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Abstract

We revisit the comparison of mathematical programming wdhilibrium constraints (MPEC)
and nested fixed point (NFXP) algorithms for estimatingatrcal dynamic models by Su and
Judd (SJ, 2012). Their implementation of the nested fixedtpalgorithm used successive
approximations to solve the inner fixed point problem (NFSR). We re-do their comparison
using the more efficient version of NFXP proposed by Rust {198hich combines successive
approximations and Newton-Kantorovich iterations to edlve fixed point problem (NFXP-
NK). We show that MPEC and NFXP are similar in speed and nuwakperformance when the
more efficient NFXP-NK variant is used.
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1 Introduction

In “Constrained optimization approaches to estimationtefcsural models” Su and Judd
(2012), hereafter SJ, proposed a constrained optimizagpmnoach for maximum likeli-
hood estimation of infinite horizon dynamic discrete choiedels — mathematical pro-
gramming with equilibrium constraints (MPEC). They argtieat MPEC is superior to the
nested fixed pointNFXP) algorithm proposed by Rust (1987). NFXP uses the tfzat
the likelihood depends on the parameters viavhkie functionto a dynamic program-
ming (DP) problem. Under weak conditions, the value funti®the unique fixed point
to a contraction mapping defined by tBellman equationto the DP problem and is a
smooth implicit function of the underlying structural pareters of the problem. NFXP
uses this to maximize the likelihood using standamdonstrainedjuasi-Newton optimiza-
tion algorithms, except that each time the likelihood islexted, NFXP calls a fixed point
subroutine to compute the value function correspondinpéatirrent parameter values.

In contrast, MPEC method does not need a specialized inaprlgorithm to compute
the fixed point. Instead, it recasts the problem of maxingzime likelihood function as
a constrained optimization problem with respect to kKheatructural parameters plus
additional variables, which are the values of value funct a set ofN grid points in
the state space. Thedkadditional variables must satisfy the Bellman equationictvh
can be recast ash “side constraints”. Thus MPEC also implicitly solves theefixpoint
problem while searching for structural parameter valuas tiaximize the likelihood, but
using a general-purposenstrainecoptimization algorithlja.

SJ used the model of optimal replacement of bus engines df (®887) to conduct
a Monte Carlo study to compare the performance of the MPECNIRP algorithms.
They found that MPEC outperformed NFXP in terms of CPU timeipyo three orders of
magnitude.

The point of this comment is to note that SJ used a version ofMiwe refer to as

“NFXP-SA’ where the method o$uccessive approximatiorfSA) is used to solve the

1The specific implementation SJ use is KNITRO (see Byrd, Nakadd Waltz 2006) which is run under AMPL
software that provides analytic first and second order dtvies, and under Matlab with analytic gradients and the
Hessian approximated numerically.



inner fixed point problem. However it is well known that sugsige approximations is an
inefficient algorithm for computing fixed points of contriaxt mappings, especially when
the modulus of the contraction (which equals the discouwtbfan the underlying dynamic
programming problem) is close to 1.

We redo the SJ Monte Carlo study using the more efficient @ersi NFXP that
Rust (1987) employed. This version, NFXP-NK, combines sasive approximations and
Newton-Kantorovich (NK) iterations to solve the inner fixgdint problem significantly
faster and more reliably, especially when the discounbfastclose to 1. We show that
NFXP and MPEC are roughly equivalent in their numerical @eniance when the more
efficient NFXP-NK variant is employed.

NK is the preferred method for computing contraction fixethfgbecause it has guar-
anteed quadratic convergence rate in its domain of atbrackiowever, NK is only locally
convergent, so the original design of the NFXP algorithmgtRL887, 2000) starts with
successive approximations to ensure global convergemceswitches to NK iterations
only after it detects that the domain of attraction has bmhe@ This hybrid algo-
rithm or “polyalgorithm” ensures that a highly accurateusian can be found after only
a small combined number of iterations. In particular, thenbmation of these two ap-
proaches makes the performance of the NFXP-NK algorithrapeddent of the value of
the discount factop whereas the CPU times of the NFXP-SA algorithm steadilydase
asp} — 1 as shown in Table 2 of SJ (p. 2228).

2 Results

Table 1 presents a comparison of CPU times for MPEC and NFAPréproduces Table
2 of SJ. While we have developed our own code to implement NNKPwe have been

using the same setup and computer code for MPEC that was aiggdduce the results

2Rust (2000, p.28) details the theory of when the algorithms foaswitch from successive approximations to NK
iterations. The idea is based on the fact that the ratio efamices in two successive iterations of SA algorithm aghres
the modulus of contractiorB] as the algorithm progresses. When this ratio is close énta@, the shape of the value
function is nearly recovered (one can show that this ratimesfy exactly when the current iteration differs from the fixed
point by a constark), which is a signification that the domain of attraction of Ki€thod has been reachedwill be
“stripped away” in just a single iteration).



of the original paper by SQ]We have replicated SJ’s results for NFXP-SA, but since this
version of NFXP is inefficient and is completely dominated\fyXP-NK, we only report
results for the latter in Table 1 below. Similarly, we skigthresults regarding MPEC-
Matlab implementation which uses first order analyticaiv@gives only, because its run
times were about two orders of magnitude larger that thoddRIEC-AMPL in all our
experimentQE To conserve space we also omit the table of structural essi{@able 1 of
SJ), which shows that conditional on convergence both nastiaeere able to recover the
structural parameters of the model. It is also the case wualexperiments.

It is clear from Tablél that when the fast NFXP-NK algorittsrused, the CPU times
are comparable to those of MPEC-AMPL, the implementatidlizing first and second
order analytic derivatives of the objective function. lk¢a both methods about 0.07 to
0.08 of a second to structurally estimate the bus enginacepient model. Also, unlike SJ
we find NFXP-NK more reliable than MPEC-AMPL, as indicatedthg second column in
Table 1.

As the second panel of Talile 1 shows, NFXP-NK uses far fenwmessive approxima-
tion steps compared to the NFXP-SA results in Table 2 of Sd this is the main reason
why NFXP-NK is so much faster. For the highest discount fla@te 0.995 in Table 2 of SJ,
an average of nearly 750,000 successive approximatiatiies were required, compared
to just 145 for NFXP-NK. With an average of 55 NK iterations pstimation, the average

number of both types of inner loop iterations for NFXP-NK é&arkably insensitive to

33J have kindly provided well documented MPEC code for thidfem via Che-Lin Su’s website. We are thankful to
Che-Lin Su for pointing out numerical instability of the ginal code due to the lack of recentering of the value fumstio
in accordance with Rust (2000, p. 27). Recentering has bepleimented in the numerically stable version of MPEC
code we use here. Our NFXP code is available on request.

4We used the same specification of the bus engine replacenmtel nincluding the same true parameter values,
same sample size and fixed point dimension, and the same nafmklonte Carlo replications as in Table 2 of SJ. We
fixed the stopping tolerance for the inner fixed point in theXRFNK algorithm at 1013 as in Rust (1987), which is
1/1000 of the stopping tolerance 1% that SJ used for NFXP-SA. Similarly to SJ, we estimated ftimmsprobabilities
for mileage travelled by buses jointly with other paramet@eplacement cost and maintenance cost) by maximizing
the full likelihood function, following the partial likeiood optimization as described in Rust (1987, 2000). We tised
BHHH algorithm on the outer loop of NFXP-NK and frequencyduhstarting values for the transition probability param-
eters for both methods. For the polyalgorithm we use a minmnafiminstp= 2 and maximunmaxstp= 20 successive
approximation iterations and a relative tolerance to dwitom SA to NK iterationrtol = 0.02, see Rust (2000, p.28).

50ur hardware and software setup was the following: Mac Bawkwith 2.3 GHz Intel Core i7 processor and 8 GB
of memory with OS X version 10.9.5, Matlab 2014a constraiteea single core withsingleCompThreadtartup option,
AMPL Version 20131213 and KNITRO 9.0.1.



Table 1: MPEC versus NFXP-NK: sample size 6,000

Converged CPU Time # of Major # of Func. # of Bellm. # of N-K

B (out of 1250) (in sec.) Iter. Eval. Iter. Iter.
MPEC-AMPL
0.975 1246 0.054 9.3 12.1
0.985 1217 0.078 16.1 44.1
0.995 1206 0.080 17.4 49.3
0.999 1248 0.055 9.9 12.6
0.9995 1250 0.056 9.9 11.2
0.9999 1249 0.060 111 13.1
NFXP-NK

0.975 1250 0.068 114 13.9 155.7 51.3
0.985 1250 0.066 10.5 12.9 146.7 50.9
0.995 1250 0.069 9.9 12.6 145.5 55.1
0.999 1250 0.069 9.4 12.5 141.9 57.1
0.9995 1250 0.078 9.4 12.5 142.6 57.5
0.9999 1250 0.070 9.4 12.6 142.4 57.7

Notes: This table is a replication of Table 2 in Su and Judd 22@vith NFXP-SA replaced by NFXP-NK (section on
MPEC-Matlab is skipped to conserve space). For ghdive starting points were used for each of the 250 simulated
samples. CPU time, number of major iterations, number o€tfan evaluations and number of inner loop iterations
are the averages over the convergent runs. Inner loopi@esainclude both value function iterations and Newton-
Kantorovich iterations.

the discount factor. On average, it takes NFXP-NK only 1Zeasive approximation steps
and 4 NK iterations per function evaluation to compute a Kigiccurate fixed point (to a
tolerance of 1013 whenf > 0.9995.

3 Conclusion

Our findings lead us to a different conclusion from SJ (20b3@mely that “Monte Carlo

results confirmed that MPEC is significantly faster than NFxaticularly when the dis-

count factor in the dynamic-programming model is close’tq.. 2228). We have shown
that this conclusion is an artifact of their use of an inedfitiversion of NFXP, NFXP-SA,

which uses successive approximations to solve the fixed poablem. When we compare
MPEC to the more efficient implementation of NFXP that Ru8i82) originally proposed,

NFXP-NK, we find that NFXP and MPEC are approximately equiat and accurate.



There is a fundamental difference between how NFXP and MRi@ she structural
estimation problem. In the case of NFXP the choice prol#slientering the likelihood
function are computed independently of the data in the ito@p. For MPEC both the
fixed point calculation and the maximization of the likeldtbare done simultaneously,
which not only implies that the gradient vector and the Hassnatrix are both high di-
mensional objects, but also that the whole data set needs podzessed multiple times
when computing non-zero elements of these objects. Theaepabetween solving the
model and computing the likelihood enables NFXP to usetiail unconstrained quasi-
Newton/gradient search algorithms for likelihood maxiatian — such as the Berndt-Hall-
Hall-Hausman (BHHH) algorithm (Berndt et al., 1974) — ovenelatively small number
of structural parameters. Unlike MPEC, NFXP recognizeddhethat the objective func-
tion is a sum of individual likelihoods each of which is contguali from the set of value
functions that are smooth in the structural parameters. BHidH algorithm exploits the
information identity to approximate the Hessian of the litkeod with the negative of the
outer product of the scores. Therefore, because the Hemganximation is always neg-
ative semi-definite, BHHH always moves in the direction @ gradient (i.e. towards the
maximum), even in convex areas of the likelihood functioenkke, beyond the advantage
of avoiding computation of second order derivatives, BHH$ ithe major advantage of
always moving uphill for small enough step size, and thusabaly convergent to at least
local maximum of the likelihood function. The robustnessl @omputational efficiency
of NFXP comes from fully exploiting the structure of the maxim likelihood estimation
problem, i.e. by recognizing that the Bellman operator i®@at@ction mapping and that
objective function is a sample sum over individual likelifos.

We believe that MPEC has many desirable features, the mpstrtant of which is ease
of use by people who are not interested in devoting time tesgeeial-purpose program-
ming necessary to implement NFXP-NK. Our results indichtg MPEC is very fast and
competitive with NFXP-NK in the bus engine replacement nhoaled particularly in con-
junction with intuitive AMPL language, it could save manyeus substantial programming

time and enable them to structurally estimate many modelatefest. For this reason



MPEC may be the method of choice for structural estimatioretstively well behaved

infinite horizon models that can be formulated using sofengarch as AMPL.
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