
Practical Advice on Estimation

March 18, 2020

1

Estimation

• Estimates are often the solutions to optimization problems

– Least squares

– Maximum likelihood

– Methods of moments

– MPEC (Su-Judd and other papers by Che-Lin Su)

• These are not easy optimization problems

– How can I find a good initial guess?

– What solver to use?

– What stopping rules to use?

2

Multidimensional Unconstrained Optimization: Comparison Methods
• Grid Search

– Pick a finite set of points, X ; for example, a Cartesian grid:

V ={vi|i = 1, ..., n}
X={x ∈ Rn|∀i, xi ∈ V }

– Compute f (x), x ∈ X , and locate max

– Grid search is often the first method to use.

∗ Only involves function evaluations
∗ It is embarassingly parallelizable
∗ It should get you a good initial guess

– A good initial guess is not critical for grid search, but is for all good algorithms

– Grid search is sloooooooow, so you should always switch to something better

9

• Random sampling

– If sample is large enough then you will surely find a good initial guess

– Of couse, if sample is large enough then you will have solved the problem by exhaustion

– Remember Law of Large Numbers: error falls according to the negative square root of sample
size.

– Remember Central Limit Theorem: some regions will be poorly sampled

• Quasi-Random sampling

– Designed to give you a uniform sample

– Remember qMC theory: error is inversely proportional to sample size

• Parallelize, Parallelize, Parallelize

10

Direct Search Algorithms
A compass search example

Cassioli (LIX) 11

• Polytope Methods (a.k.a. Nelder-Mead, simplex, “amoeba”)

Algorithm 4.3 Polytope Algorithm
Initialize. Choose the stopping rule parameter ". Choose an initial

simplex {x1, x2, · · · , xn+1}.
Step 1. Reorder vertices so f(xi) ≥ f(xi+1), i = 1, · · · , n.
Step 2. Look for least i s.t. f(xi) > f(yi) where yi is reflection of xi.

If such an i exists, set xi = yi, and go to step 1.
Otherwise, go to step 3.

Step 3. Stopping rule: If the width of the current simplex
is less than ", STOP. Otherwise, go to step 4.

Step 4. Shrink simplex: For i = 1, 2, · · · , n
set xi = 1

2(x
i + xn+1), and go to step 1.

7

Solving ill-conditioned problems via
Proximal Point method

Suppose you have an objective which has a singular Hessian at the minimum (or maximum).
Economic examples: Flat top of likelihood hill, flat bottom to a moments criterion minimum

Newton’s method may not properly converge for such problems
Round-off errors could cause convergence far from true solution
Any convergence will be slow.

Simple example

In[647]:= a = 5; wgt =.; xold =.; yold =.

Suppose your objective is

In[648]:= obj = (x + y - a)4

Out[648]= (-5 + x + y)4

There are multiple minima: any (x,y) such that x+y=5.
You can identify x+y but not (x,y)

In[649]:= FindMinimum[obj, {x, 2}, {y, 2}]

Out[649]= 1. × 10-16, {x → 2.49995, y → 2.49995}

This problem is so trivial and FindMinimum good enough that we get a solution. We stay with simple
case to show basic idea.
So, suppose things did not go well.

2 Proximal Point.nb

Proximal Point method
Construct a penalty function

(xold, yold) is most recent guess
the penalty function is a quadratic penalty for choosing (x,y) different from (xold, yold)

In[650]:= pen = (x - xold)2 + (y - yold)2

Out[650]= (x - xold)2 + (y - yold)2

Create a new objective function

In[651]:= objProx = obj + wgt pen

Out[651]= (-5 + x + y)4 + wgt (x - xold)2 + (y - yold)2

objProx wants to minimize obj but imposes a cost for straying from (xold, yold)
We need to set the weight, and initial values for (xold, yold)

In[655]:= wgt = 0.1;
xold = yold = 10;

In[657]:= objProx

Out[657]= 0.1 (-10 + x)2 + (-10 + y)2 + (-5 + x + y)4

Proximal Point.nb 3

Solve

In[658]:= FindMinimum[objProx, {x, 2}, {y, 2}][[2]]

Out[658]= {x → 2.85478, y → 2.85478}

We get a solution. Let’s reset (xold, yold) and try again.

In[659]:= {xold, yold} = {x, y} /. %

Out[659]= {2.85478, 2.85478}

In[660]:= FindMinimum[objProx, {x, 2}, {y, 2}][[2]]

Out[660]= {x → 2.61451, y → 2.61451}

Repeat

In[661]:= {xold, yold} = {x, y} /. %

Out[661]= {2.61451, 2.61451}

In[662]:= FindMinimum[objProx, {x, 2}, {y, 2}][[2]]

Out[662]= {x → 2.56681, y → 2.56681}

In[663]:= {xold, yold} = {x, y} /. %

Out[663]= {2.56681, 2.56681}

In[664]:= FindMinimum[objProx, {x, 2}, {y, 2}][[2]]

Out[664]= {x → 2.54853, y → 2.54853}

In[665]:= {xold, yold} = {x, y} /. %

Out[665]= {2.54853, 2.54853}

4 Proximal Point.nb

We now seemed to have become stuck. Remember that the weight is 0.1.
Let’s reduce the weight on the penalty

In[666]:= wgt = 0.001;

In[667]:= FindMinimum[objProx, {x, 2}, {y, 2}][[2]]

Out[667]= {x → 2.51304, y → 2.51304}

Progress! Let’s repeat this a few times

In[668]:= {xold, yold} = {x, y} /. %

Out[668]= {2.51304, 2.51304}

In[669]:= FindMinimum[objProx, {x, 2}, {y, 2}][[2]]

Out[669]= {x → 2.50716, y → 2.50716}

In[670]:= {xold, yold} = {x, y} /. %

Out[670]= {2.50716, 2.50716}

In[671]:= FindMinimum[objProx, {x, 2}, {y, 2}][[2]]

Out[671]= {x → 2.50507, y → 2.50507}

In[672]:= {xold, yold} = {x, y} /. %

Out[672]= {2.50507, 2.50507}

Proximal Point.nb 5

We could reduce the penalty weight further and get closer to some (x, y) such that x+y=5, but let’s stop
here.

What was the benefit of doing this?
Each step in the optimization problem was well-conditioned
Each step will converge quadratically to the solution of the penalized objective
You get arbitrarily close to some solution
You still cannot identify (x, y) but you can find a point that solves the problem

Identification
Economists are obsessed with identification
Why? No good reason.
My opinion: write down the model you think is valid and then let the computer tell you if you have

identification.

6 Proximal Point.nb

MPEC estimation of demand curve

• Assume a conventional demand problem

– utility function u(c; β) with parameters β

– price p is observed

– demand c is observed with error q = c+ ε.

– the marginal utility of true consumption equals the price

uc (qi − εi; β) = pi

• Therefore, the least squares estimation problem is

min
ci,εi,β

∑
i=1

ε2i

s.t. uc (ci; β) = pi

ci = qi − εi

3

Challenges

• Need good initial guess for all variables

– zero errors is natural, εi = 0 with parameters β

– initial guess for β is same here as with all other methods

– choose β, and for each pi compute ci = qi from first-order condition; a large number of simple
nonlinear equations even if you don’t have a closed-form solution for demand

– Conclusion: Initial guess for MPEC is no worse than for other approaches

4

• Solving constrained optimization problem may run into problems

min
ci,εi,β

∑
i=1

ε2i

s.t. uc (ci; β) = pi

ci = qi − εi

• Relax. Give the equality constraints some breathing room

min
λi,ci,εi,β

∑
i=1

ε2i + P
∑
i=1

λi

s.t. −λi ≤ pi − uc (ci; β) ≤ λi

ci = qi − εi

λi ≥ 0

where P is a penalty parameter and the λi variables are relaxation variables

5

• Advantages of relaxation

– The relaxed problem always has feasible initial guesses

– The true solution of the relaxed problem with high penalty is the same as the real problem

– If things don’t work, it probably is because you messed up on coding the constraints.

6

