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NOTES AND COMMENTS

CONSTRAINED OPTIMIZATION APPROACHES TO ESTIMATION OF
STRUCTURAL MODELS

BY CHE-LIN SU AND KENNETH L. JUDD1

Estimating structural models is often viewed as computationally difficult, an impres-
sion partly due to a focus on the nested fixed-point (NFXP) approach. We propose
a new constrained optimization approach for structural estimation. We show that our
approach and the NFXP algorithm solve the same estimation problem, and yield the
same estimates. Computationally, our approach can have speed advantages because we
do not repeatedly solve the structural equation at each guess of structural parameters.
Monte Carlo experiments on the canonical Zurcher bus-repair model demonstrate that
the constrained optimization approach can be significantly faster.

KEYWORDS: Structural estimation, dynamic discrete choice models, constrained op-
timization.

1. INTRODUCTION

STRUCTURAL ESTIMATION OF ECONOMIC MODELS is an important approach
to analyzing economic data. The main advantage of the structural approach
is that it allows researchers to conduct counterfactual policy analysis, which
cannot be undertaken using the reduced-form approach. However, the com-
putational burden of estimating structural models can be a problem. It is com-
monly believed that these computational demands make it difficult to imple-
ment the most powerful and efficient statistical methods. For example, Rust
(1987) proposed a computational strategy for the maximum-likelihood estima-
tion of single-agent dynamic discrete-choice models, an approach referred to
as the nested fixed-point (NFXP) algorithm. The NFXP algorithm is computa-
tionally demanding because it repeatedly takes a guess for structural param-
eters and then solves for the corresponding endogenous economic variables,
with high accuracy at each guess of the parameters.

In the context of estimating games, the computational costs associated with
the NFXP algorithm increase. Games differ from single-agent dynamic mod-
els in that multiple equilibria can exist. When applying the NFXP algorithm
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to maximum-likelihood estimation of games, a researcher must find all of the
Nash equilibria for each vector of parameters considered to calculate the cor-
responding likelihood value. Finding all of the equilibria in a game is a daunt-
ing computational task.2 Even if one can solve for all the equilibria for every
guess of structural parameters, then the resulting likelihood function can be
nonsmooth, even discontinuous in the parameter space, which makes the opti-
mization problem extremely difficult to solve.

Thus, the potential computational burden of implementing the NFXP al-
gorithm has led to the development of computationally light estimators, such
as the two-step estimator of Hotz and Miller (1993) for estimating single-
agent dynamic discrete-choice models, as well as the two-step estimators of
Bajari, Benkard, and Levin (2007), Pakes, Ostrovsky, and Berry (2007), and
Pesendorfer and Schmidt-Dengler (2008) for estimating dynamic games. Many
of these two-step estimators are not asymptotically efficient.3 Also, in finite
samples, two-step estimators can perform poorly if the first-step estimates are
imprecise, or if researchers do not choose suitable criterion functions in the
second step. For example, Pakes, Ostrovsky, and Berry (2007) have found that
maximizing the pseudo logarithm of the likelihood function in a two-step esti-
mator can lead to bias in finite samples. Recognizing these limitations, Aguir-
regabiria and Mira (2002, 2007) proposed the nested pseudo-likelihood (NPL)
estimator, a recursive two-step pseudo-likelihood estimator, to improve the
asymptotic properties and finite-sample performance of two-step estimators
for estimating dynamic discrete-choice models.

We propose a new constrained optimization strategy to estimate structural
econometric models, referred to as the mathematical program with equilib-
rium constraints (MPEC) approach; see Luo, Pang, and Ralph (1996). The
idea behind the MPEC approach is simple: choose the structural parameters
and endogenous economic variables so as to maximize the likelihood (or min-
imize the moment conditions) of the data subject to the constraints that en-
dogenous economic variables are consistent with an equilibrium for the struc-
tural parameters. By formulating the estimation problem as a constrained op-
timization problem, researchers can simply write down expressions that define
the likelihood or the moments as the objective function and the equilibrium
equations as constraints, and use existing constrained optimization solvers to
calculate the estimates.

Computationally, our approach has the advantage that we do not repeatedly
solve for an equilibrium at each guess of structural parameters. Most existing
constrained optimization algorithms do not enforce constraints to be satisfied

2See the discussions in Besanko, Doraszelski, Kryukov, and Satterthwaite (2010) as well as
Judd, Renner, and Schmedders (2012).

3The two-step estimator where the second step is one Newton–Raphson step toward the
maximum-likelihood estimator is efficient; see, for example, Newey and McFadden (1994) and
Aguirregabiria and Mira (2007).
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until the final iteration in the search process.4 Consequently, the only equilib-
rium that needs to be solved exactly is the one associated with the final estimate
of structural parameters. This feature reduces the computational burden of es-
timating structural models and makes it possible for our approach to be faster
than the NFXP algorithm.

The MPEC approach also builds on methods that have been developed in
the statistics and econometrics literature. In particular, the examples that we
shall examine below are constrained estimation problems of the kind described
by Aitchison and Silvey (1958), Gallant and Holly (1980), Wolak (1987, 1989),
as well as Gallant and Tauchen (1989).5

We first provide a general formulation of the MPEC approach to estimating
structural models. We prove that MPEC and NFXP solve the same estimation
problem and yield the same estimates. Thus, MPEC can be viewed as an alter-
native computational algorithm to NFXP for implementing the same statistical
estimator.

We use the single-agent dynamic discrete-choice model studied by Rust
(1987) as an illustrating example and derive the MPEC formulation for es-
timating this model. In the Monte Carlo experiments, we vary the discount
factor in the dynamic programming model and investigate the corresponding
performance of NFXP and MPEC. Monte Carlo results confirm that MPEC
is significantly faster than NFXP, particularly when the discount factor is close
to 1. We also note that the computational time for MPEC did not change much
across different discount factors, while the computational time for NFXP in-
creased almost fivefold when the discount factor increased from 0.975 to 0.995.

One natural concern is the computational feasibility of the MPEC approach;
that is, the limitations concerning the size of problems that modern constrained
optimization solvers can solve. If the constraint Jacobian and the Hessian of
the Lagrangian are sparse, and first-order and second-order analytical deriva-
tives and the corresponding sparsity patterns are supplied, then we believe
that 100,000 variables and 100,000 constraints are reasonable size limitations
for optimization problems to be solved using state-of-the-art constrained opti-
mization solvers on a workstation. In fact, we have successfully solved a struc-
tural estimation problem with 100,052 variables and 100,042 constraints in an
hour on a Macintosh workstation, MacPro, with 12 GB RAM. We expect that
with the technological progress in computing hardware and software, the size
of computationally tractable problems will grow accordingly, doubling perhaps
every few years, as has been the case for decades.

Dubé, Fox, and Su (2012) have illustrated the importance of supplying to
optimization solvers the first-order and second-order analytical derivatives and

4Optimization solvers that incorporate this feature include FILTER (Fletcher and Leyffer
(2002)), IPOPT (Wächter and Biegler (2006)), KNITRO (Byrd, Nocedal, and Waltz (2006)),
and SNOPT (Gill, Murray, and Saunders (2005)).

5We thank A. Ronald Gallant for pointing us to the constrained estimation literature.
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sparsity patterns in the Jacobian and the Hessian. They applied MPEC to the
generalized method of moments (GMM) estimation of random-coefficients
logit demand models. By deriving a constrained optimization formulation that
allows optimization solvers to exploit the sparsity structure in the Jacobian and
the Hessian, they demonstrated that MPEC can estimate random-coefficients
demand models with thousands or tens of thousands of variables and con-
straints.

The remainder of the paper is organized as follows. In Section 2, we provide
a general formulation of the MPEC approach to estimate structural models.
We demonstrate the equivalence in solution between NFXP and MPEC. In
Section 3, we consider the standard single-agent dynamic discrete-choice mod-
els in Rust (1987) and derive the corresponding formulation for MPEC. In Sec-
tion 4, we present Monte Carlo experiments to investigate the computational
performance of NFXP and MPEC. We summarize our results in Section 5.

2. MPEC APPROACH TO ESTIMATION

In this section, we provide a general formulation of the MPEC approach to
estimate structural models. We prove the equivalence in formulation between
NFXP and MPEC.

Suppose that an economic model is described by the parameter vector θ,
a state vector x, and a vector of endogenous variables σ . The data are X =
{xi�di}Mi=1, where xi is the observed state, di is the observed equilibrium out-
come of the underlying decision model, and M is the number of data points.
One example is a dynamic programming problem where θ contains the param-
eters for costs, profits, the laws of motion, and the stochastic shocks, while σ
is the policy function of a decision maker in an environment described by the
structural parameter vector θ. In general, σ will depend on θ through a set of
equilibrium conditions such as the first-order conditions, Bellman equations,
market balance conditions, and so forth. We express these conditions as a sys-
tem of equations

h(θ�σ)= 0�(1)

For a given θ, let Σ(θ) denote the set of all σ such that h(θ�σ)= 0; that is,

Σ(θ) := {σ :h(θ�σ)= 0}�
We let σ̂(θ) denote an element in Σ(θ). For some applications, such as single-
agent dynamic discrete-choice models, σ̂(θ), which represents the expected
value function, is uniquely determined, and the set Σ(θ) is a singleton for any
given θ. In other applications, such as games, there can be multiple equilibria;
hence, the set Σ(θ) can be multivalued for some θ.
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We denote by L(θ� σ̂(θ);X) the logarithm of the likelihood function of ob-
serving the data X , conditional on the parameter vector θ. If σ̂(θ) is unique
for every θ, then the maximum-likelihood estimator is defined as

θ̂ = argmax
θ

1
M

L(θ� σ̂(θ);X)�(2)

If there are multiple solutions in the set Σ(θ), then we assume that the data
obtain from a single equilibrium, so that one can write down the likelihood
function.6 The maximum-likelihood estimator is then defined as

θ̂ = argmax
θ

1
M

{
max

σ̂(θ)∈Σ(θ)
L(θ� σ̂(θ);X)

}
�(3)

Notice that the consistency requirement between θ and σ described in condi-
tion (1) is implicitly taken into account by σ̂(θ) in the likelihood function.

In this formulation, the dependence of L on σ is implicit. In many applica-
tions, σ is more directly related to the likelihood than to some components
of θ. In a life-cycle problem, the likelihood of an observation depends on the
consumption and labor decisions, not on, for example, the elasticity of labor
supply, which could be a component of θ. Elasticities affect likelihood only
indirectly through their impact on decision rules.

Applying the NFXP algorithm to compute the maximum-likelihood estima-
tor (3) requires the following: in an outer loop, search over the structural pa-
rameter vector θ to maximize the likelihood function; in an inner loop, for a
given θ, find all the solutions σ̂(θ) ∈ Σ(θ) and choose the solution that returns
the highest likelihood value.

By simply replacing the equilibrium solution σ̂(θ) in the likelihood func-
tion by any σ , we construct an augmented likelihood function, denoted by
L(θ�σ;X).7 This function explicitly expresses the dependence of the likeli-
hood on σ and makes no requirement that θ and σ be consistent with the
equilibrium conditions of the economic model. For example, in a life-cycle
model, the policy function σ , together with the components of θ related to
exogenous shock processes, defines a stochastic process for the observables.
A stochastic process is well defined even when σ and θ are inconsistent with
an equilibrium. An augmented likelihood function allows us to treat σ and θ
independently when we compute the likelihood.

When we estimate the structural parameter vector θ, we need σ to be consis-
tent with θ. We achieve this by imposing the equilibrium condition (1). There-
fore, we can formulate the maximum-likelihood estimation problem as a con-

6Moment inequality methods do not require this assumption; see Ciliberto and Tamer (2009),
and Pakes, Porter, Ho, and Ishii (2011).

7We thank Peter Rossi for suggesting this term.
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strained optimization problem

max
(θ�σ)

1
M

L(θ�σ;X)(4)

subject to h(θ�σ)= 0�

The following proposition states the equivalence of the two formulations (3)
and (4).8

PROPOSITION 1: Let θ̂ be the maximum likelihood estimator defined in (3)
and let (θ̄� σ̄) be a solution of the constrained optimization problem (4). De-
fine σ̂∗(θ) = argmaxσ̂(θ) L(θ� σ̂(θ)). Then L(θ̂� σ̂∗(θ̂)) = L(θ̄� σ̄)� If the model
is identified, then we have θ̂ = θ̄.

PROOF: Since (θ̄� σ̄) satisfies equation (1), we have σ̄ ∈ Σ(θ̄) and hence,
L(θ̂� σ̂∗(θ̂)) ≥ L(θ̄� σ̄)� Conversely, since σ̂∗(θ̂) ∈ Σ(θ̂), the pair (θ̂� σ̂∗(θ̂)) is
a feasible solution for (4). It follows that L(θ̄� σ̄)≥L(θ̂� σ̂∗(θ̂))�

If the model is identified, then the solution is unique, so θ̂ = θ̄. Q.E.D.

The MPEC approach described above is not limited to maximum-likelihood
estimation. It can be applied to any loss (or gain) function, such as least
squares, weighted GMM, or simulated maximum likelihood, as the objective;
see, for example, Dubé, Fox, and Su (2012).

3. SINGLE-AGENT DYNAMIC DISCRETE-CHOICE MODELS

We consider the single-agent dynamic discrete-choice model in Rust (1987).
We chose the Rust model because it has become the standard framework for
modeling dynamic discrete-choice problems. It is also often used to evaluate
the performance of alternative estimators. We first describe the NFXP algo-
rithm proposed by Rust. We then derive the MPEC formulation for estimating
this model.

3.1. Model of Bus-Engine Replacement Problem

In the bus-engine replacement problem of Rust (1987), the dynamic deci-
sions faced by the manager, Harold Zurcher, are considered. In each period,
a bus arrives in state x, the accumulated mileage since the last engine replace-
ment. Given the observed mileage state x and other unobserved state vari-
ables ε, Zurcher must decide whether to perform extensive repairs on a bus or

8The equivalence of (2) and (4) when σ̂(θ) is unique for every θ is simply a special case of
Proposition 1.
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to implement less costly activities. Formally, the discrete decision in time t is
defined as

dt =
{

1� replacing the engine,
0� performing regular maintenance.

If Zurcher chooses to replace the engine, then the mileage state x after the
replacement is reset to zero, and the bus then goes out to travel for another
period.

Let c(x;θ1) denote the expected operating costs per period at mileage x,
where θ1 is a vector of parameters to be estimated. Let RC denote the ex-
pected replacement cost to install a new engine, net of any scrap value of
the old engine. Given the state (x�ε) and the action d, the utility per period
is

u(x�d�ε;θ1�RC)= ν(x�d;θ1�RC)+ ε(d)�

where

ν(x�d;θ1�RC)=
{−c(x;θ1)� if d = 0,

−RC − c(0;θ1)� if d = 1,

and ε= [ε(0)�ε(1)] represents utility shocks.
The state variables (xt� εt) evolve after a decision dt has been made, so

their evolution is described by the transition probability p(xt+1� εt+1|xt� εt� dt;
θ2� θ3), where θ2 and θ3 are parameter vectors to be estimated. Note that the
transition probability p is Markovian: it depends only on current state (xt� εt).
Let β ∈ (0�1) denote the discount factor. Given the current state (xt� εt), the
agent chooses a sequence of decisions to maximize the following total expected
discounted utility over an infinite horizon:

max
{dt �dt+1�dt+2����}

E

[ ∞∑
τ=t

βτ−tu(xτ�dτ� ετ;θ1�RC)

]
�(5)

where the expectation is taken over the stochastic evolution of future states.
Define the value function V by

V(xt� εt)= max
{dt �dt+1�dt+2����}

E

[ ∞∑
τ=t

βτ−tu(xτ�dτ� ετ;θ1�RC)

]
�(6)

Since the transition probability is Markovian, the optimal decision rule for the
infinite-horizon decision problem is time invariant, and we can drop the time
index t. The infinite-horizon optimal decision problem (5) is then formulated
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as a solution to the Bellman equation

V(x�ε) = max
d

{
ν(x�d;θ1�RC)+ ε(d)(7)

+β

∫
x′

∫
ε′

V(x′� ε′)p(x′� ε′|x�ε�d;θ2� θ3)dx
′ dε′

}
�

where (x′� ε′) denote the next-period state variables.
Rust (1987) discussed the computational difficulties in estimating the model

specified above and introduced the conditional independence assumption on
the transition probability p to simplify the estimation problem.

ASSUMPTION—CONDITIONAL INDEPENDENCE (CI): The Markov transition
probability of state variables (x�ε) can be decomposed as p(x′� ε′|x�ε�d;θ2�
θ3)= p2(ε

′|x′;θ2)p3(x
′|x�d;θ3).

Under the CI assumption, one can define the expected value function

EV(x)=
∫
ε

V(x�ε)p2(ε|x;θ2)dε

and the choice-specific value function

EV(x�d)= ν(x�d;θ1�RC)+ ε(d)+β

∫
x′

EV(x′)p3(x
′|x�d;θ3)dx

′�

Taking the expectation with respect to ε on both sides of the Bellman equa-
tion (7) and using EV(x) and EV(x�d) defined above, one can obtain the
integrated Bellman equation

EV(x)=
∫
ε′

max
d

{EV(x�d)}p2(ε
′|x;θ2)dε

′�(8)

Let θ = (RC� θ1� θ3) denote the vector of parameters to be estimated. As-
suming ε is a multivariate extreme-value distribution with θ2 being Euler’s
constant, Rust derived the following multinomial logit formula to character-
ize conditional choice probability:

P(d|x;θ) = exp[ν(x�d;θ1�RC)+βEV(x�d)]∑
d′∈{0�1}

exp[ν(x�d′;θ1�RC)+βEV(x�d′)]
�(9)

where P(d|x;θ) is the probability of choosing decision d given the mileage
state x and parameter vector θ. Furthermore, the choice-specific value func-
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tion EV(x�d) in equation (9) is the unique fixed-point solution to the contrac-
tion mapping

EV(x�d) =
∫ ∞

x′=0
log

{ ∑
d′∈{0�1}

exp[ν(x′� d′;θ1�RC)+βEV(x′� d′)]
}

(10)

×p3(dx
′|x�d�θ3)�

Since the mileage state space x is continuous, EV(x�d) is a functional equa-
tion. Following Rust (1987), we discretize the mileage state space x into K grid
points x̂ = {x̂1� � � � � x̂K} with x̂1 = 0. We require the fixed-point equation (10)
to be satisfied at those grid points. Given the current state x̂k, we assume that
the mileage state in the next period x′ can move up at most J grid points, and
we specify the Markov transition probabilities as

p3(x
′|xk�d�θ3)=

{
Pr{x′ = x̂k+j|θ3}� if d = 0,
Pr{x′ = x̂1+j|θ3}� if d = 1,(11)

for j = 0�1� � � � � J. We can then rewrite the fixed-point equation (10) as

EV(x̂k� d) =
J∑

j=0

log

{ ∑
d′∈{0�1}

exp[ν(x′� d′;θ1�RC)+βEV(x′� d′)]
}

(12)

×p3(x
′|x̂k� d�θ3)�

With a slight abuse of notation, we now denote

EV = [EV(x̂1�0)� � � � �EV(x̂K�0)�EV(x̂1�1)� � � � �EV(x̂K�1)]

as a vector of expected value functions. We also denote the fixed-point equa-
tion (12) by

EV = T(EV� θ)�(13)

The above characterization allows us to calculate the conditional choice
probability P(d|x;θ) for a given vector of structural parameters θ by first solv-
ing the fixed-point equation (12) for EV(x�d′) for all d′. We refer readers to
Rust (1987, 1994) for detailed derivation and discussions.9

9With the Markov transition probabilities p3(x
′|xk�d�θ3) defined in equation (11), we

have EV(x̂k�1) = EV(x̂1�0) for all k = 1� � � � �K. Consequently, one can define EV =
[EV(x̂1�0)� � � � �EV(x̂K�0]; see Rust (2000, p. 14).
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3.2. Maximum-Likelihood Estimation

The econometrician observes the mileage state and the corresponding de-
cision in each period and for each bus in the data. Let Xi = (xi

t� d
i
t)

T
t=1 be the

time-series data for bus i = 1� � � � �M ; xi
t is the mileage state of bus i examined

in period t and di
t is the replacement decision made for that bus. For simplicity,

we assume xi
t stays on the grid x̂ = {x̂1� � � � � x̂K}.10 The full data set including all

buses is denoted by X = (Xi)Mi=1.
Rust (1987) proposed to estimate the structural parameter vector θ by the

method of maximum likelihood. The likelihood of observing data Xi for bus i
is

�i(X
i;θ) =

T∏
t=2

P(di
t |xi

t;θ)p3(x
i
t |xi

t−1� d
i
t−1;θ3)�

where P(d|x�θ) is given by (9). The likelihood function of the full data set
X = (Xi)Mi=1 is

�(θ) =
M∏
i=1

�i(X
i;θ) =

M∏
i=1

T∏
t=2

P(di
t |xi

t;θ)p3(x
i
t |xi

t−1� d
i
t−1;θ3)�(14)

and the logarithm of the likelihood function is denoted by

L(θ) = log�(θ)(15)

=
M∑
i=1

T∑
t=2

log[P(di
t |xi

t;θ)] +
M∑
i=1

T∑
t=2

log[p3(x
i
t |xi

t−1� d
i
t−1;θ3)]�

We calculate the estimates of unknown parameter vector θ = (RC� θ1� θ3) by
maximizing the sample-averaged logarithm of the likelihood function

max
θ

1
M

L(θ)�(16)

To evaluate the logarithm of the likelihood function L(θ) for a given θ, one
needs to know the value of P(d|x;θ), which in turn requires the value of EV,
a solution of the fixed-point equation (12). This fact motivates the NFXP algo-
rithm proposed in Rust (1987). NFXP consists of an outer loop and an inner
loop. In the outer loop, an optimization procedure is used to maximize 1

M
L(θ)

by changing the structural parameters θ; in the inner loop, for a given θ, one
solves the fixed-point equation (12) for EV to calculate the conditional choice
probabilities P(di

t |xi
t;θ), and to evaluate L(θ). Rust (1988) proved that L(θ)

10If xi
t is not on the grid x̂, then we round xi

t up or down to the nearest grid point.
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is a smooth function of θ, an attractive property that makes Newton’s method
a valid computational approach for solving this maximization problem. Rust
derived formulae for calculating the first-order derivatives of L(θ) using the
implicit function theorem. Supplying the analytical first-order derivatives in
the implementation of Newton’s method makes NFXP faster and more robust
than when finite-difference derivatives are used.

NFXP requires the fixed-point equation (12) to be solved accurately for
every vector of parameters θ considered in the maximization procedure.11

Aguirregabiria and Mira (2002) have noted that repeatedly solving the fixed-
point equation is not computationally efficient because it is unnecessary to
enforce the fixed-point equation to be satisfied during the search process in
the NFXP outer loop. They proposed a nested pseudo-likelihood estimator to
avoid repeated solution of the fixed-point equation. With the same motivation
in mind, we propose the MPEC approach for maximum-likelihood estimation
of Rust’s bus model.

For MPEC, the augmented log-likelihood function is the following function
of both structural parameter vector θ and expected value functions EV:

L(θ�EV) =
M∑
i=1

T∑
t=2

log[P(di
t |xi

t;θ)](17)

+
M∑
i=1

T∑
t=2

log[p3(x
i
t |xi

t−1� d
i
t−1;θ3)]

=
M∑
i=1

T∑
t=2

log

⎛⎜⎜⎝ exp[ν(xi
t� d

i
t � θ)+βEV(xi

t� d
i
t)]∑

d′∈{0�1}
exp[ν(xi

t� d
′� θ)+βEV(xi

t� d
′)]

⎞⎟⎟⎠
+

M∑
i=1

T∑
t=2

log[p3(x
i
t |xi

t−1� d
i
t−1;θ3)]�

Note that, in defining the augmented log-likelihood function (17), we have sub-
stituted the conditional-choice probability P(d|x;θ) into L(θ) in equation (15)
by the multinomial logit formula given in equation (9). The function L(θ�EV)
is a well-defined smooth function of θ and EV, and its first-order and second-
order derivatives with respect to θ and EV exist.

To ensure that EV and θ are consistent in the structural equation, we im-
pose the integrated Bellman equations defined by equation (13) as constraints.

11Rust (1987) started with contraction mapping (at a tolerance level of 10−13) and then
switched to Newton’s method to solve the fixed-point equation with very high accuracy; see also
Rust (2000).
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Combining the sample-averaged augmented log-likelihood function as the ob-
jective function and the integrated Bellman equations as constraints yields the
following constrained optimization problem:

max
(θ�EV)

1
M

L(θ�EV)(18)

subject to EV = T(EV� θ)�

It follows from Proposition 1 that the maximum-likelihood estimation prob-
lem defined by (16) and the constrained optimization problem (18) are mathe-
matically equivalent. Consequently, NFXP and MPEC yield the same param-
eter estimates. Dubé, Fox, and Su (2012) proved the equivalence in solutions
to the first-order conditions of NFXP and MPEC in the context of random-
coefficients demand estimation. Their results and proof can be applied directly
to the single-agent dynamic models considered here as well.

We now discuss several computational aspects of implementing NFXP and
MPEC. First, for each θ considered under NFXP, there are two steps: (i) solv-
ing the dynamic programming problem with high accuracy; and (ii) evaluat-
ing the likelihood function. Value function iteration requires evaluating the
Bellman equations many times under NFXP each time a dynamic program is
solved. In contrast, for each θ considered in MPEC, the Bellman equation is
evaluated once, but not solved. This feature reduces the computational burden
and makes it possible for MPEC to be much faster than NFXP.

Second, NFXP and MPEC require about the same amount of memory.
The constraint Jacobian and the Hessian of the Lagrangian are highly sparse
in the bus-engine replacement model. Let dim(z) denote the dimension of
a vector z. The total number of elements in the Jacobian and the Hes-
sian are (dim(θ) + dim(EV)) × dim(EV) and (dim(θ) + dim(EV))2. One
can verify that the number of nonzero elements in the Jacobian is around
(dim(θ)+ dim(θ3)+ 1)× dim(EV). The Hessian is even more sparse than the
Jacobian: the number of nonzero elements in the Hessian is around (2 × (1 +
dim(θ1))+ dim(θ3))× (dim(θ)+ dim(EV)). In most dynamic discrete-choice
models, dim(θ) is much smaller than dim(EV). Thus, the memory required for
the constrained optimization approach on Zurcher’s model is on the order of
dim(θ)+ dim(EV), the number of variables in the MPEC approach.

4. MONTE CARLO EXPERIMENTS

We investigated a specific example of Rust’s bus-engine replacement model,
following the specifications used to report the estimates in Table X in Rust
(1987, p. 1022). In particular, we chose the fixed-point dimension to be 175
(i.e., we discretized the mileage state space into 175 grid points) and the main-
tenance cost function to be c(x�θ1) = 0�001θ11x. The Markov transition prob-
abilities in the mileage state were defined as θ3j = Pr(xt+1 = xt + j|xt� it = 0),
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for j = 0�1� � � � �4. Hence, θ3j is the probability that the mileage state will move
up j grid points in the next period. The unknown structural parameters to be
estimated are replacement cost RC, maintenance cost function parameter θ11,
and mileage transition probabilities θ3 = (θ3j)

4
j=0. We did not estimate the dis-

count factor β. Instead, we examined five cases with β ranging from 0.975 to
0.995 in an interval of 0.005.12

We used the parameter values reported for bus groups 1, 2, and 3 in Table X
in Rust (1987) as the true values of the data generating process:

RC0 = 11�7257�

θ0
11 = 2�4569�

θ0
3 = (0�0937�0�4475�0�4459�0�0127�0�0002)�

We simulated time-series data for T = 120 time periods (10 years of monthly
data) and M = 50 buses. To simulate data for each of the five cases and the
corresponding β, we fixed the structural parameters at θ0 = (RC0� θ0

11� θ
0
3) and

solved the integrated Bellman equation (12) for EV0. We then used θ0 and
EV0 to compute the conditional choice probabilities P(d|x�θ) and to simulate
mileage transitions and decisions for 250 data sets for each β in our Monte
Carlo study.

We conducted three implementations of algorithms. In the first, we coded
the MPEC approach in AMPL, an algebraic modeling language; see Fourer,
Gay, and Kernighan (2003).13 AMPL has two advantages: first, it will compute
the exact first-order and second-order analytic derivatives using automatic dif-
ferentiation (see Griewank and Walther (2008)); second, it will analyze the
sparsity structure of the constraint Jacobian and the Hessian, and provide
that information to optimization solvers.14 We denote this implementation as
MPEC/AMPL.

We also coded both MPEC and NFXP in MATLAB. For MPEC, we pro-
vided the hand-coded first-order analytical derivatives of the objective func-
tion and constraints and the sparsity pattern of the constraint Jacobian. For
NFXP, we provided the first-order analytical derivatives of objective function;
we used only contraction mapping iterations to solve the integrated Bellman
equation (12) with an inner-loop tolerance 10−10.15 We denote these two imple-
mentations as MPEC/MATLAB and NFXP/MATLAB, respectively. The codes

12Rust (1987) chose β= 0�9999.
13We cannot implement NFXP in AMPL because AMPL does not allow nested function calls.
14For this example, the number of nonzeros in Jacobian is 2255 (≈ (7 + 5 + 1)× 175) and the

number of nonzeros in Hessian is 1584 (≈ (2 × (1 + 1)+ 5)× 182).
15NFXP will need more computational time if researchers use a tighter inner-loop tolerance

level such as 10−13 or follow Rust’s suggestion to switch to Newton’s method after the contraction
mapping iteration converges; see footnote 10. Since we provided hand-coded first-order deriva-
tives in our implementation, we found that NFXP using the contraction mapping iteration only
with an inner-loop tolerance 10−10 is quite robust.
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used in all three implementations are included in the Supplemental Material
(Su and Judd (2012)).

Rust (1987) estimated the transition-probability parameters θ3 from the
mileage transition data in the first stage and then estimated the remaining pa-
rameters (RC� θ11) in the second stage. For both MPEC and NFXP, we esti-
mated the parameters (RC� θ11� θ3) jointly by solving the full likelihood func-
tion (15). For all three implementations, we solved the estimation problem
using the optimization solver, KNITRO; see Byrd, Nocedal, and Waltz (2006).
For each of the 1250 replications (250 replications for each of the five βs) , we
used five different starting values to do a better job at finding a global solution.
For a fair comparison, all three implementations used the same starting values
in the structural parameter vector θ.

In Table I, we report the Monte Carlo results. These three implementa-
tions produced almost identical means and standard deviations of estimates
in each of the five scenarios when we varied the discount factor β. We believe
the differences arise because different local maximizers were found in these
three implementations. The estimation results demonstrate that the maximum-
likelihood estimator works extremely well on this model, particularly in recov-
ering the transition probabilities. For β = 0�99 and 0�995, all mean param-
eter estimates except for θ30 are within two standard errors of the true val-
ues.

We report the computational performance of these three implementations in
Table II. One can see that the MPEC/MATLAB implementation is the most ro-
bust in terms of number of runs converged. In terms of timing, MPEC/AMPL
is the fastest, requiring only around 0.15 seconds for each run and consid-
erably fewer iterations and function evaluations than either MPEC/MATLAB
or NFXP/MATLAB. The reason is that AMPL supplies both first-order and
second-order analytical derivatives to the solver KNITRO, whereas for the
other two implementations we supplied only first-order analytical derivatives.
This observation confirms that an optimization solver runs most efficiently
and needs the fewest iterations and function evaluations when both first-
order and second-order derivatives are supplied. When we remove the ef-
fect of supplying second-order derivatives and compare the performance of
MPEC/MATLAB and NFXP/MATLAB, MPEC still dominates NFXP in all cat-
egories. As one can see, the numbers of major iterations and function evalu-
ations for NFXP and MPEC do not increase when we increase the discount
factor from 0.975 to 0.995; however, the computing time for NFXP increases
steadily, while the computing time for MPEC/MATLAB (and MPEC/AMPL)
requires the same. The reason for the increase in computing time for NFXP
is that when the discount factor β increases, the number of contraction map-
ping iterations needed in solving the inner-loop Bellman equations also in-
creases.

Instead of calculating the asymptotic standard errors, one can use the boot-
strap to construct confidence intervals or test hypotheses. The feasibility of
conducting bootstrap inference relies on having a computationally efficient
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TABLE I

MONTE CARLO RESULTS FOR VARIOUS DISCOUNT FACTORS βa

Parameters

RC θ11 θ30 θ31 θ32 θ33

β Implementation True values: 11.726 2.457 0.0937 0.4475 0.4459 0.0127 MSE

0.975 MPEC/AMPL Mean 12�212 2.607 0.0943 0.4473 0.4454 0.0127 3.111
Std. dev. (1�613) (0.500) (0.0036) (0.0057) (0.0060) (0.0015) –

MPEC/MATLAB Mean 12�212 2.607 0.0943 0.4473 0.4454 0.0127 3.111
Std. dev. (1�613) (0.500) (0.0036) (0.0057) (0.0060) (0.0015) –

NFXP/MATLAB Mean 12�213 2.606 0.0943 0.4473 0.4445 0.0127 3.123
Std. dev. (1�617) (0.500) (0.0036) (0.0057) (0.0060) (0.0015) –

0.980 MPEC/AMPL Mean 12�134 2.578 0.0943 0.4473 0.4455 0.0127 2.857
Std. dev. (1�570) (0.458) (0.0037) (0.0057) (0.0060) (0.0015) –

MPEC/MATLAB Mean 12�134 2.578 0.0943 0.4473 0.4455 0.0127 2.857
Std. dev. (1�570) (0.458) (0.0037) (0.0057) (0.0060) (0.0015) –

NFXP/MATLAB Mean 12�139 2.579 0.0943 0.4473 0.4455 0.0127 2.866
Std. dev. (1�571) (0.459) (0.0037) (0.0057) (0.0060) (0.0015) –

0.985 MPEC/AMPL Mean 12�013 2.541 0.0943 0.4473 0.4455 0.0127 2.140
Std. dev. (1�371) (0.413) (0.0037) (0.0057) (0.0060) (0.0015) –

MPEC/MATLAB Mean 12�013 2.541 0.0943 0.4473 0.4455 0.0127 2.140
Std. dev. (1�371) (0.413) (0.0037) (0.0057) (0.0060) (0.0015) –

NFXP/MATLAB Mean 12�021 2.544 0.0943 0.4473 0.4455 0.0127 2.136
Std. dev. (1�368) (0.411) (0.0037) (0.0057) (0.0060) (0.0015) –

0.990 MPEC/AMPL Mean 11�830 2.486 0.0943 0.4473 0.4455 0.0127 1.880
Std. dev. (1�305) (0.407) (0.0036) (0.0057) (0.0060) (0.0015) –

MPEC/MATLAB Mean 11�830 2.486 0.0943 0.4473 0.4455 0.0127 1.880
Std. dev. (1�305) (0.407) (0.0036) (0.0057) (0.0060) (0.0015) –

NFXP/MATLAB Mean 11�830 2.486 0.0943 0.4473 0.4455 0.0127 1.880
Std. dev. (1�305) (0.407) (0.0036) (0.0057) (0.0060) (0.0015) –

0.995 MPEC/AMPL Mean 11�819 2.492 0.0942 0.4473 0.4455 0.0127 1.892
Std. dev. (1�308) (0.414) (0.0036) (0.0057) (0.0060) (0.0015) –

MPEC/MATLAB Mean 11�819 2.492 0.0942 0.4473 0.4455 0.0127 1.892
Std. dev. (1�308) (0.414) (0.0036) (0.0057) (0.0060) (0.0015) –

NFXP/MATLAB Mean 11�819 2.492 0.0942 0.4473 0.4455 0.0127 1.892
Std. dev. (1�308) (0.414) (0.0036) (0.0057) (0.0060) (0.0015) –

aFor each β, there are 250 replications. Standard deviations are reported in parentheses. MSE is calculated by
summing over all structural parameters.

method to perform parameter estimation of the underlying structural model,
since the bootstrap requires estimating parameters for each of the simulated
samples. As we illustrated above, MPEC provides a computationally efficient
method to estimate dynamic discrete-choice models and makes bootstrap in-
ference possible. Indeed, the data sampling procedure that we describe above
is a parametric bootstrap procedure to generate simulated samples, and our
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TABLE II

NUMERICAL PERFORMANCE OF NFXP AND MPEC IN THE MONTE CARLO EXPERIMENTSa

Runs Converged CPU Time # of Major # of Func. # of Contraction
β Implementation (out of 1250 runs) (in sec.) Iter. Eval. Mapping Iter.

0.975 MPEC/AMPL 1240 0�13 12.8 17�6 –
MPEC/MATLAB 1247 7�90 53.0 62�0 –

NFXP 998 24�60 55.9 189�4 134,748

0.980 MPEC/AMPL 1236 0�15 14.5 21�8 –
MPEC/MATLAB 1241 8�10 57.4 70�6 –

NFXP 1000 27�90 55.0 183�8 162,505

0.985 MPEC/AMPL 1235 0�13 13.2 19�7 –
MPEC/MATLAB 1250 7�50 55.0 62�3 –

NFXP 952 43�20 61.7 227�3 265,827

0.990 MPEC/AMPL 1161 0�19 18.3 42�2 –
MPEC/MATLAB 1248 7�50 56.5 65�8 –

NFXP 935 70�10 66.9 253�8 452,347

0.995 MPEC/AMPL 965 0�14 13.4 21�3 –
MPEC/MATLAB 1246 7�90 59.6 70�7 –

NFXP 950 111�60 58.8 214�7 748,487

aFor each β, we use five starting points for each of the 250 replications. CPU time, number of major iterations,
number of function evaluations and number of contraction mapping iterations are the averages for each run.

Monte Carlo study demonstrates the uses of parametric bootstrap to compute
standard errors on structural parameters.

5. CONCLUSION

In this paper, we have proposed a new constrained optimization approach,
MPEC, for estimating structural econometrics models. We have illustrated
that the MPEC approach can be applied directly to maximum-likelihood es-
timation of single-agent dynamic discrete-choice models. Our approach can be
easily implemented using existing standard constrained optimization software.
Monte Carlo results confirmed that MPEC is significantly faster than NFXP,
particularly when the discount factor in the dynamic-programming model is
close to 1.

As shown by Dubé, Fox, and Su (2012), MPEC can also be applied to esti-
mate random-coefficients logit demand models. We believe that our approach
will be useful for estimating structural models in various contexts and applica-
tions. For future research, we plan to investigate the applicability of the MPEC
approach to estimate dynamic discrete-choice games studied in Aguirregabiria
and Mira (2007), Bajari, Benkard, and Levin (2007), Pakes, Ostrovsky, and
Berry (2007), Pesendorfer and Schmidt-Dengler (2008), and Arcidiacono and
Miller (2011).
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