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Motivation

Optimal taxation faces different objectives. The social planner has to
balance

I revenue
I average utility of tax payers
I impact on distribution
I utility of important people

Many other problems face similar tradeoffs between conflicting
objectives. In engineering, e.g., this includes airplane wing design
where we optimize the

I subsonic performance and
I transsonic performance.
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Multi-Objective Optimization

We consider a multi-objective optimization problem of the form

” min
Y

”{f1(Y ), f2(Y ), . . . , fk(Y )}

subject to Y ∈ S
(1)

with k objective functions fi : RN → R and the design vector Y .
S denotes the feasible set with

S ≡ {Y ∈ RN : g(Y ) ≤ 0, h(Y ) = 0}, (2)

with h(·) denoting the equality and g(·) denoting the inequality
constraints.
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Pareto Defintions

Definition (Pareto Optimal Points)

A design-point Y1 dominates the design-point Y2, if

fi (Y1) ≤ fi (Y2),∀i = 1, . . . , k ,

with at least one inequality being strict.

I.e., a design point Y1 is pareto optimal if there exist no feasible point Y2

which improves any objective.

Definition (Pareto frontier)

Set of non-dominated design points.
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Pareto Front
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Recall: Gradient Descent for Single-Objective Optimization

Suppose we minimize the unconstrained single-objective problem

min f (x)

with f : Rn → R1.

1 Calculate the steepest descent direction

d = − ∇f (x)

||∇f (x)||
.

2 Find the optimal steplength λ by applying a (inexact) line-search.

3 Update the point x i+1 = x + λd ; restart from step 1 until the
optimum is reached, i.e., ∇f (x) ≈ 0.
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Multi-objective Optimization

We exemplary consider the unconstrained multi-objective optimization
problem

min
Y
{f1(Y ), f2(Y ), . . . , fk(Y )} (3)

with k objective functions fi : RN → R and the design vector Y .
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Multi-objective Optimization

We exemplary consider the unconstrained multi-objective optimization
problem

min
Y
{f1(Y ), f2(Y ), . . . , fk(Y )} (3)

with k objective functions fi : RN → R and the design vector Y .

(In-)equality constraints can be incorporated into the approach, but we
focus on unconstrained optimization for simplicity.
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Multiple-Gradient Descent Algorithm

1 Calculate the common descent direction ω,

2 Find the optimal steplength λ by applying a (inexact) line-search.

3 Update the point Y i+1 = Y 0 + hω; restart from step 1 until the
optimum is reached.

However, the calculation of the common descent direction ω and the
stopping condition require more careful attention as in the 1D case.

Note: This requires the objectives to be differentiable!
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Common Descent Direction ω

To determine the common descent direction ω, we calculate the
objective functions gradients

ui = ∇x fi (Y ) i = 1, . . . , k (4)

You can calculate the gradients by finite differences, however, by now
we know “better”.

Goal Starting from design point Y i , does there exist a nonzero descent
direction vector ω ∈ RN which improves at least one objective while
not worsening the other objectives.
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Calculate Common Descent Direction

We define ω to be the minimal norm element solution in the convex
hull to

min
α∈Rk

||
n∑

i=1

αiui ||

s.t. αi ≥ 0,
∑

αi = 1,

i.e.,
ω =

∑
i

αiui .
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We are Lucky!

For the 2 objective case, there exists a closed-form solution.

The common descent direction reads

ω = αu1 + (1− α)u2

with

α =

{
u2·(u2−u1)
||u1−u2||2 if u1 · u2 < min (||u||, ||v ||)2

0 ortherwise.
(5)
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Common Descent Direction
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Optimality Condition

Definition (Pareto stationarity)

A design point is called pareto stationary, if the common descent direction
ω = 0.

If Y is Pareto stationary, stop.

Note Remember finite precision arithmetic! We have to loosen the stop
condition ω < tol. Common choice: tol = 1E − 08.
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Application: Life-cycle Savings

We consider a social planner aiming at maximizing the agents’
utility, while maximizing the goverment’s revenue

Formalized, these objectives read

f1(c , l , τ ) =
T∑
t=1

(1− r)tu(ct , lt , τ ) (6)

f2(a, c , l , τ ) =
T∑
t=1

βtR(at , ct , lt , τ ), (7)

with f1 denoting the present value of utility u, and f2 the present
value of revenue R

For simplicity, the literature often only considers one representative
agent.
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One Optimization Step

The solcial planner chooses the agent’s consumption ct , and labour lt
such that her utility is maximized given a
fixed tax schedule τ .

f1(c, l , τ ) =
T∑
t=1

(1− r)tu(ct , lt , τ )

The social planner chooses the tax schedule τ given fixed assets at ,
consumption ct , and labour lt

f2(a, c , l , τ ) =
T∑
t=1

βtR(at , ct , lt , τ ),
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Social Planner Optimization Problem

max
τ

{
f1(ĉt , l̂t , τ ), f2(ât , ĉt , l̂t , τ )

}
s.t. ât , ĉt , l̂t = arg max

at ,ct ,lt
f2(at , ct , lt , τ )

(1 + r)at + wt lt − ct − T(at , lt , ct , τ ) + bt − at+1 = 0

(1 + rd)dt + bt − dt+1 = 0

(8)
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Social Planner Optimization Problem

max
τ

{
f1(ĉt , l̂t , τ ), f2(ât , ĉt , l̂t , τ )

}
s.t. ât , ĉt , l̂t = arg max

at ,ct ,lt
f2(at , ct , lt , τ )

(1 + r)at + wt lt − ct − T(at , lt , ct , τ ) + bt − at+1 = 0

(1 + rd)dt + bt − dt+1 = 0

(8)

The tax vector τ denotes our design vector Y .
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Sensitivity Analysis

The objectives do depend on the solutions of an inner optimization
problem.

Thus, the derivatives of the objective functions do depend on the
derivatives of the optimal solution w.r.t. to τ as

∂f1(ĉt(τ ), l̂t(τ ), τ )

∂τ
=
∂f1(ĉt(τ ), l̂t(τ ), τ )

∂ct

∂ct
∂τ

+

∂f1(ĉt(τ ), l̂t(τ ), τ )

∂lt

∂lt
∂τ

+

∂f1(ĉt(τ ), l̂t(τ ), τ )

∂τ

CasADi provides this up to machine precision by applying either the
forward or adjoint mode!
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Homotopy Methods

The application of homotopy methods arises naturally as we already
exploit the differentiability of our problem.

Natural application of homotopy are to
I follow the pareto frontier once starting at a collection of points we

found by applying the multiple-gradient descent method, and
I follow changes in the preference parameter (γ, η) starting from a

collection of points we found by applying the multiple-gradient descent
method.

The Judd, Mueller Hompack90 to Python interface is still buggy, thus
we cannot present the results yet. First results look promising.
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