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Abstract. Maximum likelihood estimation of structural models is regarded as

computationally difficult. This impression is due to a focus on the Nested Fixed-Point

approach. We present a direct optimization approach to the problem and show that it

is significantly faster than the NFXP approach when applied to the canonical Zurcher

bus repair model. The NFXP approach is inappropriate for estimating games since it

requires finding all Nash equilibria of a game for each parameter vector considered, a

generally intractable computational problem. We reformulate the problem of maximum

likelihood estimation of games so into an optimization problem that is qualitatively

no more difficult to solve than standard problems. The direct optimization approach

is also applicable to other structural estimation problems such as auctions and RBC

models, and also to other estimation strategies, such as the methods of moments. It is

also easily implemented on standard software.

1. Introduction

Structural estimation of economic models is an important technique in analyzing economic

data. However, it is often computationally expensive to implement the most powerful

and efficient statistical methods. For example, maximum likelihood estimation is the gold

standard in estimation Rust (1987) provided a strategy for doing maximum likelihood esti-

mation of economic models, an approach he dubbed Nested Fixed-Point (NFXP) algorithm.

Unfortunately, NFXP is often thought to be computationally infeasible.

While it is clear that NFXP is impractical in many contexts, particularly in the estima-

tion of games, this does not mean that maximum likelihood estimation is intractable. The

troublesome feature of NFXP is that it computes a full description of equilibrium at each

parameter vector considered while finding the maximum likelihood estimate. We present a

direct optimization approach to structural estimation that avoids the necessity of repeatedly

solving an economic model; in fact, we only compute the equilibrium associated with the
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final estimate. The idea behind the JS1 approach is simple: choose structural parameters

and endogenous economic variables so as to maximize likelihood subject to the constraint

that the endogenous economic variables are consistent with the equilibrium defined by the

structural parameters. That’s it. Nothing more. When formulated in this way, it is clear

that all we need to do is to write down the expressions defining the likelihood and the

equilibrium constraints, and submit them to one or more of the state-of-the-art constrained

optimization programs. With this approach, an economist avoids all the algorithmic details

(e.g., BHHH, BFGS, value function iteration, Newton-Kantorovich, policy iteration, etc.)

that makes the NFXP and related methods costly to implement.

Of course, NFXP and other procedures are also solving the same constrained optimiza-

tion problem. However, NFXP insists on proceeding in a “nested” manner. While nesting

may sound intuitive to some, it is also clear that nesting is not the usual way we think

about constrained optimization problems. Instead, we usually proceed by writing down

the Lagrangian, include shadow prices for the constraints, and analyze the resulting set

of equations. Also, the numerical analysis literature on constrained optimization does not

use nesting except for possibly the very largest problems. The general observation is that

nesting is a waste of time because one spends a lot of effort solving the constraints at points

far from the solution. Optimization methods avoid this waste.

We show that the JS approach is significantly faster than the NFXP approach when ap-

plied to the canonical Zurcher bus repair model. Furthermore, our optimization approach

is immediately applicable to other economic models, such as games. The NFXP approach

is inappropriate for estimating games since it requires finding all Nash equilibria of a game

for each parameter vector considered. The game theory and numerical analysis literatures

clearly show that this is an intractable computational problem for all but a few special

games. We reformulate the problem of maximum likelihood estimation of games into an

optimization problem that is qualitatively no more difficult to solve than standard max-

imum likelihood problems. Not only will this approach produce the maximum likelihood

estimate, but it avoids the difficulties of other methods, such as nested pseudo-maximum

likelihood, which implicitly (but without the user’s knowledge) makes strong and generally

unacceptable equilibrium selection criterion.

The direct optimization approach is also applicable to other structural estimation prob-

lems with continuous state spaces, such as auctions and RBC models, and also to other

estimation strategies, such as the methods of moments, that can be expressed as solutions

1We will tentatively call this method the JS method. This approach fits into some mathematical category,

such as bilevel optimization, MPEC, EPEC, or MPCC, but we do not know exactly which one is the best

description.
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to optimization problems. In particular, the JS approach is also easily implemented on

standard software.

2. Current Views

There is much pessimism regarding full maximum likelihood estimation of structural models.

For example, Erdem et a. (2004) asserts the following in a section titled “Reducing the

Computational Burden of Structural Estimation”:

Estimating structural models can be computationally difficult. For example,

dynamic discrete choice models are commonly estimated using the nested fixed

point algorithm (see Rust 1994). This requires solving a dynamic programming

problem thousands of times during estimation and numerically minimizing a

nonlinear likelihood function.....[S]ome recent research ... proposes computa-

tionally simple estimators for structural models including auctions, demand in

differentiated product markets, dynamic discrete choice and dynamic games.

The estimators ... use a two-step approach. In the first step, one flexibly esti-

mates a reduced form for agents’ behavior consistent with the underlying struc-

tural model. In the second step, the one recovers the structural parameters, by

plugging the first-step estimates into the model.....The two-step estimators can

have drawbacks. First, there can be a loss of efficiency. The parameters esti-

mated in the second step will depend on a nonparametric first step. If this first

step is imprecise, the second step will be poorly estimated. Second, stronger

assumptions about unobserved state variables may be required. In a dynamic

discrete choice model, accounting for unobserved heterogeneity by using random

effects or even a serially correlated, unobserved state variable may be possible

using a nested fixed point approach. However, two-step approaches are compu-

tationally light, often require minimal parametric assumptions and are likely to

make structural models accessible to a larger set of researchers.

The Rust bus repair problem is an example of dynamic discrete choice. Other estimation

problems must solve problems over a continuous state space. One such example is auctions.

The pessimism about maximum likelihood estimation also appears in the empirical auc-

tions literature. For example Li (2005) considers a basic independent private values model.

Suppose n bidders have independent private values drawn from the distribution F . The

equilibrium strategy, s (v) is defined by the first-order differential equation

s0 (v) = (v − s (v)) (n− 1) f (v) /F (v)
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for values v above the reservation price, p0, and below the maximum possible value, v̄. We

also know that a bidder whose value equals the reservation price will bid his value, implying

the initial condition s
¡
p0
¢
= p0. The solution is

s (v) = v − 1

F (v)n−1

Z v

p0
F (x)n−1 dx, if v ≥ p0 (bid)

Data from auctions include all or some of the bids. If we parameterize the distribution F ,

we could find the parameters maximizing the likelihood of the data by solving for s given

F . Li states “This is, however, complicated by the high nonlinearity of s (v) in the latent

distribution F ; whenever the estimation procedure involves computing s (v) within each

iteration of an optimization procedure. This is indeed the case for MLE for which s (v)

needs to be inverted for each b and y at each iteration. In addition, computation of the

jacobian of the bid transformation that is required in the implementation of the MLE makes

it more difficult computationally.” This pessimism has lead to many alternative procedures,

such as Laffont et al. (1995) , Guerre et al. (2000) , Li andVuong (1997) , and Li (2005).

These alternatives often involve simulation, a costly and often imprecise process, and are

less efficient.

We will argue that this pessimism is mistaken, and that application of nonlinear pro-

gramming ideas and methods provide an alternative.

Structural estimation in macroeconomics also follows the NFXP approach. For example,

Fernandez-Villaverde and Ramirez (2006) use the same nested approach to maximum like-

lihood estimation of an RBC model. They guess the parameters, solve for the equilibrium,

and use that solution in a particle filter simulation to evaluate likelihood.

3. JS Approach

We first formulate the method in generality. Suppose that an economic model has para-

meters θ. Suppose that equilibrium and optimality imply that the observable economic

variables, x, follow a stochastic process parameterized by a finite vector φ. The value of φ

will depend on θ through a set of equilibrium conditions

0 = G (φ, θ)

Denote the likelihood of a data set, xj, by L (x, φ, θ). Therefore, maximum likelihood is the

constrained optimization problem

max
φ,θ

L (x, φ, θ)

s.t. 0 = G (φ, θ)
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This is a very general formulation. We do not require that equilibrium be defined as a

solution to a fixed-point equation. We do not need to specify an algorithm for computing φ

given θ; it is doubtful that we could do better than a good solver would do. Gauss-Jacobi

or Gauss-Seidel methods are often used in economics even though they are at best linearly

convergent, whereas good solvers are at least superlinearly convergent locally (if not much

better) and have better global properties than GJ and GS typically do. Using a direct

optimization approach allows one to take advantage of the best available methods from the

numerical analysis literature.

This procedure is also similar to the standard methods for solving inverse problems and

parameter identification in engineering and science. There is no apparent reason why it

should not also do well on economics problems.

4. JS applied to Zurcher

We next apply the JS method to the bus repair model analyzed in Rust (1994). We use the

Rust model since it is often used to exposit the ideas of maximum likelihood estimation of

dynamic models and to evaluate alternative methods.

The bus repair problem considers the decisions faced by a repairman who must decide

whether to perform extensive repairs on a bus when it comes into the bus barn and return

it to excellent shape, or to implement less costly activities. The state variable is, xt,

the accumulated mileage at time t since the last engine replacement. Let c (x, θ1) be the

expected per period operating costs, where θ1 is a vector of parameters of the cost function.

Some of these costs are not observed by the econometrician; hence, θ1 is to be estimated

from the observations of when the bus is repaired. Rust assumes that the mileage travelled

by a bus during one month is exponentially distributed with parameter θ2. In each period,

Zurcher decides between (i) “normal maintenance” incurring costs c(xt, θ), and (ii) replace

the bus engine, earning the scrap value P scrap, pay Pnew for a new engine, and spend

c(0, θ1) on operating costs. The data is the time series (xt, dt)Tt=1, where xt is state of the

bus examined in period t and dt is the choice made for that bus. The objective is to find

the parameter values that maximize the likelihood of that data..

Zurcher chooses a replacement policy to minimize the expected discounted maintainence

costs. dt is the replacement decision at time t, d,= 0 (keep), d,= 1 (replace). Given the

observed time series data (xt, dt)Tt=1, where xt is state and dt is the decision (or choice)

associated with xt, we want to infer the unknown parameter vector θ by maximizing the

likelihood function L(θ)

L(θ) =
TY
t=2

P (dt|xt, θ)p(xt|xt−1, dt−1, θ), (1)
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where the conditional choice probability, P (d|x.θ) is given by the multinomial formula

P (d|x, θ) = exp{u(x, d, θ) + βEVθ(x, d)}P
d0∈D(x) exp{u(x, d0, θ) + βEVθ(x0, d)} , (2)

and the expected value functionEVθ is the fixed point to the contracting mapping Tθ(EVθ) =

EVθ defined by

EVθ(x, d) =

Z ∞

x0=0
log

⎡⎣ X
d0∈D(x0)

exp{u(x0, d0, θ) + βEVθ(x
0, d0)}

⎤⎦ p(dx0|x, d, θ). (3)

We will estimate the unknown parameter vector θ = (θ1, RC, θ3) by solving the constrained

optimization problem

maxθ,EVθ L(θ) =
QT

t=2 P (dt|xt, θ)p(xt|xt−1, dt−1, θ)

s. t. EVθ(x, d) = Tθ(EVθ(x, d))

θ30 + θ31 + θ32 = 1

(4)

4.1. A Numerical Example. We consider an example of Rust’s bus engine replace-

ment model. We choose the state space X = {1, . . . , 120} and assume the cost function
c(x, θ) is quadratic, i.e., c(x, θ1) = θ11x + θ12x

2. We do not estimate the discount factor

β and let β = 0.95. The unknown parameters to be estimated are θ1, RC (scrap value)

and θ3 (the Markov transition probabilities). We simulate a time series data for 1000

time period (T = 1000) by using the following parameter values: β = 0.95, RC = 1.217,

θ1 = (0.06, 0.0005), and θ3 = (0.35, 0.60, 0.05). We submitted the problem, coded in AMPL,

to the NEOS server. The outputs are given below. The AMPL codes are given in the Ap-

pendix.

KNITRO CPU time (in sec.) Maj. Iter.

num. of states without substitution substitution without substitution substitution

120 0.22 0.23 16 18

240 0.66 0.42 25 21

360 2.14 0.55 29 19

480 9.00 0.98 16 21

A few important points need to be emphasize. First, the problem is solved very quickly.

Second, the timing is linear in the number of states if we use a compact way of representing

the problem. Third, the likelihood function, the constraints, and their derivatives are

evaluated only 16-29 times in this example. In contrast, the Bellman operator in NFXP

(the constraints here) is evaluated hundreds of times in NFXP.
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4.2. Comparison with Rust Implementation. A computational approach has no

value unless it can be implemented using reliable software. Rust describes in detail the

software advantages of his NFXP implementation in Gauss. We next run through these

points and compare his Gauss implementation with our AMPL implementation.

Ease of use. Rust used Gauss “because: 1. the GAUSS langauge is a high-level

symbolic language which enables a nearly 1:1 translation of mathematical formulae into

computer code. Matrix operations of GAUSS replace cumbersome do-loops of FORTRAN.

2. GAUSS has built-in linear algebra routines, no links to Lapack needed”

JS: AMPL is also easy to use. All solvers have access to linear algebra routines. AMPL

does not have matrix notation, but its approach to matrices, tensors, and indexed sets is

very flexible.

Vectorization. Rust: “Efficient use of GAUSS requires the user to "vectorize" a

program in a manner very similar to efficient vectorization on large-scale vector supercom-

puters.”

JS: All vectorization is done automatically in AMPL. High performance versions of

AMPL are being developed where one uses the same code for desktops and supercomputers.

Optimization Method. Rust: Outer iteration uses BHHH for a while then switches

to BFGS, where the user chooses the switch point.

JS: Use solvers far superior to these methods.

Derivatives. Rust: “The NFXP software computes the value of and its derivatives

numerically in a subroutine. This implies that we can numerically compute and its deriva-

tives for each trial value encountered in the course of the process of maximizing. In order

to do this, we need a very efficient and accurate algorithm for computing the fixed point.”

JS: Use true analytic derivatives. This is done automatically by AMPL, and is done

efficiently using ideas from automatic differentiation.

Dynamic programming method. Rust: “Inner Fixed Point Algorithm. Contrac-

tion mapping fixed point (poly)algorithm. The algorithm combines contraction iterations

with Newton-Kantorovich iterations to efficiently compute the functional fixed point.” In

Rust, contraction iterations are linearly convergent; quadratic convergence is achieved only

at final stage.

JS: We use Newton-style methods that are globally faster than contraction mapping

ideas. This is particularly important if β is close to 1, representing short, but realistic, time

periods.
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5. The JS Approach to games

NFXP cannot be used to estimate data from games except for very special cases. Suppose

that the game has parameters θ representing payoffs, probabilities, and whatever else is not

observed directly by the econometrician. Let σ denote the equilibrium strategy given θ,

and that σ is an equilibrium if and only if

0 = G (σ, θ)

for some function G.2. Suppose that likelihood of a data set, x, is L (x, φ, θ). Therefore,

maximum likelihood is the problem

max
σ,θ

L (x, σ, θ)

s.t. 0 = G (σ, θ)

For each θ, NFXP would require one to find all the σ that solves G (σ, θ), compute the

likelihood at each equilibrium σ, and report the max. Finding all equilibria is an intractable

problem unless one has special structure. Also, the resulting likelihood function will often

be discontinuous, if there are multiple equilibria, and possibly nondifferentiable even at

points of continuity. Both of these problems will create difficulties for the outer loop in

NFXP.

In contrast, JS just sends the problem to good optimization solvers. Multiplicity of

equilibria will not create discontinuities or lack of differentiability. Multiple equilibria may

produce multiple local solutions, but that is a standard problem in maximum likelinood

estimation, and would also be a problem for the NFXP approach.

We are not saying that solving this problem is easy. Of course, it will be more difficult

and costly as the size and complexity of the game increases. However, the NFXP approach

is impossible to implement for all but the simplest games.

5.1. Comparison with Nested Pseudo-Maximum Likelihood. Aguirregabiria (Vic-

tor Aguirregabiria, Economics Letters 84 (2004) 335—340, Pseudo maximum likelihood esti-

mation of structural models involving fixed-point problems) has proposed a nested method

for estimating models where the equilibrium is defined by solutions to a fixed-point problem.

More precisely, suppose that y ∈ Y is a vector of discrete random variables over a finite

set Y , and suppose that the true distribution of y is P 0. Agguirregabaria assumes P 0 is

from a parametric family of probability distributions with parameters y; hence, for some

2In some games, equilibrium is defined by a set of complementarity conditions. We do not want to go

into the details here, but that case can also be handled by using methods from the MPCC literature.
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θ, P 0 ∈ P (θ). The distribution P (θ) is implicitly defined as a solution to the fixed-point

problem

P (θ) = Ψ (P (θ) , θ)

for some mapping Ψ (P, θ). In some cases, such as dynamic programming problems, for any

θ there is a unique such P (θ). However, in many models, such as models of games, there

may be many fixed points. Aguirregabiria iterates between guesses for P and guesses for

θ. Givne a new guess for θ he obtains a new estimate of P 0 by iterating on the fixed-point

mapping Ψ. This detail may cause problems in cases where there are multiple solutions

for P (θ). The key mathematical problem is that Ψ may not be a contraction map in the

neighborhood of the true θ and true P (θ). In fact, in problems with multiple solutions, it is

highly unlikely that Ψ is contractive near all equilibria. Therefore, the nested PML method

is not consistent because if the data came from a P (θ) that was not stable under Ψ, there

is no chance of converging to the true θ. Also, even when nested PML converges, it will do

so at a linear rate at best because it is essentially a Gauss-Seidel scheme.

6. Other applications

We next outline how the JS method could be applied to other estimation problems. While

we have not executed these examples yet, the description of how we would proceed might

help make clear the key ideas in the JS method.

6.1. Auctions. The JS approach can also be applied to the auction problem. Again,

consider the auction problem where n bidders have independent private values drawn from

the distribution F , and the equilibrium bidding strategy, s (v) is defined by the first-order

differential equation

s0 (v) = (v − b) (n− 1) f (v) /F (v)
for values v above the reservation price, p0, and below the maximum possible value, vbar.

While this problem has an easily computed solution, in general one would have to use a

numerical method to solve for strategies. The obvious way to proceed is to parameterize

the bidding strategy by

Ŝ (v, α) =
nX
i=1

αiψi (v)

for a suitable set of n basis functions ψi, and have the maximum likelihood procedure choose

the coefficients α as well as any structural parameters describing F . The constraint is α is

chosen so that Ŝ (v, α) nearly solves the equilibrium differential equation; this is done by

judiciously picking m ≤ n nodes and imposing an exact fit for the differential equation on
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those nodes. Hence, in the JS method, one would choose a parameterized family for the

distribution F , and a flexible approximation scheme for s (v), and choose the parameters

for F and s such that the likelihood is maximized and that F and s are consistent with

(bid).

6.2. Macroeconometrics. The JS scheme could also be applied in a direct manner.

Given the parameterized specification for the law of motion of economic observables, one

can compute the likelihood in the same manner as done elsewhere. This applies even to sim-

ulation methods such as particle filter. The difference between JS and Fernandez-Villaverde

and Ramirez is that they recompute that law of motion many times to evaluate the likeli-

hood and its derivatives, whereas we would use the same specification of the likelihood but

just add the equations that define equilibrium. Those equations could be the ones from

projection methods or perturbation methods. In fact, almost any algorithm for solving

RBC models could be implicitly used in the constraint equations. The key requirement is

that the parameterized equilibrium solution must be expressed as a finite set of equations.

Simulation methods, such as parameterized expectations, would not be useful in this con-

text since the equilibrium for a parameter vector is not expressed as a manageable set of

equations.

7. Conclusion

Maximum likelihood estimation, as well as other methods like methods of moments, in-

direct inference, partial identification, and calibration are really constrained optimization

problems. We suggest that the nonlinear programming approach be applied directly to

those problems instead of various two-stage and nested iteration methods that do not take

advantage of the best optimization and nonlinear equation solvers. We demonstrate this in

the Rust Zurcher bus repair problem, and indicate how to proceed in other cases.
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Appendix: AMPL Codes

AMPL Model File # Bus Example: AMPL model file

#

# An NLP to solve maximum likelihood estimate of bus problem

# K. Judd and C.-L. Su,

# February 21, 2006.

#

# Define parameters for state space

param N; # number of states

set X := 1..N; # State Space

# Define data param nT; # number of periods in data

set T := 1..nT; # define vector of time indices

param xt {T}; # state at time t

param dt {T}; # decision at time t

param beta := 0.95; # diiscount factor - fix beta for usual reasons

# Define unknown variables to be computed var EV {X}; # Value Function of

each state

var theta1 {1..2}>= 0; # parameter for cost function c(x, theta1) = theta1[1]*x

+ theta1[2]*x̂ 2

var theta3 {1..3}>= 0; # elements in transition matrix

var RC >= 0; # scrap value

var Cost {X} >= 0; # to economize on expressions, create the Cost variable for

c(x)

# Define objective function

maximize MaxLikelihood_f: prod {t in 2..nT} log(dt[t]*exp(Cost[xt[t]] - beta*(EV[xt[t]])

- RC - Cost[1]

+ beta*EV[1])/(1+exp(Cost[xt[t]] - beta*(EV[xt[t]]) - RC - Cost[1] + beta*EV[1]))

+ (1-dt[t])*1/(1+exp(Cost[xt[t]] - beta*(EV[xt[t]]) - RC - Cost[1] + beta*EV[1])))

+ sum {t in 2..nT} log(dt[t-1]*(theta3[xt[t]-1+1]) + (1-dt[t-1])*(theta3[xt[t]-xt[t-1]+1]

subject to # We now list the constraints

# Bellman equation for states below N-1

FixedPoint_1toNminus2 {i in X: i <= N-2}: EV[i] = sum {j in 0..2} log(exp(-

Cost[i+j] + beta*(EV[i+j]))+ exp(-RC - Cost[1] + beta*EV[1]))* theta3[j+1];

# Bellman equation for state N-1
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FixedPoint_Nminus1: EV[N-1] = log(exp(-Cost[N-1] + beta*(EV[N-1]))+ exp(-RC

- Cost[1] + beta*EV[1]))* theta3[1] + log(exp(-Cost[N] + beta*(EV[N]))+ exp(-RC

- theta1 + beta*EV[1]))* (1-theta3[1]);

# Bellman equation for state N

FixedPoint_N: EV[N] = log(exp(-Cost[N] + beta*(EV[N]))+ exp(-RC - Cost[1] + beta*EV[1]));

# probabilities must add to one

Probability: sum {i in 1..3} theta3[i] = 1;

# define the cost variable

CostEQ {i in X}: Cost[i] = sum {j in 1..2} theta1[j]*î (j);

#################################

problem NestedFixedPoint: # Define a problem

MaxLikelihood_f, # the objective function

EV, RC, theta1, theta3, Cost, # list the variables

FixedPoint_1toNminus2, # list the constraints

FixedPoint_Nminus1, FixedPoint_N,

Probability, CostEQ;

#################################
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AMPL Command File # List true values for our reference

# let RC := 1.2170;

# let theta1 := 0.0851;

# let theta3

# 1 0.35

# 2 0.60

# 3 0.05 ;

# Call solver and give it options

option snopt_options "timing=1 outlev=1";

option snopt_options "iterations_limit=500000 Major_iterations= 50000";

# Initial guesses set at trivial values; probably not good initial guess

let {i in X} EV[i] := 0;

let {i in 1..3} theta3[i] := 1/3;

# Solve command

solve NestedFixedPoint;

# Output commands

option display_round 4;

option display_width 120;

# write the value function

display EV;

# write the structural parameters (remember beta was fixed)

display beta, RC, theta1, theta3;

# write errors in Bellman equations

display {i in X: i <= N-2} FixedPoint_1toNminus2.body[i];

display FixedPoint_Nminus1.body;

display FixedPoint_N.body;
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AMPL Data File # Choose the size of DP to be approximated

param N := 120;

# declare length of data

param nT := 1000;

# declare the value of beta

param beta := 0.95;

param : xt dt :=

1 1 0

· · ·
· · ·

1000 2 0
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AMPLOutput File *************************************************************

NEOS Server Version 5.0

Solver : nco:KNITRO:AMPL

Start : 2006-02-26 11:07:57

End : 2006-02-26 11:08:01

Host : schwinn.mcs.anl.gov (SLOWER THAN OTHERS ON NEOS)

*************************************************************

KNITRO 5.0: Automatic algorithm selection: Interior/Direct

EXIT: LOCALLY OPTIMAL SOLUTION FOUND.

Final Statistics

----------------

Final objective value = -1.40576716598290e+03

Final feasibility error (abs / rel) = 5.87e-06 / 5.44e-08

Final optimality error (abs / rel) = 5.18e-05 / 9.55e-07

# of iterations (major / minor) = 16 / 16

# of function evaluations = 18

# of gradient evaluations = 17

# of Hessian evaluations = 16

Total program time (secs) = 0.22341 (0.220 CPU time) [WAS 0.8 SECONDS FOR 500

STATES!!!!]

beta = 0.9500 RC = 1.1442

: theta1 theta3 :=

1 0.0545 0.3464

2 0.0034 0.6146

3 . 0.0390 ;


