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Abstract

We revisit the comparison of mathematical programming withequilibrium constraints (MPEC)
and nested fixed point (NFXP) algorithms for estimating structural dynamic models by Su and
Judd (SJ, 2012). Their implementation of the nested fixed point algorithm used successive
approximations to solve the inner fixed point problem (NFXP-SA). We re-do their comparison
using the more efficient version of NFXP proposed by Rust (1987), which combines successive
approximations and Newton-Kantorovich iterations to solve the fixed point problem (NFXP-
NK). We show that MPEC and NFXP are similar in speed and numerical performance when the
more efficient NFXP-NK variant is used.
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1 Introduction

In “Constrained optimization approaches to estimation of structural models” Su and Judd

(2012), hereafter SJ, proposed a constrained optimizationapproach for maximum likeli-

hood estimation of infinite horizon dynamic discrete choicemodels — mathematical pro-

gramming with equilibrium constraints (MPEC). They arguedthat MPEC is superior to the

nested fixed point(NFXP) algorithm proposed by Rust (1987). NFXP uses the factthat

the likelihood depends on the parameters via thevalue functionto a dynamic program-

ming (DP) problem. Under weak conditions, the value function is the unique fixed point

to a contraction mapping defined by theBellman equation to the DP problem and is a

smooth implicit function of the underlying structural parameters of the problem. NFXP

uses this to maximize the likelihood using standardunconstrainedquasi-Newton optimiza-

tion algorithms, except that each time the likelihood is evaluated, NFXP calls a fixed point

subroutine to compute the value function corresponding to the current parameter values.

In contrast, MPEC method does not need a specialized inner loop algorithm to compute

the fixed point. Instead, it recasts the problem of maximizing the likelihood function as

a constrained optimization problem with respect to theK structural parameters plusN

additional variables, which are the values of value function at a set ofN grid points in

the state space. TheseN additional variables must satisfy the Bellman equation, which

can be recast as aN “side constraints”. Thus MPEC also implicitly solves the fixed point

problem while searching for structural parameter values that maximize the likelihood, but

using a general-purposeconstrainedoptimization algorithm1.

SJ used the model of optimal replacement of bus engines of Rust (1987) to conduct

a Monte Carlo study to compare the performance of the MPEC andNFXP algorithms.

They found that MPEC outperformed NFXP in terms of CPU time byup to three orders of

magnitude.

The point of this comment is to note that SJ used a version of NFXP we refer to as

“NFXP-SA” where the method ofsuccessive approximations(SA) is used to solve the

1The specific implementation SJ use is KNITRO (see Byrd, Nocedal and Waltz 2006) which is run under AMPL
software that provides analytic first and second order derivatives, and under Matlab with analytic gradients and the
Hessian approximated numerically.
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inner fixed point problem. However it is well known that successive approximations is an

inefficient algorithm for computing fixed points of contraction mappings, especially when

the modulus of the contraction (which equals the discount factor in the underlying dynamic

programming problem) is close to 1.

We redo the SJ Monte Carlo study using the more efficient version of NFXP that

Rust (1987) employed. This version, NFXP-NK, combines successive approximations and

Newton-Kantorovich (NK) iterations to solve the inner fixedpoint problem significantly

faster and more reliably, especially when the discount factor is close to 1. We show that

NFXP and MPEC are roughly equivalent in their numerical performance when the more

efficient NFXP-NK variant is employed.

NK is the preferred method for computing contraction fixed points because it has guar-

anteed quadratic convergence rate in its domain of attraction. However, NK is only locally

convergent, so the original design of the NFXP algorithm (Rust 1987, 2000) starts with

successive approximations to ensure global convergence, and switches to NK iterations

only after it detects that the domain of attraction has been reached.2 This hybrid algo-

rithm or “polyalgorithm” ensures that a highly accurate solution can be found after only

a small combined number of iterations. In particular, the combination of these two ap-

proaches makes the performance of the NFXP-NK algorithm independent of the value of

the discount factorβ whereas the CPU times of the NFXP-SA algorithm steadily increase

asβ → 1 as shown in Table 2 of SJ (p. 2228).

2 Results

Table 1 presents a comparison of CPU times for MPEC and NFXP that reproduces Table

2 of SJ. While we have developed our own code to implement NFXP-NK, we have been

using the same setup and computer code for MPEC that was used to produce the results

2Rust (2000, p.28) details the theory of when the algorithm has to switch from successive approximations to NK
iterations. The idea is based on the fact that the ratio of tolerances in two successive iterations of SA algorithm approaches
the modulus of contraction (β) as the algorithm progresses. When this ratio is close enough to β, the shape of the value
function is nearly recovered (one can show that this ratio equalsβ exactly when the current iteration differs from the fixed
point by a constantλ), which is a signification that the domain of attraction of NKmethod has been reached (λ will be
“stripped away” in just a single iteration).
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of the original paper by SJ.3 We have replicated SJ’s results for NFXP-SA, but since this

version of NFXP is inefficient and is completely dominated byNFXP-NK, we only report

results for the latter in Table 1 below. Similarly, we skip the results regarding MPEC-

Matlab implementation which uses first order analytical derivatives only, because its run

times were about two orders of magnitude larger that those ofMPEC-AMPL in all our

experiments.4,5 To conserve space we also omit the table of structural estimates (Table 1 of

SJ), which shows that conditional on convergence both methods were able to recover the

structural parameters of the model. It is also the case in allour experiments.

It is clear from Table 1 that when the fast NFXP-NK algorithm is used, the CPU times

are comparable to those of MPEC-AMPL, the implementation utilizing first and second

order analytic derivatives of the objective function. It takes both methods about 0.07 to

0.08 of a second to structurally estimate the bus engine replacement model. Also, unlike SJ

we find NFXP-NK more reliable than MPEC-AMPL, as indicated bythe second column in

Table 1.

As the second panel of Table 1 shows, NFXP-NK uses far fewer successive approxima-

tion steps compared to the NFXP-SA results in Table 2 of SJ, and this is the main reason

why NFXP-NK is so much faster. For the highest discount factor β= 0.995 in Table 2 of SJ,

an average of nearly 750,000 successive approximation iterations were required, compared

to just 145 for NFXP-NK. With an average of 55 NK iterations per estimation, the average

number of both types of inner loop iterations for NFXP-NK is remarkably insensitive to

3SJ have kindly provided well documented MPEC code for this problem via Che-Lin Su’s website. We are thankful to
Che-Lin Su for pointing out numerical instability of the original code due to the lack of recentering of the value functions
in accordance with Rust (2000, p. 27). Recentering has been implemented in the numerically stable version of MPEC
code we use here. Our NFXP code is available on request.

4We used the same specification of the bus engine replacement model, including the same true parameter values,
same sample size and fixed point dimension, and the same number of Monte Carlo replications as in Table 2 of SJ. We
fixed the stopping tolerance for the inner fixed point in the NFXP-NK algorithm at 10−13 as in Rust (1987), which is
1/1000 of the stopping tolerance 10−10 that SJ used for NFXP-SA. Similarly to SJ, we estimated transition probabilities
for mileage travelled by buses jointly with other parameters (replacement cost and maintenance cost) by maximizing
the full likelihood function, following the partial likelihood optimization as described in Rust (1987, 2000). We usedthe
BHHH algorithm on the outer loop of NFXP-NK and frequency based starting values for the transition probability param-
eters for both methods. For the polyalgorithm we use a minimum of minstp= 2 and maximummaxstp= 20 successive
approximation iterations and a relative tolerance to switch from SA to NK iterationrtol = 0.02, see Rust (2000, p.28).

5Our hardware and software setup was the following: Mac Book Pro with 2.3 GHz Intel Core i7 processor and 8 GB
of memory with OS X version 10.9.5, Matlab 2014a constrainedto a single core with-singleCompThreadstartup option,
AMPL Version 20131213 and KNITRO 9.0.1.
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Table 1: MPEC versus NFXP-NK: sample size 6,000

Converged CPU Time # of Major # of Func. # of Bellm. # of N-K

β (out of 1250) (in sec.) Iter. Eval. Iter. Iter.

MPEC-AMPL
0.975 1246 0.054 9.3 12.1
0.985 1217 0.078 16.1 44.1
0.995 1206 0.080 17.4 49.3
0.999 1248 0.055 9.9 12.6
0.9995 1250 0.056 9.9 11.2
0.9999 1249 0.060 11.1 13.1

NFXP-NK
0.975 1250 0.068 11.4 13.9 155.7 51.3
0.985 1250 0.066 10.5 12.9 146.7 50.9
0.995 1250 0.069 9.9 12.6 145.5 55.1
0.999 1250 0.069 9.4 12.5 141.9 57.1
0.9995 1250 0.078 9.4 12.5 142.6 57.5
0.9999 1250 0.070 9.4 12.6 142.4 57.7

Notes: This table is a replication of Table 2 in Su and Judd (2012) with NFXP-SA replaced by NFXP-NK (section on

MPEC-Matlab is skipped to conserve space). For eachβ, five starting points were used for each of the 250 simulated

samples. CPU time, number of major iterations, number of function evaluations and number of inner loop iterations

are the averages over the convergent runs. Inner loop iterations include both value function iterations and Newton-

Kantorovich iterations.

the discount factor. On average, it takes NFXP-NK only 12 successive approximation steps

and 4 NK iterations per function evaluation to compute a highly accurate fixed point (to a

tolerance of 10−13) whenβ ≥ 0.9995.

3 Conclusion

Our findings lead us to a different conclusion from SJ (2012),namely that “Monte Carlo

results confirmed that MPEC is significantly faster than NFXP, particularly when the dis-

count factor in the dynamic-programming model is close to 1.” (p. 2228). We have shown

that this conclusion is an artifact of their use of an inefficient version of NFXP, NFXP-SA,

which uses successive approximations to solve the fixed point problem. When we compare

MPEC to the more efficient implementation of NFXP that Rust (1987) originally proposed,

NFXP-NK, we find that NFXP and MPEC are approximately equallyfast and accurate.
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There is a fundamental difference between how NFXP and MPEC solve the structural

estimation problem. In the case of NFXP the choice probabilities entering the likelihood

function are computed independently of the data in the innerloop. For MPEC both the

fixed point calculation and the maximization of the likelihood are done simultaneously,

which not only implies that the gradient vector and the Hessian matrix are both high di-

mensional objects, but also that the whole data set needs to be processed multiple times

when computing non-zero elements of these objects. The separation between solving the

model and computing the likelihood enables NFXP to use traditional unconstrained quasi-

Newton/gradient search algorithms for likelihood maximization – such as the Berndt-Hall-

Hall-Hausman (BHHH) algorithm (Berndt et al., 1974) – over arelatively small number

of structural parameters. Unlike MPEC, NFXP recognizes thefact that the objective func-

tion is a sum of individual likelihoods each of which is computed from the set of value

functions that are smooth in the structural parameters. TheBHHH algorithm exploits the

information identity to approximate the Hessian of the likelihood with the negative of the

outer product of the scores. Therefore, because the Hessianapproximation is always neg-

ative semi-definite, BHHH always moves in the direction of the gradient (i.e. towards the

maximum), even in convex areas of the likelihood function. Hence, beyond the advantage

of avoiding computation of second order derivatives, BHHH has the major advantage of

always moving uphill for small enough step size, and thus is globally convergent to at least

local maximum of the likelihood function. The robustness and computational efficiency

of NFXP comes from fully exploiting the structure of the maximum likelihood estimation

problem, i.e. by recognizing that the Bellman operator is a contraction mapping and that

objective function is a sample sum over individual likelihoods.

We believe that MPEC has many desirable features, the most important of which is ease

of use by people who are not interested in devoting time to thespecial-purpose program-

ming necessary to implement NFXP-NK. Our results indicate that MPEC is very fast and

competitive with NFXP-NK in the bus engine replacement model, and particularly in con-

junction with intuitive AMPL language, it could save many users substantial programming

time and enable them to structurally estimate many models ofinterest. For this reason
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MPEC may be the method of choice for structural estimation ofrelatively well behaved

infinite horizon models that can be formulated using software such as AMPL.
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