set, C (xt) = {0, 1}. Each bus comes in for
repair once a month and Zurcher chooses between ordinary
maintenance (dt = 0) and overhaul/engine replacement (dt = 1).
State variables: Harold Zurcher observes:

xt : mileage at time t since last engine overhaul
εt = [εt(dt = 0), εt(dt = 1)]: other state variable

Utility function:

u(xt , d , θ1) + εt(dt) =

{
−RC − c(0, θ1) + εt(1) if dt = 1
−c(xt , θ1) + εt(0) if dt = 0 (1)

State variables process xt (mileage since last replacement)

p(xt+1|xt , dt , θ2) =

{
g(xt+1 − 0, θ2) if dt = 1
g(xt+1 − xt , θ2) if dt = 0 (2)

If engine is replaced, state of bus regenerates to xt = 0.
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Likelihood Function

Likelihood

Under assumption (CI) the likelihood function `f has the particular
simple form

`f (x1, . . . xT , d1, . . . dr |x0, d0, θ) =
T∏
t=1

P (dt |xt , θ) p (xt |xt−1, dt−1, θ2)

where P (dt |xt , θ) is the choice probability given the observable state
variable, xt .

How to compute the choice probability, P (dt |xt , θ)

Need to solve dynamic program

How to estimate the transition probability, p (xt |xt−1, dt−1, θ2)

Can be estimated without knowledge of θ1 and EV
(e.g. non-parametrically, NLS, MLE or...)
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Conditional Choice Probabilities

Under the extreme value assumption choice probabilities are
multinomial logistic

P (d |x , θ) =
exp {u (x , d , θ1) + βEVθ (x , d)}∑

j∈C(y) exp {u (x , j , θ1) + βEVθ (x , j)}

The expected value function is given by the unique fixed point to the
contraction mapping Γθ, defined by

EVθ (x , d) = Γθ(EVθ) (x , d)

=

∫
y

ln

 ∑
d′∈D(y)

exp [u(y , d ′; θ1) + βEVθ (y , d ′)]


p (dy |x , d , θ2)

Structural Estimation: Rust’s Nested Fixed Point Algorithm (NFXP)
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Structural Estimation: The Nested Fixed Point Algorithm

Since the contraction mapping Γ always has a unique fixed point, the
constraint EV = Γθ(EV ) implies that the fixed point EVθ is an implicit
function of θ.

Hence, NFXP solves the unconstrained optimization problem

max
θ

L(θ,EVθ)

Outer loop (Hill-climbing algorithm):
Likelihood function L(θ,EVθ) is maximized w.r.t. θ
Quasi-Newton algorithm: Usually BHHH, BFGS or a combination.
Each evaluation of L(θ,EVθ) requires solution of EVθ

Inner loop (fixed point algorithm):
The implicit function EVθ defined by EVθ = Γ(EVθ) is solved by:

Successive Approximations (SA)
Newton-Kantorovich (NK) Iterations
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Data

Harold Zurcher’s Maintenance records of 162 busses
Monthly observations of mileage on each bus (odometer reading)
Data on maintenance operations

1 Routine, periodic maintenance (e.g. brake adjustments)
2 Replacement or repair at time of failure
3 Major engine overhaul and/or replacement

Rust focus on 3)
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Estimated Hazard Functions
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Specification Search
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Structural Estimates, n=90
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Structural Estimates, n=175
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Estimating parameters, bustypes 1,2,3,4 (model 19)

Output from run_busdata.m

1 Structural Estimation using busdata from Rust(1987)
2 Beta = 0.99990
3 n = 175.00000
4 Sample size = 8156.00000
5

6

7 Param. Estimates s.e. t-stat
8 ----------------------------------------------------------------------------------------
9 RC 9.7498 1.2249 7.9596

10 c 1.3385 0.3143 4.2589
11 p (1) 0.1070 0.0034 31.2107
12 p (2) 0.5152 0.0055 93.0556
13 p (3) 0.3622 0.0053 68.0405
14 p (4) 0.0143 0.0013 10.8946
15 p (5) 0.0009 0.0003 2.6469
16 ----------------------------------------------------------------------------------------
17 log-likelihood = -8607.89002
18 runtime (seconds) = 0.36119
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Identification - scale of cost function

Identification problem?
We only identify RC/σ and c(x , θ1)/σ = 0.001 ∗ θ1/σ ∗ x ,
(where σ is parameter that index the scale of the cost function ).
σ is unidentified form mileage and replacement data

How to deal with identification problem related to scale of utility?
Using replacement cost data and structural estimates we can obtain
a scale estimate
Scale the estimates with observed average replacement costs
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Average Engine Replacement Costs

Replacement costs are higher for group 1,2,3 although engine
replacements for this group occur 57.000 miles and 15 month earlier
Presumably operating and maintenance costs for these busses
increase much faster
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Identification - scale of cost function

Using replacement cost data (prev. slide) and structural estimates
from Table IX (next slide) we can obtain a scale estimate

σbus 1,2,3 =
RC

RC/σ

= $9499/11.7257
σbus 4 = $7513/10.0750

We can the obtain a dollar estimate of c(x , θ1) (i.e monthly
maintenance costs per accumulated 5000 miles)

c(x , θ1)bus 1,2,3 = σ ∗ 0.001θ11/σ ∗ x
= $9499/11.725 ∗ 0.001 ∗ 4.82 ∗ x = $3. 9 ∗ x

c(x , θ1)bus 4 = $7513/10.0750 ∗ 0.001 ∗ 2.2930 ∗ x = $1. 7 ∗ x

Hence, a bus with mileage of 300.000 (i.e. x = 300.000/5.000) is
(3. 9− 1.7) ∗ 300000/5000 = $132 more expensive to operate per
month
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Structural Estimates
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Why a dynamic model?

Suppose the "true" β is > 0, but we estimate the model with β = 0
Our estimate of the replacement cost function will be biased.
Parameters RC and θ1 would be biased too
(RC is upward biased and θ1 is downward biased.)
Predictions using the estimated model will be biased for two reasons:

1 parameter estimates are biased
2 the static model is not correct.

Though the biases introduced by (1) and (2) might partly
compensate each other, it will be a very unlikely coincidence that
they compensate each other to make the bias negligible.
Effect on equilibrium demand and hazard functions are very different!
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Estimated Hazard Functions
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Equilibrium bus mileage and demand for enigines

Let π be the long run stationary (or equilibrium) distribution of the
controlled process {it , xt}
π is then given by the unique solution to the functional equation

π(x , i) =

∫
y

∫
j

P(i |x , θ)p(x |y , j , θ3)π(dy , dj)

Carly the equilibrium distribution of π is an implicit function of the
structural parameters θ, which we emphasize by the notation πθ
Given πθ, we can also obtain the following simple formula for annual
equilibrium demand for engines as a function of RC

d(RC ) = 12M
∫ ∞

0
π(dx , 1)
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Equilibrium Bus mileage, bus group 4
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Demand Function, bus group 4
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Why not a reduced form for demand?

Reduced form
Regress engine replacements on replacement costs

Problem: Lack of variation in replacement costs
Data would be clustered around the intersection of the demand
curves for β = 0 and β = 0.9999
(both models predict that RC is around the actual RC of $4343)
Demand also depends on how operating costs varies with mileage
Need exogenous variation in RC
.... that doesn’t vary with operating costs
Even if we had exogenous variation, this does not help us to
understand the underlying economic incentives
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Structural Approach

Attractive features
structural parameters have a transparent interpretation
evaluation of (new) policy proposals by counterfactual simulations.
economic theories can be tested directly against each other.
economic assumptions are more transparent and explicit
(compared to statistical assumptions)

Less attractive features
We impose more structure and make more assumptions
Truly “structural” (policy invariant) parameters may not exist
The curse of dimensionality
The identification problem
The problem of multiplicity and indeterminacy of equilibria
Intellectually demanding and a huge amount of work
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PART II

Constrained and Unconstrained Optimization
Approaches to Structural Estimation

(MPEC vs. NFXP)

31 / 74



Introduction Bus Engine Replacement and NFXP NFXP vs MPEC

MPEC is used in multiple contexts

Single-Agent Dynamic Discrete Choice Models
Rust (1987): Bus-Engine Replacement Problem
Nested-Fixed Point Problem (NFXP)
Su and Judd (2012): Constrained Optimization Approach

Random-Coefficients Logit Demand Models
BLP (1995): Random-Coefficients Demand Estimation
Nested-Fixed Point Problem (NFXP)
Dube, Fox and Su (2012): Constrained Optimization Approach

Estimating Discrete-Choice Games of Incomplete Information
Aguirregabiria and Mira (2007): NPL (Recursive 2-Step)
Bajari, Benkard and Levin (2007): 2-Step
Pakes, Ostrovsky and Berry (2007): 2-Step
Pesendorfer and Schmidt-Dengler (2008): 2-Step
Pesendorfer and Schmidt-Dengler (2010): comments on AM (2007)
Kasahara and Shimotsu (2012): Modified NPL
Su (2013), Egesdal, Lai and Su (2014): Constrained Optimization
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Zurcher’s Bus Engine Replacement Problem

Choice set: Each bus comes in for repair once a month and Zurcher
chooses between ordinary maintenance (dt = 0) and overhaul/engine
replacement (dt = 1)

State variables: Harold Zurcher observes:
xt : mileage at time t since last engine overhaul
εt = [εt(dt = 0), εt(dt = 1)]: other state variable

Utility function:

u(xt , d , θ1) + εt(dt) =

{
−RC − c(0, θ1) + εt(1) if dt = 1
−c(xt , θ1) + εt(0) if dt = 0 (3)

State variables process xt (mileage since last replacement)

p(xt+1|xt , dt , θ2) =

{
g(xt+1 − 0, θ2) if dt = 1
g(xt+1 − xt , θ2) if dt = 0 (4)

If engine is replaced, state of bus regenerates to xt = 0.
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Structural Estimation

Data: (di,t , xi,t), t = 1, ...,Ti and i = 1, ..., n

Likelihood function

`fi (θ) =

Ti∑
t=2

log(P(di,t |xi,t , θ)) +

Ti∑
t=2

log (p(xi,t |xi,t−1, di,t−1, θ2))

where
P(d |x , θ) =

exp{u(x , d , θ1) + βEV θ(x , d)}∑
d′∈{0,1}{u(x , d ′, θ1) + βEV θ(x , d ′)}

and

EV θ(x , d) = Γθ(EV θ)(x , d)

=

∫
y

ln

 ∑
d′∈{0,1}

exp[u(y , d ′; θ1) + βEV θ(y , d ′)]

 p(dy |x , d , θ2)
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The Nested Fixed Point Algorithm

NFXP solves the unconstrained optimization problem

max
θ

L(θ,EV θ)

Outer loop (Hill-climbing algorithm):
Likelihood function L(θ,EV θ) is maximized w.r.t. θ
Quasi-Newton algorithm: Usually BHHH, BFGS or a combination.
Each evaluation of L(θ,EV θ) requires solution of EV θ

Inner loop (fixed point algorithm):
The implicit function EV θ defined by EV θ = Γ(EV θ) is solved by:

Successive Approximations (SA)
Newton-Kantorovich (NK) Iterations
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Mathematical Programming with Equilibrium Constraints

MPEC solves the constrained optimization problem

max
θ,EV

L(θ,EV ) subject to EV = Γθ(EV )

using general-purpose constrained optimization solvers such as KNITRO

Su and Judd (Ecta 2012) considers two such implementations:

MPEC/AMPL:
AMPL formulates problems and pass it to KNITRO.
Automatic differentiation (Jacobian and Hessian)
Sparsity patterns for Jacobian and Hessian

MPEC/MATLAB:
User need to supply Jacobians, Hessian, and Sparsity Patterns
Su and Judd do not supply analytical derivatives.
ktrlink provides link between MATLAB and KNITRO solvers.
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Sparsity patterns for MPEC

Two key factors in efficient implementations:
Provide analytic-derivatives (huge improvement in speed)
Exploit sparsity pattern in constraint Jacobian (huge saving in
memory requirement)
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Zurcher’s Bus Engine Replacement Problem

Discretize the mileage state space x into n grid points

X̂ = {x̂1, ..., x̂n} with x̂1 = 0

Mileage transition probability: for j = 1, ..., J

p(x ′|x̂k , d , θ2) =

{
Pr{x ′ = x̂k+j |θ2} = θ2j if d = 0
Pr{x ′ = x̂1+j |θ2} = θ2j if d = 1

Mileage in the next period x ′ can move up at most J grid points. J is
determined by the distribution of mileage.

Choice-specific expected value function for x̂ ∈ X̂

EVθ(x̂ , d) = Γ̂θ(EVθ)(x̂ , d)

=
J∑
j

ln

 ∑
d′∈D(y)

exp[u(x ′, d ′; θ1) + βEVθ(x ′, d ′)]

 p(x ′|x̂ , d , θ2)
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Bellman equation in matrix form

The choice specific expected value function can be found as fixed point
on the Bellman operator

EV (d) = Γ̂(EV ) = Π(d) ∗ ln

 ∑
d′∈D(y)

exp[u(d ′) + βEV (d ′)]


where

EV (d) = [EV (1, d), ..,EV (n, d)] and u(d) = [u(1, d), .., u(n, d)]

Π(d) is a n × n state transition matrix conditional on decision d
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Transition matrix for mileage is sparse

Transition matrix conditional on keeping engine

Π(d = keep)nxn =



π0 π1 π2 0 ˙ ˙ ˙ 0
0 π0 π1 π2 0 ˙ ˙ 0
0 0 π0 π1 π2 0 ˙ 0
˙ ˙ ˙ ˙ ˙ ˙ ˙
0 π0 π1 π2 0
0 π0 π1 π2
0 π0 1− π0
0 0 1
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Transition matrix for mileage is sparse

Transition matrix conditional on replacing engine

Π(d = replace)nxn =



π0 π1 π2 0 ˙ ˙ ˙ 0
π0 π1 π2 0 ˙ ˙ ˙ 0
π0 π1 π2 0 ˙ ˙ ˙ 0
π0 π1 π2 0 ˙ ˙ ˙ 0
π0 π1 π2 0 ˙ ˙ ˙ 0
π0 π1 π2 0 ˙ ˙ ˙ 0
π0 π1 π2 0 ˙ ˙ ˙ 0
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Transition matrix is sparse
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Monte Carlo: Rust’s Table X - Group 1,2, 3

Fixed point dimension: n = 175
Maintenance cost function: c(x , θ1) = 0 : 001 ∗ θ1 ∗ x
Mileage transition: stay or move up at most J = 4 grid points
True parameter values:

θ1 = 2 : 457
RC = 11.726
(θ21, θ22, θ23, θ24) = (0.0937, 0.4475, 0.4459, 0.0127)

Solve for EV at the true parameter values
Simulate 250 datasets of monthly data for 10 years and 50 buses
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Is NFXP a dinosaur method?
Su and Judd (Econometrica, 2012)

2228 C.-L. SU AND K. L. JUDD

TABLE II
NUMERICAL PERFORMANCE OF NFXP AND MPEC IN THE MONTE CARLO EXPERIMENTSa

Runs Converged CPU Time # of Major # of Func. # of Contraction
β Implementation (out of 1250 runs) (in sec.) Iter. Eval. Mapping Iter.

0.975 MPEC/AMPL 1240 0"13 12.8 17"6 –
MPEC/MATLAB 1247 7"90 53.0 62"0 –

NFXP 998 24"60 55.9 189"4 134,748
0.980 MPEC/AMPL 1236 0"15 14.5 21"8 –

MPEC/MATLAB 1241 8"10 57.4 70"6 –
NFXP 1000 27"90 55.0 183"8 162,505

0.985 MPEC/AMPL 1235 0"13 13.2 19"7 –
MPEC/MATLAB 1250 7"50 55.0 62"3 –

NFXP 952 43"20 61.7 227"3 265,827
0.990 MPEC/AMPL 1161 0"19 18.3 42"2 –

MPEC/MATLAB 1248 7"50 56.5 65"8 –
NFXP 935 70"10 66.9 253"8 452,347

0.995 MPEC/AMPL 965 0"14 13.4 21"3 –
MPEC/MATLAB 1246 7"90 59.6 70"7 –

NFXP 950 111"60 58.8 214"7 748,487

aFor each β, we use five starting points for each of the 250 replications. CPU time, number of major iterations,
number of function evaluations and number of contraction mapping iterations are the averages for each run.

Monte Carlo study demonstrates the uses of parametric bootstrap to compute
standard errors on structural parameters.

5. CONCLUSION

In this paper, we have proposed a new constrained optimization approach,
MPEC, for estimating structural econometrics models. We have illustrated
that the MPEC approach can be applied directly to maximum-likelihood es-
timation of single-agent dynamic discrete-choice models. Our approach can be
easily implemented using existing standard constrained optimization software.
Monte Carlo results confirmed that MPEC is significantly faster than NFXP,
particularly when the discount factor in the dynamic-programming model is
close to 1.

As shown by Dubé, Fox, and Su (2012), MPEC can also be applied to esti-
mate random-coefficients logit demand models. We believe that our approach
will be useful for estimating structural models in various contexts and applica-
tions. For future research, we plan to investigate the applicability of the MPEC
approach to estimate dynamic discrete-choice games studied in Aguirregabiria
and Mira (2007), Bajari, Benkard, and Levin (2007), Pakes, Ostrovsky, and
Berry (2007), Pesendorfer and Schmidt-Dengler (2008), and Arcidiacono and
Miller (2011).
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NFXP survival kit

Step 1: Read NFXP manual and print out NFXP pocket guide
Step 2: Solve for fixed point using Newton Iterations
Step 3: Recenter Bellman equation
Step 4: Provide analytical gradients of Bellman operator
Step 5: Provide analytical gradients of likelihood
Step 6: Use BHHH (outer product of gradients as hessian approx.)
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STEP 1: NFXP documentation

Main references

Rust (1987): "Optimal Replacement of GMC Bus Engines: An
Empirical Model of Harold Zurcher" Econometrica 55-5, pp
999-1033.

Rust (2000): “Nested Fixed Point Algorithm Documentation
Manual: Version 6”
https://editorialexpress.com/jrust/nfxp.html

Iskhakov, F. , J. Rust, B. Schjerning, L. Jinhyuk, and K. Seo (2015):
"Constrained Optimization Approaches to Estimation of Structural
Models : Comment." Econometrica 84-1, pp. 365-370.
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Nested Fixed Point Algorithm

NFXP Documentation Manual version 6, (Rust 2000, page 18):

Formally, one can view the nested fixed point algorithm as
solving the following constrained optimization problem:

max
θ,EV

L(θ,EV ) subject to EV = Γθ(EV ) (5)

Since the contraction mapping Γ always has a unique fixed
point, the constraint EV = Γθ(EV ) implies that the fixed point
EV θ is an implicit function of θ. Thus, the constrained
optimization problem (5) reduces to the unconstrained
optimization problem

max
θ

L(θ,EV θ) (6)

where EV θ is the implicit function defined by EV θ = Γ(EV θ).

47 / 74



Introduction Bus Engine Replacement and NFXP NFXP vs MPEC

NFXP pocket guide
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STEP 2: Newton-Kantorovich Iterations

Problem: Find fixed point of the contraction mapping

EV = Γ(EV )

Error bound on successive contraction iterations:
||EVk+1 − EV || ≤ β||EVk − EV ||
linear convergence → slow when β close to 1
Newton-Kantorovich:
Solve F = [I − Γ](EVθ) = 0 using Newtons method
||EVk+1 − EV || ≤ A||EVk − EV ||2
quadratic convergence around fixed point, EV
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STEP 2: Newton-Kantorovich Iterations

Convert the problem of finding a fixed point EVθ = Γ(EVθ) into the
problem of finding a zero of the nonlinear operator Fθ(EVθ)

Fθ(EVθ) = (I − Γθ)(EVθ) = 0

where I is the identity operator on B, and 0 is the zero element of B (i.e.
the zero function).

Newton-Kantorovich iteration:

EVk+1 = EVk − (I − Γ′)−1(I − Γ)(EVk)

The nonlinear operator Fθ = I − Γθ has a Fréchet derivative I − Γ′θ which
is a bounded linear operator on B with a bounded inverse.

The Fixed Point (poly) Algorithm
1 Successive contraction iterations

(until EV is in domain of attraction)
2 Newton-Kantorovich (until convergence)
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STEP 2: Newton-Kantorovich Iterations, β = 0.9999

Successive Approximations, VERY Slow

1 Begin contraction iterations
2 j tol tol(j)/tol(j-1)
3 1 0.24310300 0.24310300
4 2 0.24307590 0.99988851
5 3 0.24304810 0.99988564
6 : : :
7 9998 0.08185935 0.99990000
8 9999 0.08185116 0.99990000
9 10000 0.08184298 0.99990000

10 Elapsed time: 1.44752 (seconds)
11

12 Begin Newton-Kantorovich iterations
13 nwt tol
14 1 9.09494702e-13
15 Elapsed time: 1.44843 (seconds)
16

17 Convergence achieved!
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STEP 2: Newton-Kantorovich Iterations
Successive Approximations, VERY Slow
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STEP 2: Newton-Kantorovich Iterations
Successive Approximations, Linear convergence
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STEP 2: Newton-Kantorovich Iterations, β = 0.9999

Quadratic convergence!

1 Begin contraction iterations
2 j tol tol(j)/tol(j-1)
3 1 0.21854635 0.21854635
4 2 0.21852208 0.99988895
5 Elapsed time: 0.00056 (seconds)
6

7 Begin Newton-Kantorovich iterations
8 nwt tol
9 1 1.03744352e-02

10 2 4.40564315e-04
11 3 8.45941486e-07
12 4 3.63797881e-12
13 Elapsed time: 0.00326 (seconds)
14

15 Convergence achieved!
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STEP 2: Newton-Kantorovich Iterations
NR: Quadratic convergence!
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STEP 2: When to switch to Newton-Kantorovich

Observations:
tolk = ‖EVk+1 − EVk‖ < β‖EVk − EV ‖
tolk quickly slow down and declines very slowly for β close to 1
Relative tolerance tolk+1/tolk approach β

When to switch to Newton-Kantorovich?
Suppose that EV0 = EV + k .
(Initial EV0 equals fixed point EV plus an arbitrary constant)
Another successive approximation does not solve this:

tol0 = ‖EV0 − Γ(EV0)‖ = ‖EV + k − Γ(EV + k)‖
= ‖EV + k − (EV + βk)‖ = (1− β)k

tol1 = ‖EV1 − Γ(EV1)‖ = ‖EV + βk − Γ(EV + βk)‖
= ‖EV + βk − (EV + β2k)‖ = β(1− β)k

tol1/tol0 = β

Newton will immediately “strip away” the irrelevant constant k
Switch to Newton whenever tol1/tol0 is sufficiently close to β

56 / 74



Introduction Bus Engine Replacement and NFXP NFXP vs MPEC

STEP 3: Recenter to ensure numerical stability

Logit formulas must be reentered.

Pi =
exp(Vi )∑

j∈D(y) exp(Vj)

=
exp(Vi − V0)∑

j∈D(y) exp(Vj − V0)

and “log-sum” must be recenteret too

EVθ =

∫
y

ln
∑

j′∈D(y)

exp(Vj)p(dy |x , d , θ2)

=

∫
y

V0 + ln
∑

j′∈D(y)

exp(Vj − V0)

 p(dy |x , d , θ2)

If V0 is chosen to be V0 = maxj Vj we can avoid numerical instability due
to overflow/underflow
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STEP 4: Analytical Fréchet derivative of Bellman operator

Fréchet derivative
For NK iteration we need Γ′

EVk+1 = EVk − (I − Γ′)−1(I − Γ)(EVk)

In terms of its finite-dimensional approximation, Γ′θ takes the form of
an N × N matrix equal to the partial derivatives of the N × 1 vector
Γθ(EVθ) with respect to the N × 1 vector EVθ
Γ′θ is simply β times the transition probability matrix for the
controlled process {dt , xt}
Two lines of code in MATLAB
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STEP 1-4: MATLAB implementation of Γθ and Γ′θ

1 function [ev1, pk, dbellman_dev]=bellman_ev(ev, mp, P)
2 cost=0.001*mp.c*mp.grid; % Cost function
3 vK=-cost + mp.beta*ev; % Value off keep
4 vR=-cost(1)-mp.RC + mp.beta*ev(1); % Value of replacing
5

6 % Need to recenter logsum by subtracting max(vK, vR)
7 maxV=max(vK, vR);
8 V=(maxV + log(exp(vK-maxV) + exp(vR-maxV)));
9 ev1=P{1}*V;

10

11 % If requested, also compute choice probability
12 if nargout>1
13 pk=1./(1+exp((vR-vK)));
14 end
15 if nargout>2 % compute Frechet derivative
16 dbellman_dev=mp.beta*bsxfun(@times, P{1}, pk');
17 % Add additional term for derivative wrt Ev(1)
18 % since Ev(1) enter logsum for all states
19 dbellman_dev(:,1)=dbellman_dev(:,1)+mp.beta*P{1}*(1-pk);
20 end
21 end % end of ZURCHER.bellman_ev

59 / 74



Introduction Bus Engine Replacement and NFXP NFXP vs MPEC

Bellman operator can also be written in terms of the
smoothed value function

Define the smoothed value function Vσ(x) =
∫
V (x , ε)g(ε|x)dε where σ

represents parameters that index the distribution of the ε′s.

Under our assumptions so far, the smoothed value function, Vσ is a fixed
point on the mapping

Vσ = Γ̂σ(Vσ) = ln

 ∑
d′∈D(y)

exp[u(d ′) + βΠ(d ′) ∗ Vσ]


where Vσ = [Vσ(1), ..,Vσ(n)] and u(d) = [u(1, d), .., u(n, d)]

Easy to implement to implement Fréchet derivative.
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STEP 1-4: MATLAB implementation based on smoothed
value function

1 function [V1, pk, dBellman_dV]=bellman_integrated(V0, mp, P)
2 cost=0.001*mp.c*mp.grid; % Cost function
3 vK=-cost + mp.beta*P{1}*V0; % Value off keep
4 vR=-mp.RC-cost(1) + mp.beta*P{2}*V0; % Value of replacing
5 maxV=max(vK, vR);
6 V1=(maxV + log(exp(vK-maxV) + exp(vR-maxV)));
7

8 % If requested, also compute choice probability
9 if nargout>1

10 pk=1./(1+exp((vR-vK)));
11 end
12

13 if nargout>2 % compute Frechet derivative
14 dBellman_dV=mp.beta*(P{1}.*pk + P{2}.*(1-pk));
15 end
16 end % end of ZURCHER.bellman_integrated
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STEP 5: Provide analytical gradients of likelihood

Gradient similar to the gradient for the conventional logit

∂`1i (θ)/∂θ = [dit − P(dit |xit , θ)]× ∂(vrepl. − vkeep)/∂θ

Only thing that differs is the inner derivative of the choice specific
value function that besides derivatives of current utility also includes
∂EVθ/∂θ wrt. θ
By the implicit function theorem we obtain

∂EVθ/∂θ = [I − Γ′θ]−1∂Γ/∂θ′

By-product of the N-K algorithm: [I − Γ′θ]−1
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STEP 5: MATLAB implementation of scores

1 cost=0.001*mp.c*mp.grid;
2 dc=0.001*mp.grid;
3

4 % step 1: compute derivative of contraction operator wrt. parameters
5 dbellman_dmp=zeros(mp.n,2);
6 dbellman_dmp(:, 1)=(1-pk)*(-1); % Derivative wrt. RC
7 dbellman_dmp(:, 2)=pk.*(-dc); % Derivative wrt. c
8

9 % step 2: compute derivative of ev wrt. parameters
10 devdmp=F\dbellman_dmp;
11

12 % step 3: compute derivative of log-likelihood wrt. parameters
13 score=bsxfun(@times, (data.d-pxR), ...
14 [-ones(N,1) dc(data.x,:)] + (devdmp(ones(N,1),:)-devdmp(data.x,:)));
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STEP 6: BHHH

Recall Newton-Raphson

θg+1 = θg − λ (ΣiHi (θg ))−1 Σi si (θg )

Berndt, Hall, Hall, and Hausman, (1974):
Use outer product of scores as approx. to Hessian

θg+1 = θg + λ (Σi si s
′
i )
−1

Σi si

Why is this valid? Information identity:

−E [Hi (θ)] = E
[
si (θ) si (θ)′

]
(only valid for MLE and CMLE)
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STEP 6: BHHH

Some times linesearch may not help Newtons Method
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BHHH: Still good
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STEP 6: BHHH

Advantages
Σi si s

′
i is always positive definite

I.e. it always moves uphill for λ small enough
Does not rely on second derivatives

Disadvantages
Only a good approximation

At the true parameters
for large N
for well specified models (in principle only valid for MLE)

Only superlinear convergent - not quadratic
We can always use BHHH for first iterations and the switch to BFGS to
update to get an even more accurate approximation to the hessian matrix
as the iterations start to converge.
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STEP 6: BHHH

“The road ahead will be long. Our climb will be steep. We may not get
there in one year or even in one term. But, America, I have never been
more hopeful than I am tonight that we will get there. I promise you, we
as a people will get there.” (Barack Obama, Nov. 2008)
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STEP 6: Ooups, new sheriff in town

UseBHHH!
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Convergence!
β=0.9999

1 ---------------------------------------------------------------------
2 *** Convergence Achieved

***
3 ---------------------------------------------------------------------
4 _
5 \`\
6 |= |
7 /- ;.---.
8 _ __.' (____)
9 ` (_____)

10 _' ._ .' (____)
11 ` (___)
12 --`'------'`
13 Number of iterations: 9
14 grad*direc 0.00003
15 Log-likelihood -276.74524
16

17 Param. Estimates s.e. t-stat
18 ---------------------------------------------------------------------
19 RC 11.1525 0.9167 12.1655
20 c 2.3298 0.3288 7.0856
21 ---------------------------------------------------------------------
22

23 Time to convergence is 0 min and 0.07 seconds
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MPEC versus NFXP-NK: sample size 6,000

Converged CPU Time # of Major # of Func. # of Bellm. # of N-K

β (out of 1250) (in sec.) Iter. Eval. Iter. Iter.

MPEC-Matlab
0.975 1247 1.677 60.9 69.9
0.985 1249 1.648 62.9 70.1
0.995 1249 1.783 67.4 74.0
0.999 1249 1.849 72.2 78.4
0.9995 1250 1.967 74.8 81.5
0.9999 1248 2.117 79.7 87.5

MPEC-AMPL
0.975 1246 0.054 9.3 12.1
0.985 1217 0.078 16.1 44.1
0.995 1206 0.080 17.4 49.3
0.999 1248 0.055 9.9 12.6
0.9995 1250 0.056 9.9 11.2
0.9999 1249 0.060 11.1 13.1

NFXP-NK
0.975 1250 0.068 11.4 13.9 155.7 51.3
0.985 1250 0.066 10.5 12.9 146.7 50.9
0.995 1250 0.069 9.9 12.6 145.5 55.1
0.999 1250 0.069 9.4 12.5 141.9 57.1
0.9995 1250 0.078 9.4 12.5 142.6 57.5
0.9999 1250 0.070 9.4 12.6 142.4 57.7
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MPEC versus NFXP-NK: sample size 60,000

Converged CPU Time # of Major # of Func. # of Bellm. # of N-K

β (out of 1250) (in sec.) Iter. Eval. Iter. Iter.

MPEC-AMPL
0.975 1247 0.53 9.2 11.7
0.985 1226 0.76 13.9 32.6
0.995 1219 0.74 14.2 30.7
0.999 1249 0.56 9.5 11.1
0.9995 1250 0.59 9.9 11.2
0.9999 1250 0.63 11.0 12.7

NFXP-NK
0.975 1250 0.15 8.2 11.3 113.7 43.7
0.985 1250 0.16 8.4 11.4 124.1 46.2
0.995 1250 0.16 9.4 12.1 133.6 52.7
0.999 1250 0.17 9.5 12.2 133.6 55.2
0.9995 1250 0.17 9.5 12.2 132.3 55.2
0.9999 1250 0.17 9.5 12.2 131.7 55.4
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CPU time is linear sample size

0 2 4 6 8 10 12

x 10
5

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sample size

c
p

u
 t

im
e

 p
e

r 
m

a
jo

r 
it
e

ra
ti
o

n
 (

s
e

c
o

n
d

s
)

 

 

MPEC−AMPL

NFXP−NK

TNFXP = 0.001 + 0.13x (R2 = 0.991), TMPEC = −0.025 + 1.02x (R2 = 0.988).
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CPU time is linear sample size
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MPEC−AMPL

NFXP−NK

TNFXP = 0.129 + 1.07x (R2 = 0.926) , TMPEC = −1.760 + 17.51x (R2 = 0.554).
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Summary remarks

Su and Judd (Econometrica, 2012) used an inefficient version of NFXP
that solely relies on the method of successive approximations to solve the
fixed point problem.

Using the efficient version of NFXP proposed by Rust (1987) we find:
MPEC and NFXP-NK are similar in performance when the sample size is
relatively small.
NFXP does not slow down as β → 1

Desirable features of MPEC
Ease of use by people who are not interested in devoting time to the
special-purpose programming necessary to implement NFXP-NK.
Can easily be implemented in the intuitive AMPL language.

Inference
NFXP: Trivial to compute standard errors by inverting the Hessian from
the unstrained likelihood (which is a by-product of NFXP).
MPEC: Standard errors can be computed inverting the bordered Hessian
Reich and Judd (2019): Develop simple and efficient approach to
compute confidence intervals.

MPEC does not seem appropriate when estimating life cycle models
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