
November 14, 2010

Professor Whitney Newey
Co-Editor, Econometrica
Department of Economics
MIT, USA

Dear Co-Editor Newey,

I am writing to resubmit the paper “Constrained Optimization Approaches to Estimation of
Structural Models” (co-authored with Kenneth L. Judd), Manuscript 7925, for the second-round
review at Econometrica. I am grateful to the referees for their excellent reports. Based on the
Co-Editor’s and the referees’ suggestions, we have substantially revised and reorganized our paper.
I hope that in the revised version we have carefully addressed all comments from the Co-Editor’s
decision letter and the referees’ reports. In this letter I briefly explain the details of our revision
and give the response to the remarks in the Co-Editor’s letter. Responses to the referees’ comments
are given in the attached note.

The major changes in the revised version of the paper are:

(i). We add a new section (Section 2) on overview of numerical optimization methods.
(ii). We prove the equivalence between NFXP and MPEC for the Zucher model in Proposition 2.

We add a new Monte Carlo study on the Rust’s bus example to compare the performance of
NFXP and MPEC.

(iii). We replaced the example on Bertrand pricing game in the previous version by the discrete-
choice games of incomplete information suggested by Referee 4. We also prove the equivalence
of NFXP and MPEC for this example in Proposition 3. We conduct a Monte Carlo study on
this example to compare the performance of two-step estimators, NPL and MPEC.

(iv). We deleted Section 2, Section 4 and Section 5.4 in the previous version.

Since we have substantially revised our paper, we summarize the major changes in the previous
and current version in Table 1 and 2, respectively.

1



Table 1: Changes on the Previous Version.

Section Comment

1. Introduction Revised

2. Current Optimization Methods in Econometrics Deleted.

3. MPEC Approach to Estimation Revised.

4. MPEC Applied to a Simple Demand Example Deleted.

5. MPEC applied to Zurcher (i) Section 5.1 to 5.3 are revised as part of

Section 4 in the new version.

(ii) Section 5.4 is deleted.

6. The MPEC Approach to Games (i) We remove the he Bertrand pricing game example

and replace it by the Prisoner Dilemma example

suggested by Referee 4.

(ii) It is now Section 5 in the new version.

7. The MPEC Approach and the Method of Moments Deleted.

8. Conclusion Revised

Table 2: Contents in the Current Version.

Section Comment

1. Introduction

2. Overview of Numerical Optimization Methods New material.

3. MPEC Approach to Estimation Include a result on the asymptotic distribution

of the ML estimates with MPEC..

4. Single-Agent Dynamic Discrete Choice Models (i) Based on Section 5.1 to 5.3 of the previous version.

(ii) Proof on the equivalence of NFXP and MPEC.

(iii) A new Monte Carlo study to compare the

performance of NFXP and MPEC.

5. Estimation of Games of Incomplete Information (i) An example of discrete-choice game of incomplete

information suggested by Referee 4.

(ii) Proof on the equivalence of NFXP and MPEC.

(iii) A numerical example that shows the discontinuity

in the likelihood function of NFXP.

(iv) A new Monte Carlo study to compare the finite

sample performance of two-step estimators,

NPL and MPEC.

6. Conclusion

Appendix B. Automatic Differentiation Exacted from Section 2 of the previous version.
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Below I repeat parts of the remarks from the Co-Editor’s letter and then describe the resulting
changes in the revised version of the paper.

Editor’s comments:

1. I endorse the suggestion to run a head-to-head comparison with a modern Nested Fixed Point
(NFXP) implementation. Also, please provide at least one additional comparison with existing ap-
proaches, in the context of estimation of a game. Referee 4 provides one suggestion.

We conduct a Monte Carlo study to compare the computational performance of NFXP and
MPEC in Section 3 of the revised version. We follow the specifications used to report the estimates
in Table X in Rust (1987). We use the reported parameter values in Table X to generate synthetic
datasets. In our experiment, we also vary the discount factor β and investigate the performance
of NFXP and MPEC under various discount factor β. We provide two implementations of the
MPEC estimator. The first implementation is conducted in AMPL, a modeling language which
uses automatic differentiation to compute the exact first-order and second-order derivatives and
analyzes the sparsity patterns of constraint Jacobian and Hessian. The second implementation of
MPEC is conducted in Matlab, which we provide the hand-coded first-order derivatives and spar-
sity pattern of constraint Jacobian. The implementation of NFXP is conducted in Matlab with
hand-coded first-order derivatives. We believe that our implementations of NFXP and MPEC in
Matlab provide a head-to-head and fair comparison of the two algorithms.

The results show that MPEC is faster than NFXP. As expected, the speed of NFXP depends
on the discount factor β because NFXP uses contraction mapping iteration to solve the inner-loop
problem. The computational time and the number of contraction mapping iteration needed in
NFXP increase when the discount factor β increases.

We also provide a Monte Carlo study on estimation of a discrete-choice game of incomplete
information suggested by Referee 4. We follow the example studied in the lecture notes provided
by Referee 4 and conduct three experiments, in which we use different type of equilibria in the data
generating process. We show in an example of one market (Example 3 in Section 5.2.2 in p. 29)
that the likelihood function of NFXP in the parameter space is discontinuous (in Figure 3, p. 30).
In our Monte Carlo study, we consider a model of multiple markets, where a market is defined by
the players’ observed types. In the data generating process, we follow the Editor’s suggestion to
focus on the case that for each market, only one equilibrium is played in the data. However, we
allow for different equilibria being played in different markets (with different observed types).

We compare the performance of two-step pseudo maximum likelihood (2S-PML), two-step least
squares (2S-LS), nested pseudo likelihood (NPL) and MPEC. We conduct three experiments. In
Experiment 1 and 2, we use best-reply stable equilibria to generate data; in Experiment 3, we allow
for best-reply unstable equilibria in the data generating process.
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The results (reported in Section 5.3 of the revised version) show that MPEC performs well
across all three experiments. Two-step estimators perform well in Experiment 1 and 2, but are
severely biased in Experiment 3. NPL performs well in Experiment 1, but is biased and has large
standard error in one parameter in Experiment 2. NPL fails to converge after 500 NPL iterations
in all 100 replications in Experiment 3. In an another Monte Carlo experiment, which we do not
include in the revised version of the paper, NPL converges to wrong estimates.

2. . . . . Also, it would be good to know what problems might come up with MPEC. For instance,
could having enough computer memory be a problem with all those constraints?

In Section 2, we describe a few features that are incorporated in the implementation of modern
constrained optimization algorithms. One feature is to explore the sparsity pattern in constraint
Jacobian and Hessian. In general, the computational time and memory required in constrained
optimization algorithms is on the order of nonzero elements in constrained Jacobian and Hessian.
It is true that for models with dense matrices, the memory requirement for MPEC would be an
issue. However, in many applied models such as Rust’s bus example or dynamic games, the Ja-
cobian and Hessian are highly sparse. As we discuss in Section 4.2 (p. 16 and p. 17), the number
of nonzero elements in constraint Jacobian and Hessian in Rust’s Zucher model is in the order of
dim(θ)+dim(EV ), where dim(θ) is the number of structural parameters and dim(EV ) is the num-
ber of grid points on the mileage state space. Taking advantage of the sparsity structure in these
models makes implementing MPEC computationally feasible even when the number of variables
and constraints are large.

3. One of the referees suggested that more information about how to actually use the software
being provided. I think that would be great for the supplementary material website.

We certainly will make our code available to the public and for the supplementary material
website at Econometrica. We are in the process of creating a webpage that contains the code that
we use in our Monte Carlo experiments. In the next few days, the code will be available at

http://faculty.chicagobooth.edu/che-lin.su/research/code.html

4. Another important issue is multiple equilibria. . . . Given this concern, and given that the
primary focus of this paper is on computation, it seems best to drop the attempt to do something
more about multiple equilibria, and just focus on computational methods for models from the estab-
lished literature, where the assumption that the data corresponds to one equilibrium is maintained.

We followed the Co-Editor’s suggestion on this. In Assumption 2 (in Section 5.2.1, p 28) we
state that “For each market, only one equilibrium is played in the data. However, equilibria played
across different markets are different.” We maintain this assumption when generating data for our
Monte Carlo study in Section 5.3.
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5. It would also be good to discuss efficiency issues somewhat and to be more precise about the
bootstrap.

We include a result on the asymptotic distribution of the maximum likelihood estimates based
the MPEC approach in Proposition 1 on p. 10 in Section 3.2. We do not prove this result because
it follows directly from Theorem 2 in Aitchison and Silvey (1958). In Section 4.5, we explain that
the sampling procedure used in our Monte Carlo study in Section 5.3 is a parametric bootstrap
procedure to generate simulated samples and to obtain standard errors.

6. One question raised by the referees is whether MPEC is simply a different way to compute
the MLE or whether it changes the estimator. It would be good to clarify this, e.g., in the context
of the Zucher model,where a referee asks if the estimators are different.

MPEC is simply a different way to compute the MLE. It does not change the estimator. We
state this result formally in Proposition 2. in Section 4.3 (p. 17) and provide the proof in Appendix
A. The same statement about the equivalence of MPEC and NFXP is made in Proposition 3 (p. 32)
in Section 5.2.3 for the discrete-choice game of incomplete information.

7. The referees have a number of expositional suggestions that seem quite reasonable. In par-
ticular, all the referees think that the paper could be written as a more positive contribution. For
example, Referee 3 suggests deleting most of the material in Section 2 and Section 5.4, which seems
good. The other expositional suggestions of the referees seem good also.

We deleted Section 2, Section 4 and Section 5.4 in the previous version of the paper.

We thank you and the referees again for giving us an opportunity to improve our paper. I sin-
cerely hope that we have addressed your and the referees’ concerns and suggestions satisfactorily
in this revised version.

Best Regards,

Che-Lin Su
Assistant Professor
The University of Chicago
Booth School of Business
5807 South Woodlawn Ave
Chicago, IL 60637
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