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Structural Estimation

• Great interest in estimating models based on economic structure

– Dynamic programming models

– Games

– Dynamic stochastic general equilibrium

• Major computational challenge because estimation involves also solving model

• We show that many computational difficulties can be avoided by using optimization tools
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Basic Problem - DP Example

• Individual solves a dynamic programming problem

– Econometrician observes state (with error) and decisions

– θ is set of parameters

– σ is a vector of parameters describing the decision rule

– Rationality imposes a relationship between θ and σ

0 = G (θ, σ)

• Standard view: Likelihood function for data X

L (θ;X)

• MPEC view: Augmented likelihood function for data X

L (θ, σ;X)

where we explicitly express the role of σ

– We find θ and σ that maximize augmented likelihood but also satisfy rationality (or, equilibrium)

conditions
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Nested Fixed Point Algorithm

• Given θ, compute σ - in practice, this means writing a program σ = Σ (θ)

• Note that

L (θ;X) = L (θ,Σ (θ) ;X)

• Solve likelihood

maxL (θ,Σ (θ) ;X)

– Problems: Must compute Σ (θ) to high accuracy for each θ examined

– Current View: Erdem et a. (2004):

Estimating structural models can be computationally difficult. For example, dynamic discrete

choice models are commonly estimated using the nested fixed point algorithm (see Rust 1994).

....[S]ome recent research ... proposes computationally simple estimators for structural models ...

using a two-step approach. .... [But], there can be a loss of efficiency [and]... stronger assumptions

about unobserved state variables may be required.

• Is this true?

– Are structural models so computationally difficult that it is necessary to turn to statistically inferior

methods?

– Are economists experts on computational feasibility?

• In this paper, we argue that the answer to the first question is an emphatic NO!
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Simple Consumer Demand Example

• Data and Model

– Data on demand, q, and price p, but demand is observed with error ε.

– True demand is q − ε.
– Assume a parametric form for utility function u (c; β) where β is a vector of parameters.

– Economic theory implies

uc (c; β) = uc (q − ε; β) = p

• Standard Approach (from Econ 712, University of Wisconsin, 1979)

– Assume, for example, a functional form for utility

u (c) = c− βc2.

– Solve for demand function

c = (1− p) /(2β)

– Hence, i’th data point satisfies

qi = (1− pi) /(2β) + εi

for some εi.

– To estimate β, choose β to minimize the sum of squared errors∑
i=1

(qi − (1− pi) /(2β))2 .
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• Limitations

– Need to solver for demand function, which is hard if not impossible

– For example, suppose

u (c) = c− β
(
c2 + c4 + c6

)
with first-order condition

1− β
(
2c + 4c3 + 6c5

)
= p

– There is no closed-form solution for demand function.

– What were you taught to do in this case? Change the model !

• Proper Procedure

– Deal with the first-order condition directly since it has all the information you can have.

– Recognize that all you do is find the errors that minimize their sum of squares but are consistent

with structural equations.
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• Examples

– For our consumption demand model, this is the problem

min
εi,β

∑
i=1

ε2i

s.t. uc (qi − εi; β) = pi

– In the case of the quadratic utility function, this reduces to

min
ci,εi,β

∑
i=1

ε2i

s.t. 1− 2βci = pi

qi = ci + εi

– Degree-six utility function produces problem

min
ci,εi,β

∑
i=1

ε2i

s.t. 1− β
(
2ci + 4c3i + 6c5i

)
= pi

qi = ci + εi
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– Even when you can solve for demand function, you may not want to.

∗ Consider the case

u (c) = c− β1c
2 − β2c

3 − β3c
4

u′ (c) = 1− 2β1c− 3β2c
2 − 4β3c

3

∗ Demand function is

q =
1

12β3

W − 1

4

8β1β3 − 3β2
2

β3W
− 1

4

β2

β3

W = 3

√(
108β1β2β3 − 216β2

3p + 216β2
3 − 27β3

2 + 12
√

3β3Z
)

Z =
√
Z1 + Z2

Z1 = 32β3
1β3 − 9β2

1β
2
2 − 108β1β2β3p + 108β1β2β3

Z2 = 108β2
3p

2 − 216β2
3p + 27pβ3

2 + 108β2
3 − 27β3

2

∗ Demand function is far costlier to compute than the first-order conditions.

• The (bad) habit of only using models with closed-form solutions is unnecessary.

• Gallant knew this 40 years ago.
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Basic Problem - DP Example

• Individual solves a dynamic programming problem

• Econometrician observes state (with error) and decisions

• Augmented likelihood function for data X

L (θ, σ;X)

where θ is set of parameters and σ is decision rule

• Rationality imposes a relationship between θ and σ

0 = G (θ, σ)

• We want to find maximum likelihood θ but impose rationality condition
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Su-Judd Approach - Use MPEC ideas

• Suppose that an economic model has parameters θ.

• Suppose that equilibrium and optimality imply that the observable economic variables, x, follow a

stochastic process parameterized by a finite vector σ.

• The value of σ will depend on θ through a set of equilibrium conditions

0 = G (θ, σ)

• Denote the augmented likelihood of a data set, X , by L (θ, σ;X).

• Therefore, maximum likelihood is the constrained optimization problem

max
σ,θ

L (θ, σ;X)

s.t. 0 = G (θ, σ)

• We do not require that equilibrium be defined as a solution to a fixed-point equation.

• We do not need to specify an algorithm for computing σ given θ; good solver is probably better.

• Gauss-Jacobi or Gauss-Seidel methods are often used in economics even though they are at best

linearly convergent, whereas good solvers are at least superlinearly convergent locally (if not much

better) and have better global properties than GJ and GS typically do.

• Using a direct optimization approach allows one to take advantage of the best available methods from

the numerical analysis



11

SJ Applied to Zurcher

• SJ Timing for estimating three parameters (as in the Rust).

cpu Estimates major # obj constr.

T N (secs) RC θc1 θc2 iter. evals evals

1,000 101 0.14 1.112 0.043 0.0029 66 72 72

1,000 201 0.31 1.140 0.055 0.0015 44 59 59

1,000 501 1.65 1.130 0.050 0.0019 58 68 68

1,000 1001 5.54 1.144 0.056 0.0013 58 94 94

10,000 101 0.24 1.236 0.056 0.0015 59 67 67

10,000 201 0.44 1.257 0.060 0.0010 59 67 67

10,000 501 0.88 1.252 0.058 0.0012 35 45 45

10,000 1001 3.47 1.256 0.060 0.0010 39 52 52
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• Rust did a two-stage procedure, estimating transition parameters in first stage. We do full ML

cpu Estimates major # obj # constr

data states (secs) RC θc1 θc2 θp1 θp2 iters evals evals

1,000 101 0.50 1.107 0.039 0.0030 0.723 0.262 111 137 137

1,000 201 1.13 1.140 0.055 0.0015 0.364 0.600 109 120 120

1,000 501 3.37 1.129 0.050 0.0019 0.339 0.612 115 127 127

1,000 1001 7.56 1.144 0.056 0.0014 0.360 0.608 84 116 116

10,000 101 0.50 1.236 0.052 0.0016 0.694 0.284 76 91 91

10,000 201 0.86 1.257 0.060 0.0010 0.367 0.593 85 97 97

10,000 501 2.73 1.252 0.058 0.0012 0.349 0.596 83 98 98

10,000 1001 19.12 1.256 0.060 0.0010 0.370 0.586 166 182 182

• Problem is solved very quickly.

• Timing is nearly linear in the number of states for modest grid size.

• The likelihood function, the constraints, and their derivatives are evaluated only 45-182 times in this

example.

• In contrast, the Bellman operator in NFXP (the constraints here) is evaluated hundreds of times in

NFXP.
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Resampling

• Resampling can often be used to generate standard errors

• We did 20 resamplings:

– Five parameter estimation

– 1000 data points

– 1001 grid points in DP
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Comparisons with NFXP

• We reduce time spent on solving DP

– Important when DP is hard to solve

– Less important as the cost of computing likelihood rises

• Closed-form solutions may hurt

– Substituting out m variables from n squeezes all nonlinearities into the remaining n−m dimen-

sions.

– Nonlinear elimination of variables reduces number of unknowns but may increase nonlinearity

– Actually, it is often easier to solve large optimization problems!

– In optimization, it is nonlinearity, not dimensionality, that makes a problem difficult.

• SJ is far more flexible and easy to implement.

– Derivatives of both DP solution and likelihood are easier to compute

– NFXP has a hard time doing analytic derivatives of DP step; uses finite differences

– This approach encourages one to experiment with many solvers to find the best one
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Comparison with Rust Implementation

• Ease of use

– Rust used Gauss “because: 1. the GAUSS langauge is a high-level symbolic language which

enables a nearly 1:1 translation of mathematical formulae into computer code. Matrix operations

of GAUSS replace cumbersome do-loops of FORTRAN. 2. GAUSS has built-in linear algebra

routines, no links to Lapack needed”

– SJ: AMPL is also easy to use. All solvers have access to linear algebra routines. AMPL does not

have matrix notation, but its approach to matrices, tensors, and indexed sets is very flexible.

• Optimization Method

– Rust: Outer iteration uses BHHH for a while then switches to BFGS, where the user chooses the

switch point.

– SJ: Use solvers far superior to these methods.

• Derivatives

– Rust: “The NFXP software computes the value of and its derivatives numerically in a subroutine.

This implies that we can numerically compute and its derivatives for each trial value encountered

in the course of the process of maximizing. In order to do this, we need a very efficient and

accurate algorithm for computing the fixed point.”

– SJ: Use true analytic derivatives. This is done automatically by AMPL, and is done efficiently

using ideas from automatic differentiation.
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• Dynamic programming method

– Rust: “Inner Fixed Point Algorithm. Contraction mapping fixed point (poly)algorithm. The

algorithm combines contraction iterations with Newton-Kantorovich iterations to efficiently com-

pute the functional fixed point.” In Rust, contraction iterations are linearly convergent; quadratic

convergence is achieved only at final stage.

– SJ: We use Newton-style methods that are globally faster than contraction mapping ideas. This

is particularly important if β is close to 1, representing short, but realistic, time periods.
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We revisit the comparison of mathematical programming with equilibrium con-
straints (MPEC) and nested fixed point (NFXP) algorithms for estimating structural
dynamic models by Su and Judd (2012). Their implementation of the nested fixed
point algorithm used successive approximations to solve the inner fixed point prob-
lem (NFXP-SA). We redo their comparison using the more efficient version of NFXP
proposed by Rust (1987), which combines successive approximations and Newton–
Kantorovich iterations to solve the fixed point problem (NFXP-NK). We show that
MPEC and NFXP are similar in speed and numerical performance when the more
efficient NFXP-NK variant is used.

KEYWORDS: Structural estimation, dynamic discrete choice, NFXP, MPEC, succes-
sive approximations, Newton–Kantorovich algorithm.

1. INTRODUCTION

IN “CONSTRAINED OPTIMIZATION APPROACHES TO ESTIMATION OF STRUC-
TURAL MODELS,” Su and Judd (2012; hereafter SJ) proposed a constrained op-
timization approach for maximum likelihood estimation of infinite horizon dy-
namic discrete choice models—mathematical programming with equilibrium
constraints (MPEC). They argued that MPEC is superior to the nested fixed
point (NFXP) algorithm proposed by Rust (1987). NFXP uses the fact that
the likelihood depends on the parameters via the value function to a dynamic
programming (DP) problem. Under weak conditions, the value function is the
unique fixed point to a contraction mapping defined by the Bellman equation to
the DP problem and is a smooth implicit function of the underlying structural
parameters of the problem. NFXP uses this to maximize the likelihood us-
ing standard unconstrained quasi-Newton optimization algorithms, except that
each time the likelihood is evaluated, NFXP calls a fixed point subroutine to
compute the value function corresponding to the current parameter values.

In contrast, the MPEC method does not need a specialized inner loop algo-
rithm to compute the fixed point. Instead, it recasts the problem of maximizing
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NFXP Approach to Games

• Follow same procedure:

– Choose parameter vector each θ

– Find all the σ that solves G (σ, θ)

– Compute the likelihood of the data for each equilibrium σ, and

– Report the max.

– Try more θ.

• Finding all equilibria is an intractable problem!



NFXP Applied to Games with Multiple Equilibria

Che-Lin Su Structural Estimation
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The SJ Approach to games

• NFXP cannot be used to estimate data from games except for very special cases.

• Suppose that the game has parameters θ representing payoffs, probabilities, and whatever else is not

observed directly by the econometrician.

• Let σ denote the equilibrium strategy given θ, and that σ is an equilibrium if and only if

0 = G (σ, θ)

for some function G.

• Suppose that likelihood of a data set, x, is L (θ, σ,X). Therefore, maximum likelihood is the problem

max
σ,θ

L (θ, σ,X)

s.t. 0 = G (σ, θ)

• SJ just sends the problem to good optimization solvers. Multiple equilibria may produce multiple

local solutions, but that is a standard problem in maximum likelihood estimation, and would also be

a problem for the NFXP approach.



The MPEC approach: The 
likelihood hill depends 
on theta and sigma. The 
manifolds in theta-sigma 
space represent  
constraints imposed by  
equilibrium. The problem  
is an ordinary max lik  
problem with constraints.

Figure 3
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Conclusion

• Structural estimation methods are far easier to construct if one includes the structural equations.

• The numerical algorithm advances of the past forty years (SQP, augmented Lagrangian, interior point,

AD, MPCC) makes this tractable

• User-friendly interfaces (e.g., AMPL) makes this as easy to do as Stata, Gauss, and Matlab

• This approach makes structural estimation really accessible to a larger set of researchers.
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