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Abstract

This paper considers the estimation problem of structural models for which empirical

restrictions are characterized by a fixed point constraint, such as structural dynamic discrete

choice models or models of dynamic games. We analyze a local condition under which the

nested pseudo likelihood (NPL) algorithm converges to a consistent estimator and derive

its convergence rate. We find that the NPL algorithm may not necessarily converge to a

consistent estimator when the fixed point mapping does not have a local contraction property.

To address the issue of divergence, we propose alternative sequential estimation procedures

that can converge to a consistent estimator even when the NPL algorithm does not.
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1 Introduction

Empirical implications of economic theory are often characterized by fixed point problems. Upon

estimating such models, researchers typically consider a class of extremum estimators with a

fixed point constraint P = Ψ(θ, P ). For example, if P = {P (a|x)} is the conditional choice

probabilities, and the sample data are {am, xm}Mm=1, then maximizing M−1
∑M

m=1 lnP (am|xm)

subject to P = Ψ(θ, P ) gives the Maximum Likelihood Estimator (MLE, hereafter).1

∗We are grateful to the co-editor and three anonymous referees whose comments greatly improved the paper.
The authors thank Victor Aguirregabiria, David Byrne, Hide Ichimura, Kenneth Judd, Vadim Marmer, Lealand
Morin, and seminar participants at the Bank of Japan, FEMES, New York Camp Econometrics, NASM, SITE,
Vienna Macroeconomic Workshop, Boston University, Michigan, Montreal, Hitotsubashi, HKUST, Johns Hopkins,
SETA, Tokyo, UBC, UWO, Yale, Yokohama National University, and Xiamen for helpful comments. The authors
thank the SSHRC for financial support.

1For simplicity, we assume that the distribution function of xm is known. In many structural models, the
distribution function of xm can be estimated using only the data of {xm}Mm=1.

1



The fixed point constraint P = Ψ(θ, P ) summarizes the set of structural restrictions of the

model that is parametrized by a finite-dimensional vector θ ∈ Θ.2 In principle, we may compute

the MLE by the Nested Fixed Point algorithm (Rust, 1987), which repeatedly solves all the fixed

points of P = Ψ(θ, P ) at each candidate parameter value. The major obstacle of applying such

an estimation procedure lies in the computational burden of solving the fixed point problem for

a given parameter.

To reduce the computational cost, Hotz and Miller (1993) developed a representation of the

value function in terms of choice probabilities and proposed a two-step estimator that does not

require solving the fixed point problem at each trial parameter value. Building on the idea of Hotz

and Miller (1993), a number of recent papers in empirical industrial organization develop two-

step estimators for models with multiple agents (e.g., Bajari, Benkard, and Levin, 2007; Pakes,

Ostrovsky, and Berry, 2007; Pesendorfer and Schmidt-Dengler, 2008; Bajari, Chernozhukov,

Hong, and Nekipelov, 2009). These two-step estimators may suffer from substantial finite sample

bias, however, when the choice probabilities are poorly estimated in the first step.3

To address the limitations of two-step estimators, Aguirregabiria and Mira (2002)(2007,

henceforth AM07) developed a recursive extension of the two-step method of Hotz and Miller

(1993), called the nested pseudo likelihood (NPL) algorithm. With P = {P (a|x)} denoting the

vector of conditional choice probabilities, the NPL algorithm starts from an initial estimate P̃0

and iterates the following steps until j = k:

Step 1: Given P̃j−1, update θ by θ̃j = arg maxθ∈ΘM
−1
∑M

m=1 ln[Ψ(θ, P̃j−1)](am|xm).

Step 2: Update P̃j−1 using the obtained estimate θ̃j : P̃j = Ψ(θ̃j , P̃j−1).

The estimator θ̃1 is a version of Hotz and Miller’s two-step estimator, called the pseudo maximum

likelihood (PML) estimator. As AM07 show, it is often the case that evaluating the mapping

Ψ(θ, P ) for a fixed value of P across different values of θ is computationally inexpensive and

implementing Step 1 of the NPL algorithm is easy. This recursive method can be applied

to models with unobserved heterogeneity, and the limit of the sequence of estimators is more

efficient than the two-step estimators if it converges to a consistent fixed point.4

While the NPL algorithm provides an attractive apparatus for empirical researchers, its

convergence is a concern, as recognized by AM07 (p. 19). Indeed, little is known about its

convergence properties except that, in some examples, the NPL algorithm converges to a point

2Examples of the operator Ψ(θ, P ) include, among others, the policy iteration operator for a single agent
dynamic programming model (e.g., Rust, 1987; Hotz and Miller, 1993; Aguirregabiria and Mira, 2002; Kasahara
and Shimotsu, 2008), the best response mapping of a game (e.g., Aguirregabiria and Mira, 2007; Pakes, Ostrovsky
and Berry, 2007; Pesendorfer and Schmidt-Dengler, 2008), and the fixed point operator for a recursive competitive
equilibrium (e.g., Aiyagari, 1994; Krusell and Smith, 1998).

3See, for example, simulation results in Aguirregabiria and Mira (2007) and Pakes, Ostrovsky and Berry (2007).
4Two-step estimators can be applied to models with unobserved heterogeneity when an initial consistent

estimator of the type-specific conditional choice probabilities are available. Kasahara and Shimotsu (2009) derived
sufficient conditions for nonparametric identification of a finite mixture model of dynamic discrete choices.
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distance away from the true value or fails to converge even after a large number of iterations as

shown in Pesendorfer and Schmidt-Dengler (2010, henceforth PS10) and Su and Judd (2010).

In view of this mixed evidence and its practical importance, it is imperative that we understand

the convergence properties of the NPL algorithm.

Su and Judd (2010) propose a constrained optimization approach called the Mathematical

Program with Equilibrium Constraints (MPEC) for structural estimation. Their simulation

study illustrates that it is computationally feasible to use state-of-the-art constrained optimiza-

tion solvers to estimate a discrete choice game of incomplete information with multiple equilibria.

The MPEC approach is a promising approach that can be used even when the NPL algorithm

is locally unstable, although we are yet to see how successfully it can be applied to estimate

empirically relevant dynamic game models such as the models of AM07.

In the first of our two main contributions, this paper derives the conditions under which the

NPL algorithm converges to a consistent estimator when it is started from a neighborhood of

the true value. We show that a key determinant of the convergence of the NPL algorithm is the

contraction property of the mapping Ψ. Intuitively, the faster the mapping achieves contraction,

the closer the value obtained after one iteration is to the fixed point, and the NPL algorithm

works well if the mapping satisfies a good contraction property. Using the model of dynamic

games of AM07 and the model of PS10 as examples, we show how the features of a model are

related to the convergence property of the NPL algorithm.

As our second contribution, we propose alternative algorithms that are implementable even

when the original NPL algorithm does not converge to a consistent estimator. The first algorithm

replaces Ψ(θ, P ) in the second step of the NPL algorithm with Λ(θ, P ) = [Ψ(θ, P )]αP 1−α,

which has a better contraction property than Ψ under some conditions. The second algorithm

decomposes the space of P into the unstable subspace and its orthogonal complement based on

the eigenvectors of ∂Ψ(θ, P )/∂P ′ and takes a Newton step on the unstable subspace. The third

algorithm uses multiple iterations of a fixed point mapping to gain efficiency.

In the rest of the paper, Section 2 analyzes the convergence properties of the NPL algorithm

and analyzes two examples. Section 3 develops an alternative algorithm. Simulation results are

reported in Section 4, and the conclusion follows. The supplementary appendix contains the

proofs and further results including additional alternative algorithms, models with permanent

unobserved heterogeneity, and additional Monte Carlo results.

2 The model and the nested pseudo likelihood (NPL) algorithm

2.1 Asymptotic properties of the NPL estimator

We consider a class of parametric discrete choice models of which restrictions are characterized

by fixed point problems. As in AM07, we assume that the data comes from a cross-section of M
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geographically separated markets over T periods and are stationary over time. Hence, the data

is given by {amt, xmt : m = 1, . . . ,M ; t = 1, . . . , T}, where m is the market subindex, amt ∈ A
denotes the choice variable, and xmt ∈ X denotes the observable state variable. We assume that

the support of (amt, xmt) is finite, A×X = {a1, a2, . . . , a|A|}×{x1, x2, . . . , x|X|}.5 All limits are

taken as M →∞ unless stated otherwise.

Let P = {P (amt = a|xmt = x) : (a, x) ∈ A ×X} denote the distribution of amt conditional

on xmt in market m at period t. Accordingly, P is represented by an L-dimensional vector,

where L = |A||X|. The model is parametrized with a K-dimensional vector θ ∈ Θ, and the

fixed point constraint P = Ψ(θ, P ) summarizes the restrictions of the model. For each θ, the

operator Ψ(θ, P ) maps the space of conditional choice probabilities BP into itself. The true

conditional choice probability P 0 is one of the fixed points of the operator Ψ(θ, P ) evaluated

at the true parameter value θ0. Given θ, the Jacobian ∇P ′Ψ(θ, P ) is an L × L matrix, where

∇P ′ ≡ (∂/∂P ′). To save space, we denote the Jacobian matrices evaluated at the true value

(θ0, P 0) as Ψ0
P ≡ ∇P ′Ψ(θ0, P 0) and Ψ0

θ ≡ ∇θ′Ψ(θ0, P 0). Let || · || denote the Euclidean norm.

We collect the assumptions employed in AM07. DefineQM (θ, P ) ≡M−1
∑M

m=1

∑T
t=1 ln Ψ(θ, P )(amt|xmt),

θ̃M (P ) ≡ arg maxθ∈ΘQM (θ, P ), Q0(θ, P ) ≡ EQM (θ, P ), θ̃0(P ) ≡ arg maxθ∈ΘQ0(θ, P ), and

φ0(P ) ≡ Ψ(θ̃0(P ), P ). Define the set of population NPL fixed points as Y0 ≡ {(θ, P ) ∈ Θ×BP :

θ ∈ θ̃0(P ) and P ∈ φ0(P )}. See AM07 for details. Denote the sth order derivative of a function

f with respect to all of its parameters by ∇sf . Let N denote a closed neighborhood of (θ0, P 0).

Assumption 1 (a) The observations {amt, xmt : m = 1, . . . ,M ; t = 1, . . . , T} are independent

across m and stationary over t, and Pr(xmt = x) > 0 for all x ∈ X. (b) Ψ(θ, P )(a|x) > 0 for

any (a, x) ∈ A×X and any (θ, P ) ∈ Θ×BP . (c) Ψ(θ, P ) is twice continuously differentiable. (d)

Θ is compact and BP is a compact and convex subset of [0, 1]L. (e) There is a unique θ0 ∈int(Θ)

such that P 0 = Ψ(θ0, P 0). (f) (θ0, P 0) is an isolated population NPL fixed point. (g) θ̃0(P ) is a

single-valued and continuous function of P in a neighborhood of P 0. (h) the operator φ0(P )−P
has a nonsingular Jacobian matrix at P 0.

Assumption 1(b)(c) implies that E sup(θ,P )∈Θ×BP ||∇
2 ln Ψ(θ, P )(amt|xmt)||r < ∞ for any

positive integer r. Assumption 1(e) is a standard identification condition. Assumptions 1(f) and

1(g) correspond to assumptions (v) and (vi) in Proposition 2 of AM07, respectively.

The PML estimator is θ̂PML = arg maxθ∈ΘQM (θ, P̂0), where P̂0 is an initial consistent es-

timator of P 0. Proposition 1 of AM07 showed that the PML estimator is consistent under

Assumption 1. Also, when P̂0 satisfies
√
M(P̂0−P 0)→d N(0,Σ), the PML estimator is asymp-

totically normal with asymptotic variance VPML = (Ωθθ)
−1+(Ωθθ)

−1ΩθPΣ(ΩθP )
′
(Ωθθ)

−1, where

5It would be interesting to extend our analysis to models with continuously distributed variables. The asymp-
totic analysis of the NPL estimator in such models may become substantially complicated, however, because it
involves functional derivatives of mappings such as θ̃M (P ). We conjecture that, under suitable regularity condi-
tions, the NPL estimator is asymptotically normal and Propositions 1-2 hold if matrices such as Ψ0

P and MΨθ are
replaced with corresponding operators. A detailed analysis is left for future research.
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Ωθθ ≡ E(∇θsm∇θ′sm) and ΩθP ≡ E(∇θsm∇P ′sm) with sm ≡
∑T

t=1 ln Ψ(θ0, P 0)(amt|xmt).
As discussed in the introduction, Aguirregabiria and Mira (2002, 2007) developed a recursive

extension of the PML estimator called the NPL algorithm. Starting from an initial estimator of

P 0, the NPL algorithm generates a sequence of estimators {θ̃j , P̃j}kj=1, which we call the NPL

sequence. If the NPL sequence converges, its limit satisfies the following conditions:

θ̌ = arg max
θ∈Θ

QM (θ, P̌ ) and P̌ = Ψ(θ̌, P̌ ). (1)

A pair (θ̌, P̌ ) that satisfies these two conditions in (1) is called an NPL fixed point. There could

be multiple NPL fixed points. The NPL estimator, denoted by (θ̂NPL, P̂NPL), is defined as the

NPL fixed point with the highest value of the pseudo likelihood among all the NPL fixed points.

Proposition 2 of AM07 establishes the consistency of the NPL estimator θ̂NPL under As-

sumption 1. Thus, the NPL estimator is a consistent NPL fixed point. The NPL estimator is

asymptotically normal with asymptotic variance VNPL = [Ωθθ+ΩθP (I−Ψ0
P )−1Ψ0

θ]
−1Ωθθ{[Ωθθ+

ΩθP (I−Ψ0
P )−1Ψ0

θ]
−1}′, while the asymptotically efficient “one-step” MLE can be obtained from

the NPL estimator by a one-step update (see page 29 of AM07 for details). The NPL estimator

does not depend on the initial estimator of P 0 and is more efficient than the PML estimator

especially when the initial estimator of P 0 is imprecise.

While AM07 illustrate that the estimator obtained as a limit of the NPL sequence performs

very well relative to the PML estimator in their simulation, they neither provide the conditions

under which the NPL sequence converges to a consistent NPL fixed point nor analyze how fast

the convergence occurs. On the other hand, PS10 present an example in which the NPL sequence

converges to an NPL fixed point that is a distance away from the true value. To date, little is

known about the conditions under which the NPL sequence converges to a consistent NPL fixed

point, i.e., the NPL estimator.

2.2 Convergence properties of the NPL algorithm

We now analyze the conditions under which the NPL algorithm produces the NPL estimator

when started from a neighborhood of the true value.

Assumption 2 (a) Assumption 1 holds. (b) Ψ(θ, P ) is three times continuously differentiable

in N . (c) Ωθθ is nonsingular.

Let P 0
a,x denote an L×1 vector whose elements are the probability mass function of (amt, xmt)

arranged conformably with Ψ(a|x). Let ∆P ≡ diag(P 0)−2diag(P 0
a,x).6 With this notation, we

may write Ωθθ = TΨ0′
θ ∆PΨ0

θ and ΩθP = TΨ0′
θ ∆PΨ0

P . Define MΨθ ≡ I−Ψ0
θ(Ψ

0′
θ ∆PΨ0

θ)
−1Ψ0′

θ ∆P ,

6In a multiplayer model of a dynamic game in which unobserved state variables are independent across players,
such as the model of AM07, ∆P is simplified as diag(P 0)−1diag(fx), where fx is an L× 1 vector whose elements
are the probability mass function of xi arranged conformably with P (a|x).
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and define the spectral radius of A as ρ(A) ≡ max{|λ| : λ is an eigenvalue of A}. Then

(MΨθΨ
0
P )k → 0 as k → ∞ if and only if ρ(MΨθΨ

0
P ) < 1 (Horn and Johnson, 1985, Theo-

rem 5.6.12).7 As the following propositions show, ρ(MΨθΨ
0
P ) determines the local convergence

and the local divergence of the NPL sequence.

Proposition 1 Suppose that Assumption 2 holds and ρ(MΨθΨ
0
P ) < 1. Then, there exists a

neighborhood N1 of P 0 such that, for any initial value P̃0 ∈ N1, we have limk→∞ P̃k = P̂NPL

almost surely.

Let H be an L×L matrix of the generalized eigenvectors of MΨθΨ
0
P such that its first r columns

correspond to the eigenvalues of MΨθΨ
0
P that are greater than 1 in modulus and each column

of H has a length of 1. Split H−1 as H−1 =
(
H1
H2

)
, where H1 is r × L. For a constant c, we

define a set V (c) = {P ∈ [0, 1]L : ||H1(P − P̂NPL)|| ≤ c||H2(P − P̂NPL)||}. When c = 0, the

set V (0) reduces to a hyperplane H1(P − P̂NPL) = 0 spanned by the eigenvectors of MΨθΨ
0
P

associated with eigenvalues that are no greater than 1 in modulus, on which the NPL sequence

is non-divergent.

Proposition 2 Suppose that Assumption 2 holds and ρ(MΨθΨ
0
P ) > 1. Then, for any c > 0,

there exists a neighborhood Nc of P 0 such that, for any P̃j−1 ∈ Nc \ V (c), we have ||H1(P̃j −
P̂NPL)|| > ||H1(P̃j−1− P̂NPL)|| and P̃j /∈ V (c) almost surely. Consequently, for any initial value

P̃0 ∈ Nc \ V (c), the NPL sequence does not converge to P̂NPL almost surely if it stays in Nc.

Remark 1 In single-agent dynamic models, the Jacobian matrix Ψ0
P is zero (Aguirregabiria and

Mira, 2002, Proposition 2). Consequently, the NPL method is always stable at (θ̂NPL, P̂NPL).

Proposition 7 in the Supplemental Appendix shows P̃j − P̂NPL = O(M−1/2||P̃j−1 − P̂NPL|| +
||P̃j−1 − P̂NPL||2) almost surely, which implies that the convergence rate is faster than linear.

See Kasahara and Shimotsu (2008) for further details.

The matrix MΨθ represents the effect of updating θ in the first step of the NPL algorithm,

whereas Ψ0
P is the Jacobian of updating P in the second step. When ρ(MΨθΨ

0
P ) > 1, an

NPL sequence starting from Nc \ V (c) converges to P̂NPL only if the NPL sequence first moves

outside Nc and then moves either to P̂NPL from outside of Nc or to Nc∩V (c). The constant c in

Proposition 2 can be chosen to be as small as desired, and doing so makes µ(Nc ∩ V (c))/µ(Nc)
arbitrarily small, where µ is a Lebesgue measure. The case with ρ(MΨθΨ

0
P ) = 1 corresponds to

a boundary case. The linear difference equation in Proposition 1 cannot fully characterize the

local property of the fixed point, which depends on the details of the model (see, for example,

pp. 348-351 of Strogatz (1994)).

7ρ(A) ≤ ||A|| holds for any matrix A and any matrix norm || · ||. Therefore, ||A|| < 1 is a sufficient but not
necessary condition for the convergence of Ak to zero.
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In general, given the nonlinear nature of the mapping Ψ, its local behavior may not fully

characterize its global convergence property. For instance, even when ρ(MΨθΨ
0
P ) > 1, the NPL

sequence may move away from the NPL fixed point initially and then move back to the NPL fixed

point from a distance away. When the NPL sequence diverges away from the NPL estimator, an

analysis of nonlinear dynamics (see, for example, Chapter 10 of Strogatz (1994)) suggests three

representative possibilities. First, as PS10 illustrate, the NPL sequence may converge to a NPL

fixed point that is different from the NPL estimator. Second, as our simulation suggests, it may

converge to a stable cycle. Third, the NPL sequence might never settle down to a fixed point

or a period orbit.

2.3 The relation between ρ(MΨθΨ
0
P ) and ρ(Ψ0

P )

The condition ρ(MΨθΨ
0
P ) < 1 plays an important role for the convergence of the NPL algorithm.

Because Ψ0
P is often closely related to the characteristics of the economic model, we want to

find a bound of ρ(MΨθΨ
0
P ) in terms of ρ(Ψ0

P ). Since MΨθ is idempotent, MΨθ is diagonalizable

as MΨθ = SDS−1, where the first L −K diagonal elements of D are 1 and the other elements

of D are zero. From the properties of the eigenvalues, we have ρ(MΨθΨ
0
P ) = ρ(SDS−1Ψ0

P ) =

ρ(DS−1Ψ0
PS). In our context, typically L � K because the dimension of the state variable is

much larger than the number of parameters. Consequently, D is close to an identity matrix, and

we expect that DS−1Ψ0
PS ' S−1Ψ0

PS, which implies that the dominant eigenvalues of MΨθΨ
0
P

and Ψ0
P are close to each other.8 In our dynamic game model with L = 144 and K = 2, we find

that ρ(MΨθΨ
0
P ) is very similar to ρ(Ψ0

P ) (see Table 1).

2.4 Simplex restriction on P

Since P represents probabilities, the elements of P must satisfy a simplex-type restriction, and

this restriction needs to be imposed in parameterizing Ψ(θ, P ). Suppose a has J + 1 support

points, and split P into P+ and P−, where P+ corresponds to the first to Jth choices, whereas

P− corresponds to the (J + 1)th choice. Let 1k denote a k-vector of ones, then the simplex

restriction implies P− = 1dim(P−)−EP+ for a matrix E of zeros and ones defined appropriately.

Ψ(θ, P ) satisfies an analogous simplex restriction by its construction. Split Ψ(θ, P ) analogously,

and write P and Ψ(θ, P ) as

P =

(
P+

P−

)
=

(
P+

1dim(P−) − EP+

)
= P (P+), (2)

Ψ(θ, P ) = Ψ(θ, P (P+)) =

(
Ψ+(θ, P+)

Ψ−(θ, P+)

)
=

(
Ψ+(θ, P+)

1dim(P−) − EΨ+(θ, P+)

)
. (3)

8If λ(A) is an algebraically simple eigenvalue of A, then λ(A+ ∆)/λ(A) = (yH∆x)/(yHAx) + (||∆||2), where x
and y are a right- and left- λ(A) eigenvector of A. See, for example, Theorem 6.3.12 of Horn and Johnson (1985).
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Note from (3) that the derivative of Ψ(θ, P ) with respect to P− is zero.

The following proposition shows that the restrictions (2)–(3) do not affect the validity of

Propositions 1 and 2. Define Ψ+
θ ≡ ∇θ′Ψ

+(θ0, P 0+), Ψ+
P ≡ ∇P+′Ψ+(θ0, P 0+), and M+

Ψθ
≡

Idim(P+) −Ψ+
θ (Ψ+′

θ ∆+
PΨ+

θ )−1Ψ+′
θ ∆+

P , where ∆+
P ≡ U ′∆PU with U = [Idim (P+)

...− E ′]′.

Proposition 3 Suppose that P̃0 satisfies the simplex restriction (2). Then, Propositions 1-2

hold, and the nonzero eigenvalues of MΨθΨ
0
P and Ψ0

P are the same as the nonzero eigenvalues

of M+
Ψθ

Ψ+
P+ and Ψ+

P+, respectively.

Therefore, in practice, it suffices to check the eigenvalues of M+
Ψθ

Ψ+
P+ to examine the convergence

property of the NPL algorithm.

2.5 Examples

The following two examples illustrate Propositions 1-3.

Example 1 (A Dynamic Discrete Game by PS10) PS10 present a game in which the global

behavior of the NPL mapping can be analytically derived. There are two firms with a binary

choice ai ∈ {0, 1} for i = 1, 2, where ai = 1 indicates firm i is active. The model has no

state variable. The conditional choice probability is summarized by P+ = (P+
1 , P

+
2 )′, where P+

i

denotes firm i’s probability of choosing ai = 1. The model has one parameter, θ, and the true

parameter value θ0 is in the interior of the parameter space Θ = [−10,−1]. The data is generated

from a unique symmetric equilibrium, P+
1 = P+

2 = 1/(1 − θ0). When P+ is in a neighborhood

of the equilibrium, the mapping Ψ+ takes the form

Ψ+(θ, P+) =

(
Ψ+

1 (θ, P+)

Ψ+
2 (θ, P+)

)
=

(
1 + θP+

2

1 + θP+
1

)
.

PS10 show that the NPL sequence converges to one of the inconsistent NPL fixed points if the

initial estimate does not satisfy P+
1 = P+

2 ; if the initial estimate does satisfy P+
1 = P+

2 , then

the NPL sequence converges to the NPL estimator in one iteration.

We apply our local analysis to their model. With the definition of Ψ+
P+ and M+

Ψθ
, a direct

calculation gives

Ψ+
P+ =

(
0 θ0

θ0 0

)
, M+

Ψθ
=

1

2

(
1 −1

−1 1

)
, M+

Ψθ
Ψ+
P+ =

θ0

2

(
−1 1

1 −1

)
.

The eigenvalues of Ψ+
P+ are θ0 and −θ0, and the eigenvalues of M+

Ψθ
Ψ+
P+ are 0 and −θ0. Because

all the eigenvalues of Ψ+
P+ are outside the unit circle, the fixed point mapping P+ = Ψ+(θ, P+)

has no convergent path. Multiplying M+
Ψθ

annihilates the eigenvector of Ψ+
P+ associated with

θ0 but does not change the spectral radius of Ψ+
P+. Consequently, the NPL operator inherits
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the instability of Ψ(θ, P ). From Proposition 2, the NPL sequence diverges away from the NPL

estimator in the neighborhood of (θ0, P 0) if the initial estimator does not lie on the convergent

trajectory P+
1 = P+

2 . These local results are weaker than the global results in PS10 but are

consistent with their findings.

In PS10, it is assumed that θ0 < −1. However, if θ0 ∈ (−1, 0), then ρ(M+
Ψθ

Ψ+
P+) < 1, and

the NPL sequence locally converges to the NPL estimator. The range of the parameter values

for which the NPL operator is stable corresponds to a small interaction between agents, where

θ0 = 0 implies no interaction. When θ0 = −1, then ρ(MΨθΨP ) = 1 and we cannot apply our

local analysis.9

The stability property of Ψ(θ, P ) may not completely characterize the stability property of the

NPL operator because of the effect of θ̃M (P̃j−1) in the NPL algorithm. Now, suppose that firm

i’s payoff is given by θi + ε1i if both firms are active so that the model has two parameters θ1

and θ2. Suppose that the true parameter value is θ0
1 = θ0

2 = θ0
0 and the data is generated from

P+
1 = P+

2 = 1/(1− θ0
0) as before, although we do not impose θ1 = θ2 in the estimation. Then,

Ψ+(θ, P+) =

(
1 + θ1P

+
2

1 + θ2P
+
1

)
, Ψ+

P+ =

(
0 θ0

1

θ0
2 0

)
, M+

Ψθ
= M+

Ψθ
Ψ+
P+ =

(
0 0

0 0

)
.

The eigenvalues of Ψ+
P+ are ±

√
θ0

1θ
0
2 = ±θ0

0 while the eigenvalues of M+
Ψθ

Ψ+
P+ are equal to zero.

If θ0
0 ∈ (−10,−1), the data is generated from the unstable symmetric equilibrium studied in

PS10. The NPL sequence converges locally, however, because multiplying M+
Ψθ

annihilates both

of the eigenvectors of Ψ+
P+ associated with θ0

0 and −θ0
0.

Example 2 (A Dynamic Discrete Game by AM07) Consider the model of dynamic dis-

crete games in Section 2 of AM07 with two firms and a binary choice ait ∈ A = {0, 1} for

i = 1, 2. The primitives of the model are the profit functions Πi(ait, a−it, xt; θ)’s, the transition

probability function f(xt+1|a1t, a2t, xt), the probability density function g(εit; θ) of iid private

information, and the discount factor β. xt ∈ X = {x1, . . . , x|X|} is common knowledge and

consists of (St, a1,t−1, a2,t−1), where St follows an exogenous Markov process, so that the profit

functions are Πi(ait, a−it, St, ai,t−1, a−i,t−1; θ). f(xt+1|xt, at) and β are assumed to be known.

The vector of the conditional choice probability is given by P = (P ′1, P
′
2)′, where Pi =

(Pi(0|x1), . . . , Pi(0|x|X|), Pi(1|x1), . . . , Pi(1|x|X|))′. The equilibrium of the model is a fixed point

of the mapping Ψ(θ, P ) defined in equation (15) in AM07. In the Supplementary Appendix, we

show that the Jacobian of Ψ(θ, P ) evaluated at (θ0, P 0) takes the form

Ψ0
P =

(
0 ∇P ′2Ψ1(θ0, P 0)

∇P ′1Ψ2(θ0, P 0) 0

)
, (4)

9In the model of PS10, there exists a unique globally stable population NPL fixed point when θ0 = −1.
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where the diagonal blocks of Ψ0
P are zero from Proposition 2 of Aguirregabiria and Mira (2002).

The form of Ψ0
P in (4) suggests that the best response mapping Ψ(θ, P ) is locally stable at

an equilibrium if ∇P ′−iΨi(θ
0, P 0)’s are sufficiently small.10 The following proposition shows how

the local convergence condition is related to the size of the interaction between agents.

Assumption 3 (a) Assumption 2 holds. (b) Πi(ait, a−it, xt; θ) is twice continuously differen-

tiable in θ for i = 1, 2. (c) There exists θ∗ ∈ Θ such that Πi(ait, a
†
−it, St, ai,t−1, a

†
−i,t−1; θ∗) =

Πi(ait, a
‡
−it, St, ai,t−1, a

‡
−i,t−1; θ∗) for any (a†−it, a

‡
−it, a

†
−i,t−1, a

‡
−i,t−1) ∈ A4 for i = 1, 2. (d) There

exists θ� ∈ Θ such that Πi(ait, a
†
−it, xt; θ

�) = Πi(ait, a
‡
−it, xt; θ

�) for any (a†−it, a
‡
−it) ∈ A2 for

i = 1, 2.

Assumption 3(c) implies that, under θ∗, neither a current nor a past action of the competitor

affects a firm’s profit function. Assumption 3(d) is weaker than Assumption 3(c) and implies

that, under θ�, a current action of the competitor does not affect a firm’s profit function.

Proposition 4 (a) Suppose that Assumptions 3(a)-(c) hold. Then, there exists a neighborhood

N ∗ of θ∗ such that, for any θ0 ∈ N ∗, there is a Markov perfect equilibrium P 0 = Ψ(θ0, P 0) that

satisfies ρ(MΨθΨ
0
P ) < 1. (b) Suppose that Assumptions 3(a), (b), and (d) hold. Then, there

exists a neighborhood N � of (β, θ) = (0, θ�) such that, for any (β, θ0) ∈ N �, there is a Markov

perfect equilibrium P 0 = Ψ(θ0, P 0) that satisfies ρ(MΨθΨ
0
P ) < 1.

Therefore, a Markov perfect equilibrium for which the local convergence holds exists if the con-

temporaneous interaction between firms is small and either (i) the dynamic interaction between

firms is small, or (ii) the discount factor is small.

3 Alternative sequential likelihood-based estimators

When Ψ(θ, P ) is not a contraction in a neighborhood of (θ0, P 0), the NPL algorithm may not

produce a consistent estimator. This section discusses alternative estimation algorithms that

are implementable even in such cases.

Consider a class of mappings obtained as a log-linear combination of Ψ(θ, P ) and P :

[Λ(θ, P )](a|x) ≡ {[Ψ(θ, P )](a|x)}αP (a|x)1−α,

for all (a, x) ∈ A × X. In numerical analysis, this is known as the relaxation method.11 We

consider the NPL-Λ algorithm that updates θ as in the first step of the original NPL algorithm

10As pointed out by Su and Judd (2010), the stability of the best response mapping at an equilibrium is
not among the common notions pertaining to the stability of equilibria in game theory literature. PS10 and
Aguirregabiria and Nevo (2010) provide two contrasting views on the possibility of using the stability of the best
response mapping as a refinement concept.

11Başar (1987) applies the relaxation method to find a Nash equilibrium. Ljungqvist and Sargent (2004, p.
574) also suggest applying the relaxation method to the model of Aiyagari (1994).
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but updates P using Λ(θ, P ) in place of Ψ(θ, P ) in the second step. P is a fixed point of Ψ(θ, P )

if and only if it is a fixed point of Λ(θ, P ). Therefore, in view of equation (1), the original

NPL algorithm and the NPL-Λ algorithm share the same set of NPL fixed points. Define

Λ0
P ≡ ∇P ′Λ(θ0, P 0).

Proposition 5 (a) Suppose that the real part of every eigenvalue of Ψ0
P is smaller than 1. Then

there exists α > 0 such that ρ(Λ0
P ) < 1. (b) Suppose that the real part of every eigenvalue of Ψ0

P

is greater than 1. Then there exists α < 0 such that ρ(Λ0
P ) < 1.

Therefore, when the real part of every eigenvalue of Ψ0
P is smaller than 1 (or greater than 1),

we may choose the value of α so that Λ(θ, P ) becomes locally contractive even when Ψ(θ, P ) is

not locally contractive.12 Once an appropriate value of α is determined, the NPL-Λ algorithm

converges to the NPL estimator under weaker conditions than for the original NPL algorithm

at the similar computational cost.13

In the model of PS10, setting α = 1/(1+θ0) gives ρ(M+
Λθ

Λ+
P+) = 0 for θ0 ∈ (−10,−1)∪(−1, 0)

and the local convergence condition holds, where Λ+(θ, P+) = {Ψ+(θ, P+)}α(P+)1−α and M+
Λθ

is defined analogously to M+
Ψθ

.14

In the Supplementary Appendix, we discuss two additional algorithms, the Recursive Projec-

tion Method (RPM) and the q-NPL algorithm. The RPM converges locally for any eigenvalues of

Ψ0
P , but it is computationally more intensive than the relaxation method. The q-NPL algorithm

improves the efficiency of the estimates from the relaxation method and RPM algorithm.

4 Monte Carlo experiments

We consider a dynamic game model of market entry and exit studied in Section 4 of AM07. We

set the number of firms N = 3. The profit of firm i operating in market m in period t is equal

to Π̃it(1) = θRS lnSmt − θRN ln(1 +
∑

j 6=i ajmt) − θFC,i − θEC(1 − aim,t−1) + εimt(1), whereas

its profit is Π̃it(0) = εimt(0) if the firm is not operating. We assume that {εimt(0), εimt(1)}
12When α < 0, the elements of Λ(θ, P ) may take values greater than 1 if Ψ(θ, P ) is very small and (θ, P ) is

away from (θ0, P 0). In practice, when α < 0, we may modify Step 2 as P̃j(a|x) = min{[Λ(θ̃j , P̃j−1)](a|x), 1 − ε}
for a small ε > 0 to avoid such a possibility. When all the eigenvalues of Ψ0

P are real and smaller than 1, the
optimal α is given by Judd (1998, p. 80) as α∗ = 2/(2− λmax − λmin), where λmax and λmin are the largest and
smallest eigenvalues of Ψ0

P . In general, to optimally choose the value of α, we need to evaluate the Jacobian
matrix Ψ0

P and all of its eigenvalues, say, using the PML estimator. In practice, when the evaluation of Ψ0
P is too

costly, choosing α ≈ 0 leads to a locally contracting Λ from the proof of Proposition 5.
13Step 1 of the NPL-Λ algorithm is identical to that of the NPL algorithm because both algorithms update

θ by maximizing the same objective function while the computational cost of Step 2 of the NPL-Λ is mostly
determined by the cost of evaluating the mapping Ψ(θ̃j , P̃j−1).

14A direct calculation gives

M+
Λθ

Λ+
P+ =

1− α(1 + θ0)

2

(
1 −1
−1 1

)
=

(
0 0
0 0

)
for α = 1/(1 + θ0).
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follow i.i.d. type I extreme value distribution, and Smt follows an exogenous first-order Markov

process fS(Sm,t+1|Smt).15 The discount factor is set to β = 0.96, and the parameter values are

given by θRS = 1.0, θEC = 1.0, θFC,1 = 1.0, θFC,2 = 0.9, and θFC,3 = 0.8. The parameter θRN

determines the degree of strategic substitutabilities among firms and is the main determinant

of the dominant eigenvalue of Ψ0
P . All of the eigenvalues of Ψ0

P are inside the unit circle for

θRN = 1 and 2 while the smallest eigenvalues are less than −1 for θRN = 4 and 6. We therefore

let θRN take on a value of 2 or 4 across experiments and examine the performance of different

estimators. We estimate θRS and θRN , leaving the other parameters fixed at the true values.

We applied nonlinear equation solvers to find all of the solutions for P = Ψ(θ0, P ). Across

1,000 random initial values of P , the nonlinear equation solvers always find an identical solution

upon successful convergence.16 This suggests that Ψ(θ0, P ) has a unique fixed point. Similarly,

the nonlinear equation solvers always find an identical solution for P−φ0(P ) = 0 upon successful

convergence, suggesting the unique NPL fixed point.

To generate an observation, we first randomly draw xm = {Sm1, a1m0, a2m0, a3m0} from the

steady-state distribution implied by the model. Then, given xm, we draw {a1m1, a2m1, a3m1}
from the equilibrium conditional choice probabilities. We replicate 1000 simulated samples for

each of M = 500, 2000, and 8000 observations.

For the mapping Λ, we set α = 0.825, which minimizes the spectral radius of Λ0
P . As

shown in Table 1, the spectral radius of MΨθΨ
0
P and MΛθΛ

0
P are very similar to that of Ψ0

P and

Λ0
P , respectively. Thus, in view of Propositions 1 and 2, the convergence property of the NPL

algorithm is primarily determined by the dominant eigenvalue of Ψ0
P and Λ0

P .

Table 2 compares the performance of the two-step (PML) estimator and sequential estimators

generated by the following four sequential algorithms evaluated at k = 50 iterations: (i) the

NPL algorithm using Ψ, (ii) the NPL-Λ algorithm, (iii) the approximate RPM algorithm using

Γ(θ, P, η) with δ = 0.5, and (iv) the approximate q-NPL using Λq(θ, P, η) with q = 4. They are

denoted by “PML,” “NPL-Ψ,” “NPL-Λ,” “RPM,” and “q-NPL-Λq,” respectively. We report the

bias and the root mean squared errors (RMSE) of θ̂RN and θ̂RS across different estimators.

For θRN = 2, the NPL-Ψ performs substantially better than the PML across different sam-

ple sizes, and the NPL-Λ and NPL-Ψ converge to the same estimate. On the other hand,

when θRN = 4 the NPL-Ψ performs substantially worse than the NPL-Λ, reflecting divergence.

Further, as the sample size increases from 500 to 8000, the RMSE of the NPL-Λ decreases

15The state space for the market size Smt is {2, 6, 10}. The transition probability matrix of Smt is given by 0.8 0.2 0.0
0.2 0.6 0.2
0.0 0.2 0.8

 .
16We use two different nonlinear equation solvers in Matlab: “c05nb” from the NAG Toolbox for Matlab and

“fsolve” from the Optimization Toolbox. For θ0
RN = 4, the nonlinear equation solver “c05nb” successfully found

a solution for the system of the nonlinear equation P = Ψ(θ0, P ) in 568 out of 1,000 cases, and all of the 568
solutions were identical. The result was similar when we used “fsolve” in place of “c05nb.”
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approximately at the rate of M1/2, but the RMSE of the NPL-Ψ decreases at a much slower

rate. For θRN = 4 and M = 8000, the RMSE of the NPL-Ψ is even larger than that of the

PML. Across different sample sizes and parameters, the RPM and the q-NPL-Λq outperform

the NPL-Ψ.

The first four rows of Table 3 compare the RMSE across the estimators of θRN generated by

different algorithms after k = 2, 5, 10, . . . , 25 iterations when M = 8000. For θRN = 2, the RMSE

changes little after j = 5 iterations across all the algorithms, indicating their convergence. For

θRN = 4, the RMSE of the NPL-Ψ sequence increases with the number of iterations whereas our

proposed estimators converge after 10 iterations. The last two rows of Table 3 report the RMSE

of the first and the second differences of the NPL-Ψ sequence in order to examine its possible

convergence to a 2-period cycle. When θRN = 4, the NPL-Ψ sequence does not converge to a

NPL fixed point but they gradually converge every other iteration, suggesting its convergence

toward a 2-period cycle.

5 Concluding remarks and extension

This paper analyzes the convergence properties of the NPL algorithm to estimate a class of

structural models characterized by a fixed point constraint. We demonstrate how the local

convergence property of the NPL algorithm is related to the feature of an economic model and

show that a key determinant is the contraction property of the fixed point mapping.

In practice, the convergence condition may be violated. In such a case, the NPL algorithm

will not converge to a consistent estimator even if it is started from a neighborhood of the true

parameter value. We develop alternative sequential estimators that can be used even when

the original fixed point mapping is not locally contractive. As our simulations illustrate, these

alternative estimators work well even when the original fixed point mapping is not a contraction,

and their performance is substantially better than that of the two-step PML estimator.

Our convergence analysis is local. In a model with multiple NPL fixed points, whether the

sequential algorithms analyzed in this paper can be used to obtain a consistent NPL fixed point

depends on the initial value of P . Thus, when a reliable initial estimate is not available, it is

recommended to repeatedly apply the NPL algorithm with different initial values. A closely

related unresolved issue is the size of the domain of attraction for these sequential algorithms.

For instance, if the q-NPL algorithm has a smaller domain of attraction than the NPL algorithm,

then the finite sample properties of the q-NPL estimator may be worse than those of the NPL

estimator. Examining such a possibility is an important future topic.
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Table 1: The Spectral Radius of Ψ0
P and Λ0

P

θRN α ρ(Ψ0
P ) ρ(Λ0

P ) ρ(MΨθΨ0
P ) ρ(MΛθΛ0

P )
1 0.9407 0.3365 0.2572 0.2916 0.2557
2 0.8830 0.6925 0.4945 0.5949 0.4936
4 0.8250 1.1839 0.8017 1.1799 0.8046
6 0.7730 1.4788 0.9161 1.4777 0.9153

The second column reports the optimal choice of α under which Λ0
P has the smallest spectral radius.

Table 2: Bias and RMSE

θRN = 2 θRN = 4
Estimator M = 500 M = 2000 M = 8000 M = 500 M = 2000 M = 8000

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
PML -0.2215 0.2698 -0.0717 0.1112 -0.0229 0.0474 -0.1280 0.1557 -0.0341 0.0514 -0.0082 0.0207
NPL-Ψ -0.0151 0.1347 -0.0002 0.0660 -0.0023 0.0323 -0.0095 0.0676 -0.0062 0.0490 -0.0005 0.0408

θ̂RS NPL-Λ -0.0151 0.1347 -0.0002 0.0660 -0.0023 0.0323 0.0028 0.0575 -0.0006 0.0294 -0.0003 0.0143
RPM -0.0174 0.1331 -0.0028 0.0642 -0.0027 0.0320 0.0029 0.0576 -0.0012 0.0284 0.0000 0.0136
q-NPL-Λq -0.0117 0.1240 0.0002 0.0606 -0.0018 0.0305 0.0015 0.0542 -0.0009 0.0277 0.0000 0.0136

PML -0.7895 0.9604 -0.2565 0.3949 -0.0828 0.1687 -0.7713 0.9094 -0.1964 0.2599 -0.0462 0.0937
NPL-Ψ -0.0467 0.4705 -0.0009 0.2339 -0.0095 0.1130 -0.1417 0.2572 -0.1414 0.2314 -0.0918 0.1612

θ̂RN NPL-Λ -0.0467 0.4705 -0.0009 0.2339 -0.0095 0.1130 0.0241 0.1424 -0.0001 0.0739 0.0013 0.0352
RPM -0.0544 0.4642 -0.0102 0.2274 -0.0111 0.1116 0.0249 0.1604 -0.0003 0.0841 0.0014 0.0342
q-NPL-Λq -0.0358 0.4280 0.0002 0.2131 -0.0079 0.1052 0.0228 0.1351 0.0000 0.0690 0.0014 0.0328
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Table 3: RMSE of θ̂RN,k for k = 2, 5, 10, . . . , 25 at M = 8000

θRN = 2 θRN = 4
k = 2 k = 5 k = 10 k = 15 k = 20 k = 25 k = 2 k = 5 k = 10 k = 15 k = 20 k = 25

NPL-Ψ 0.1196 0.1133 0.1130 0.1130 0.1130 0.1130 0.0713 0.0748 0.0807 0.1235 0.1299 0.1593
NPL-Λ 0.1227 0.1131 0.1130 0.1130 0.1130 0.1130 0.0651 0.0363 0.0353 0.0352 0.0352 0.0352

θ̃RN,k RPM 0.1401 0.1122 0.1120 0.1118 0.1117 0.1116 0.0600 0.0357 0.0350 0.0341 0.0343 0.0342
q-NPL-Λq 0.1061 0.1051 0.1052 0.1052 0.1052 0.1052 0.0366 0.0332 0.0328 0.0328 0.0328 0.0328

RMSE of (θ̃RN,k+1 − θ̃RN,k) 0.0532 0.0041 0.0003 0.0000 0.0000 0.0000 0.1272 0.1106 0.1551 0.2037 0.2410 0.2624

RMSE of (θ̃RN,k+2 − θ̃RN,k) 0.0505 0.0017 0.0001 0.0000 0.0000 0.0000 0.0310 0.0152 0.0157 0.0132 0.0101 0.0076

The last two rows report the RMSE of (θ̃RN,k+1 − θ̃RN,k) and (θ̃RN,k+2 − θ̃RN,k) for NPL-Ψ.
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