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Structural Estimation

• Great interest in estimating models based on economic

structure

◦ Dynamic programming models

◦ Games – static, dynamic

◦ Auctions

◦ Dynamic stochastic general equilibrium

• Major computational challenge because estimation

involves also solving model

• We show that many computational difficulties can be

avoided by using optimization tools
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Structural Estimation

• Specify model with structural parameters, θ

• Find θ such that equilibrium implications of θ match data

• Objectives: Maximum likelihood, matching moments, ...

• Difficulties

1. Computing an equilibrium implied by θ may be costly

2. Find all equilibria consistent with θ is usually

intractable!

• Current Practice in econometrics

1. Use less efficient“two-step”methods

2. Use“speculative”methods - Nested Pseudo Likelihood

(NPL)
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Basic Problem – DP Example

• Individual (agent) solves a dynamic programming problem

• Econometrician observes state (partially) and decisions

• Likelihood function for data X

L (θ, D;X)

where θ is set of parameters and D is decision rule

• Rationality imposes a relationship between θ and D

0 = G (θ, D)

• We want to find maximum likelihood θ but impose

rationality condition
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Hazold Zurcher Model – Data
Bus #: 5297

events year month odometer at replacement

1st engine replacement 1979 June 242400

2nd engine replacement 1984 August 384900

year month odometer reading

1974 Dec 112031

1975 Jan 115223

1975 Feb 118322

1975 Mar 120630

1975 Apr 123918

1975 May 127329

1975 Jun 130100

1975 Jul 133184

1975 Aug 136480

1975 Sep 139429
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Hazold Zurcher Model

• Time series data: (x1, x2, . . . , dT ) and (d1, d2, . . . , dT )

◦ Observed state is xt: mileage since last overhaul

◦ dt: decision at t, dt = 0 (no repair) or 1 (repair)

• θ - parameters on repair costs, transition probabilities

• V (x, ε; θ) = max
d∈{0,1}

[u(x, d, θ) + ε(d) + βEV (x, d; θ)]

• V (x; θ) - value to repairman of a bus with x, before he

knows current shock to costs

• Bellman equation

◦ V (x; θ) = F(x, V (θ)), where V (θ) = [V (x; θ)]x

◦ V (x; θ) implies a decision rule, D(x), which implies a

transition process, Πθ, for states and decisions
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NFXP: Rust (1987)

• Define L(θ, V (θ);X)

θ −→ V (θ) −→ Πθ −→ L(θ, V (θ);X) = likelihood

• Write a program to compute V (θ)

• Write a program to solve max
θ

L(θ, V (θ);X)

• Nesting:

◦ Inner loop to computes V (θ)

◦ Outer loop to solve L(θ, V (θ);X)

– p.7/20



Difficulties with NFXP

• Outer loop needs
∂L
∂θ

◦ Analytic derivatives are hard to do by hand

◦ Numerical derivatives need high accuracy on L(θ) and

V (θ solutions

• Outer loop would like
∂2L
∂2θ

: No Way!!

• Slow since one must solve V (θ) for each θ examined in

outer loop
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Is Structural Estimation Difficult ?

• Current View: Erdem et a. (2004):

Estimating structural models can be

computationally difficult. For example, dynamic

discrete choice models are commonly estimated

using the nested fixed point algorithm (see Rust

1994). This requires solving a dynamic

programming problem (DP) thousands of times

during estimation and numerically maximizing a

nonlinear likelihood function. ...

• Our view: Gauss-Jacobi or Gauss-Seidel methods are often

used in economics even though they are at best linearly

convergent. Apply the rabid dog principle!.
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Our Approach: Constrained Optimization
• Use MPEC modeling ideas

• Eliminate“nested”structure

• Eliminate fixed point

• Formulate problem as a constrained nonlinear optimization

problem

max
(θ,V )

L(θ, V ;X)

s.t. V − F(V , θ) = 0
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Nonlinear Optimization Analogues

• Consider problem

max
θ,y

f (θ, y)

s.t. y = g (y, θ)

• NFXP is essentially a nonlinear substitution of variables

method

◦ Define Y (θ) by Y (θ) = g (Y (θ), θ)

◦ Substitute out the y variables in objective to get

max
θ

f (θ, Y (θ))
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Nonlinear Optimization Analogues

• Nested Pseudo-Likelihood (NPL) – Aguirregabiria and

Mira, Econometrica (2002):

◦ Essentially a Gauss-Seidel method

θi+1 = arg max
θ

f
(
θ, yi

)

yi+1 = g
(
yi, θi+1

)

◦ Convergence related to the eigenvalues of gy; no

reason to believe that all the eigenvalues are stable

• These methods are regarded as inefficient in the nonlinear

programming literature
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J-S Advantages

• J-S evaluates Bellman errors

V − F(V , θ) perθ,

whereas NFXP solves Bellman equations

Vθ − F(Vθ, θ) = 0

for each θ

• User only needs to write down Bellman equation for

optimizer - NO NEED TO WRITE SOLVER

Therefore, J-S is faster and easier to use
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Comparison with Rust Implementation
• Ease of use

◦ Rust: Gauss

– a high-level symbolic language

– built-in linear algebra routines

◦ J-S: AMPL

– all solvers have access to linear algebra routines

– flexible approach to matrices, tensors, and indexed

sets

• Vectorization

◦ Rust: Efficient use of GAUSS requires the user to

“vectorize”a program

◦ J-S: All vectorization is done automatically in AMPL
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Comparison with Rust Implementation

• Optimization Method

◦ Rust: BHHH/BFGS

◦ J-S: Use solvers far superior to these methods

• Derivatives

◦ Rust: compute the value of and its derivatives

numerically in a subroutine

◦ J-S: Use true analytic derivatives; done automatically

and efficiently by AMPL using automatic

differentiation.
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Comparison with Rust Implementation

• Dynamic programming method

◦ Rust: Contraction mapping fixed point

(poly)algorithm.

– combine contraction with Newton-Kantorovich

iterations

– contraction iterations are linearly convergent

– quadratic convergence is achieved only at final

stage.

◦ J-S: Newton-style methods

– globally faster than contraction mapping

– particularly important if β is close to 1
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J-S AMPL Implementation

• Express problem in straightforward language

• Access almost any solver:

IPOPT, KNITRO, SNOPT, Filter, MINOS, PENNON

• Gradients and Hessians are computed analytically and

automatically and efficiently
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Time

• 1000 data points

• 120 states

• estimate quadratic cost, replacement cost and transition

probabilities

five parameter case

Solver CPU time

KNITRO 0.5 sec

SNOPT 1.5 sec

IPOPT 2 sec
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Sensitivity to Number of States

• 1000 data points

• estimate quad cost, replacement cost and transition

probabilities

KNITRO

num. of states CPU time (in sec.) Maj. Iter.

120 0.23 18

240 0.42 21

360 0.55 19

480 0.98 21

– p.19/20



Strategy for Games

max
θ,V i

L(V 1, V 2, . . . , θ;X)

s.t. V 1, V 2, . . . , satisfy equilibrium equations given θ

• NFXP

◦ Guess θ and compute all Nash equilibrium

◦ Multiple equilibria produces intractable problem

• J-S

◦ Multiple equilibria reduces to problem of global

optimization, which maximum likelihood already has!
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