
Constrained Optimization

Approaches to Estimation

of Structural Models

Kenneth L. Judd Che-Lin Su

Hoover Institution and NBER Kellogg School of Management

Northwestern University

8th SAET Conference

Kos, Greece

– p.1/33

Inverse Optimization Problem

on Partially Observed

Markov Decision Processes

Kenneth L. Judd Che-Lin Su

Hoover Institution and NBER Kellogg School of Management

Northwestern University

8th SAET Conference

Kos, Greece

– p.2/33

Structural Estimation

• Great interest in estimating models based on economic structure

◦ Dynamic programming models of individual behavior:

Rust (1987)

◦ Demand estimation: BLP(1995), Nevo(2000)

◦ Nash equilibria of games – static, dynamic: AM (2007)?

◦ Dynamic stochastic general equilibrium

• General belief: Estimation is a major computational challenge

because it involves solving model many times

• Our goal: Reintroduce economists to more efficient ways of

estimating structural models (we wish we could say“introduce”but

Aitchison and Silvey (1958) and others since beat us)

• Our finding: Many supposed computational“difficulties”can be

avoided by using optimization tools developed in numerical analysis

over the past 40 years
– p.3/33

Standard Problem

• Individual solves an optimization problem

• Econometrician observes states (partially) and decisions

• Current standard approach

◦ Structural parameters: θ

◦ Behavior (decision rule, strategy, price mapping): σ

◦ Equilibrium (optimality or competitive or Nash) imposes

relationship between

0 = G (θ, σ)

◦ Likelihood function for data X and parameters θ

L (θ, Σ(θ); X)

where equilibrium can be represented by a function σ = Σ(θ)

– p.4/33

Nested Fixed Point Algorithm

• Rust (Econometrica, 1987)

◦ Given θ, compute σ = Σ(θ) – in practice, this means writing a

program for Σ(θ)

◦ Solve likelihood

max
θ

L (θ, Σ(θ) ; X)

◦ Problem with NFXP: Must compute Σ(θ) to high accuracy for

each θ examined

– p.5/33

Current Views on Structural Estimation

• Erdem et al. (Marketing Letters 2005)

Estimating structural models can be computationally

difficult. For example, dynamic discrete choice models are

commonly estimated using the nested fixed point algorithm

(see Rust 1994). This requires solving a dynamic

programming problem thousands of times during

estimation and numerically minimizing a nonlinear

likelihood function....[S]ome recent research ... proposes

computationally simple estimators for structural models ...

The estimators ... use a two-step approach.The

two-step estimators can have drawbacks. First, there can

be a loss of efficiency. Second, stronger assumptions

about unobserved state variables may be required.

However, two-step approaches are computationally light,

often require minimal parametric assumptions and are likely

to make structural models accessible to a larger set of

researchers. – p.6/33

Our Views on Structural Estimation

• This statement says that “Estimating structural models can be

computationally difficult”, particularly if you use NFXP and

inefficient numerical methods.

◦ More generally, why not find a better alternative instead of

giving up on efficient estimation?

• Is this true?

(i) Are structural models so computationally difficult that it is

necessary to turn to statistically inferior methods?

(ii) Do we need“ computationally light”approaches to make

structural models more“accessible”?

– p.7/33

Our Views on Structural Estimation

• This statement says that “Estimating structural models can be

computationally difficult”, particularly if you use NFXP and

inefficient numerical methods.

◦ More generally, why not find a better alternative instead of

giving up on efficient estimation?

• Is this true?

(i) Are structural models so computationally difficult that it is

necessary to turn to statistically inferior methods?

(ii) Do we need“ computationally light”approaches to make

structural models more“accessible”?

• Answers:

(i) No

(ii) No

– p.8/33

MPEC Ideas Applied to Estimation

• Suppose that an economic model has parameters θ.

◦ Suppose that equilibrium and optimality imply that the

observable economic variables, x, follow a stochastic process

parameterized by a finite vector σ.

◦ The value of σ will depend on θ through a set of equilibrium

conditions

G (θ, σ) = 0

◦ Denote the augmented likelihood of a data set, X , by

L (θ, σ; X).

• Therefore, maximum likelihood is the constrained optimization

problem

max
(θ,σ)

L (θ, σ; X)

s.t. G (θ, σ) = 0
– p.9/33

A

B

C

D

The red line
is the NFXP
objective, a
discontinuous
function

Figure 1

A

B

C

D

A homotopy approach
finds a feasible
point and rises to a
local max via a
homotopy path that
is always feasible.
It never needs
to find all
equilibria.

Figure 2

The MPEC approach: The
likelihood hill depends
on theta and sigma. The
manifolds in theta-sigma
space represent
constraints imposed by
equilibrium. The problem
is an ordinary max lik
problem with constraints.

Figure 3

Our Advantages

◦ We do not require that equilibrium be defined as a solution to a

fixed-point equation.

◦ We do not need to specify an algorithm for computing σ given θ;

good solver will probably do better.

◦ Gauss-Jacobi or Gauss-Seidel methods are often used in economics

even though they are at best linearly convergent, whereas good

solvers are at least superlinearly convergent locally (if not much

better) and have better global properties than GJ and GS typically

do.

◦ Using a direct optimization approach allows one to take advantage

of the best available methods from the numerical analysis

– p.10/33

Zurcher’s Bus Repair Problem

• Each bus comes in for repair once a month

◦ Bus repairman sees mileage since last engine overhaul

◦ Repairman chooses between overhaul and ordinary maintenance

◦ Repairman has temporary shock to ordinary maintenance cost

◦ Repairman solves DP

• Econometrician

◦ Observes mileage and decision, but not cost

◦ Assumes extreme value distribution

• NFXP

◦ Guess θ parameters

◦ Solve DP to get decision rule σ = Σ(θ) for a given θ

◦ Compute likelihood and find best θ

– p.11/33

Zurcher Model – Data

Bus #: 5297

events year month odometer at replacement

1st engine replacement 1979 June 242400

2nd engine replacement 1984 August 384900

year month odometer reading

1974 Dec 112031

1975 Jan 115223

1975 Feb 118322

1975 Mar 120630

1975 Apr 123918

1975 May 127329

1975 Jun 130100

1975 Jul 133184

1975 Aug 136480

1975 Sep 139429

– p.12/33

MPEC Applied to Zucher

• MPEC (Mathematical Program with Equilibrium Constraints)

◦ Form augmented likelihood function for data X

L (θ, σ; X)

where θ is set of parameters and σ is decision rule

◦ Rationality imposes a relationship between θ and σ

0 = G (θ, σ)

◦ Solve constrained optimization problem

max
(θ,σ)

L (θ, σ; X)

s.t. G (θ, σ) = 0

– p.13/33

MPEC Applied to Zucher

• Timing for estimating three parameters (as in the Rust)

Estimates CPU Major Evals∗ Bell. EQ.

T N RC θc
1 θc

2 (sec) Iterations Error

103 101 1.112 0.043 0.0029 0.14 66 72 3.0E−13

103 201 1.140 0.055 0.0015 0.31 44 59 2.9E−13

103 501 1.130 0.050 0.0019 1.65 58 68 1.4E−12

103 1001 1.144 0.056 0.0013 5.54 58 94 2.5E−13

104 101 1.236 0.056 0.0015 0.24 59 67 2.9E−13

104 201 1.257 0.060 0.0010 0.44 59 67 1.8E−12

104 501 1.252 0.058 0.0012 0.88 35 45 2.9E−13

104 1001 1.256 0.060 0.0010 1.26 39 52 3.0E−13

∗Number of function and constraint evaluations

– p.14/33

Five-Parameter Estimates

• Rust did a two-stage procedure, estimating transition parameters in

first stage. We do full ML

Estimates CPU Maj. Evals Bell.

T N RC θc
1 θc

2 θ
p
1 θ

p
2 (sec) Iter. Err.

103 101 1.11 0.039 0.0030 0.723 0.262 0.50 111 137 6E−12

103 201 1.14 0.055 0.0015 0.364 0.600 1.14 109 120 1E−09

103 501 1.13 0.050 0.0019 0.339 0.612 3.39 115 127 3E−11

103 1001 1.14 0.056 0.0014 0.360 0.608 7.56 84 116 5E−12

104 101 1.24 0.052 0.0016 0.694 0.284 0.50 76 91 5E−11

104 201 1.26 0.060 0.0010 0.367 0.053 0.86 85 97 4E−11

104 501 1.25 0.058 0.0012 0.349 0.596 2.73 83 98 3E−10

104 1001 1.26 0.060 0.0010 0.370 0.586 19.12 166 182 3E−10

– p.15/33

Observations

• Problem is solved very quickly.

• Timing is nearly linear in the number of states for modest grid size.

• The likelihood function, the constraints, and their derivatives are

evaluated only 45-200 times in this example.

• In contrast, the Bellman operator in NFXP (the constraints here) is

evaluated hundreds of times in NFXP

– p.16/33

Parametric Bootstrap Experiment

• Examine several data sets to determine patterns

• Use the truth in the Rust’s example to generate 1 synthetic data set

• Use the estimated values to reproduce 20 independent data sets:

◦ Five parameter estimation

◦ 1000 data points

◦ 201 grid points in DP

– p.17/33

ML Parametric Bootstrap Estimates

Table 3: Maximum Likelihood Parametric Bootstrap Results

Estimates CPU Maj. Evals Bell.

RC θc
1 θc

2 θ
p
1 θ

p
2 θ

p
3 (sec) Ite Err.

mean 1.14 0.037 0.004 0.384 0.587 0.029 0.54 90 109 8E−09

S.E. 0.15 0.035 0.004 0.013 0.012 0.005 0.16 24 37 2E−08

Min 0.95 0.000 0.000 0.355 0.571 0.021 0.24 45 59 1E−13

Max 1.46 0.108 0.012 0.403 0.606 0.039 0.88 152 230 6E−08

– p.18/33

MPEC Approach to Method of Moments

• Suppose you want to fit moments. E.g., likelihood may not exist in

• Method then is

min
(θ,σ)

‖M (θ, σ) − M (X)‖2

s.t. G (θ, σ) = 0

◦ Compute moments M (θ, σ) numerically via linear equations in

constraints - no simulation

◦ Objective function:

M (m, M) = (mx − Mx)2 + (md − Md)2 + (mxx − Mxx)2 + (mxd − Mxd)2

+ (mdd − Mdd)2 + (mxxx − Mxxx)2 + (mxxd − Mxxd)2

+ (mxdd − Mxdd)2 + (mddd − Mddd)2

– p.19/33

Formulation for Method of Moments

• Constraints imposing equilibrium conditions and moment definitions,

and computes stationary distribution p

max
(θ,σ,Π,p,m)

M (m, M)

s.t. G (θ, σ) = 0, Π = H(θ, σ)

p⊤Π = p⊤,
X

x∈Z,d∈{0,1}

px,d = 1

mx =
X

x,d

px,d x, md =
X

x,d

px,d d

mxx =
X

x,d

px,d (x − mx)2, mxd =
X

x,d

px,d (x − mx)(d − md)

mdd =
X

x,d

px,d (d − md)2

mxxx =
X

x,d

px,d (x − mx)3, mxxd =
X

x,d

px,d (x − mx)2(d − md)

mxdd =
X

x,d

px,d (x − mx)(d − md)2, mddd =
X

x,d

px,d (d − md)3

– p.20/33

GMM Parametric Bootstrap Estimates

Table 4: Method of Moments Parametric Bootstrap Results

Estimates CPU Major Evals Bell

RC θc
1 θc

2 θ
p
1 θ

p
2 θ

p
3 (sec) Iter Err.

mean 1.0 0.05 0.001 0.397 0.603 0.000 22.6 525 1753 7E−06

S.E. 0.3 0.03 0.002 0.040 0.040 0.001 16.9 389 1513 1E−05

Min 0.1 0.00 0.000 0.340 0.511 0.000 5.4 168 389 2E−10

Max 1.5 0.10 0.009 0.489 0.660 0.004 70.1 1823 6851 4E−05

• Solving GMM is not as fast as solving MLE

◦ the larger size of the moments problem

◦ the nonlinearity introduced by the constraints related to

moments, particularly the skewness equations.

– p.21/33

MPEC Approach to Games

• Suppose the game has parameters θ.

• Let σ denote the equilibrium strategy given θ; that is, σ is an

equilibrium if and only if for some function G

G (θ, σ) = 0

• Suppose that likelihood of a data set, X , if parameters are θ and

players follow strategy σ is L (θ, σ, X). Therefore, maximum

likelihood is the problem

max
(θ,σ)

L (θ, σ; X)

s.t. G (θ, σ) = 0

• NFXP requires finding all σ that solve G (θ, σ) = 0, compute the

likelihood at each such σ, and report the max.

– p.22/33

Example: Bertrand Pricing Game

• Bertrand game with 3 types of customers in 4 cities

◦ Type 1 customers only want good x

Dx1(px,i) = A − px,i; Dy1 = 0, for i = 1, . . . , 4.

◦ Type 3 customers only want good y, and have a linear demand

curve:

Dx3 = 0; Dy3(py,i) = A − py,i, for i = 1, . . . , 4.

◦ Type 2 customers want some of both. Let ni be the number of

type 2 customers in a type i city.

Dx2(pxi, pyi) = nip
−σ
xi

(

p1−σ
xi + p1−σ

yi

)

γ−σ

−1+σ

Dy2(pxi, pyi) = nip
−σ
yi

(

p1−σ
xi + p1−σ

yi

)

γ−σ

−1+σ

– p.23/33

Example: Bertrand Pricing Game

• Equilibrium possibilities

◦ Niche strategy: price high, get low elasticity buyers.

◦ Mass market strategy: price low to get type 2 people.

◦ Low population implies both do niche

◦ Medium population implies one does niche, other does mass

market, but both combinations are equilibria.

◦ High population implies both go for mass market

– p.24/33

Example: Bertrand Pricing Game

• MPEC formulation

min
(pxi,pyi,σ,γ,A,m)

K
∑

k=1

4
∑

i=1

(

(pk
xi − pxi)

2 + (pk
yi − pyi)

2
)

subject to: pxi, pyi ≥ 0, ∀i

FOC: 0 = MRy(pxi, pyi) = MRx(pxi, pyi), ∀ i

global opt : (pxi − m)Dx(pxi, pyi) ≥ (pj − m)Dx(pj , pyi), ∀ i, j

global opt : (pyi − m)Dy(pxi, pyi) ≥ (pj − m)Dy(pxi, pj), ∀ i, j

– p.25/33

Example: Bertrand Pricing Game

• Data: measurement error in price observations

• Results: no problem getting right estimates.

• Note on Aguirregabiria and Mira (Econometrica, 2007, pp. 1-53):

◦ Ag-M say on page 1 that they do not impose a selection

criterion

◦ Later they reveal that they assume stability under best response

◦ Equilibria in our example do not satisfy Ag-M selection criterion

– p.26/33

Comparison with Rust Implementation

• Ease of use

◦ Rust: Gauss

– a high-level symbolic language

– built-in linear algebra routines

◦ J-S: AMPL

– all solvers have access to linear algebra routines

– flexible approach to matrices, tensors, and indexed sets

• Vectorization

◦ Rust: Efficient use of GAUSS requires the user to“vectorize”a

program

◦ J-S: All vectorization is done automatically in AMPL

– p.27/33

Comparison with Rust Implementation

• Optimization Method

◦ Rust: BHHH/BFGS

◦ J-S: Use solvers far superior to these methods

• Derivatives

◦ Rust: compute the value of and its derivatives numerically in a

subroutine

◦ J-S: Use true analytic derivatives; done automatically and

efficiently by AMPL using automatic differentiation.

– p.28/33

Comparison with Rust Implementation

• Dynamic programming method

◦ Rust: Contraction mapping fixed point (poly)algorithm.

– combine contraction with Newton-Kantorovich iterations

– contraction iterations are linearly convergent

– quadratic convergence is achieved only at final stage.

◦ J-S: Newton-style methods

– globally faster than contraction mapping

– particularly important if β is close to 1

– p.29/33

J-S AMPL Implementation

• Express problem in straightforward language

• Access almost any solver:

IPOPT, KNITRO, SNOPT, Filter, MINOS, PENNON

• Gradients and Hessians are computed analytically and automatically

and efficiently

– p.30/33

Future Work and Applications

• Random-Coefficients Demand Estimation (BLP (1995) and

Nevo(2000)): J. Fox and C.-L. Su.

• Demand and Supply Joint-Estimation: J.P. Dube, M.A. Vitorino and

C.-L. Su

• Estimation of Static Entry Game: Maria Ana Vitoriano, Entry in a

Cluster: An Application to the Shopping Center Industry.

– p.31/33

Conclusion

• Structural estimation methods are far easier to construct if one uses

the structural equations

• The numerical algorithm advances of the past forty years (SQP,

augmented Lagrangian, interior point, AD, MPEC) makes this

tractable

• Numerical analysis is more useful for empirical economists than new

econometric theory

• User-friendly interfaces (e.g., AMPL, GAMS) makes this as easy to

do as Stata, Gauss, and Matlab

• This approach makes structural estimation really accessible to a

larger set of researchers

– p.32/33

	�lue {}
	�lue {}
	large {�lue {Structural Estimation}}
	large {�lue {Standard Problem}}
	large {�lue {Nested Fixed Point Algorithm}}
	large {�lue {Current Views on Structural Estimation}}
	large {�lue {Our Views on Structural Estimation}}
	large {�lue {Our Views on Structural Estimation}}
	large {�lue {MPEC Ideas Applied to Estimation}}
	large {�lue {Our Advantages}}
	large {�lue {Zurcher's Bus Repair Problem}}
	large {�lue {Zurcher Model -- Data}}
	large {�lue {MPEC Applied to Zucher}}
	large {�lue {MPEC Applied to Zucher}}
	large {�lue {Five-Parameter Estimates}}
	large {�lue {Observations}}
	large {�lue {Parametric Bootstrap Experiment}}
	large {�lue {ML Parametric Bootstrap Estimates}}
	large {�lue { MPEC Approach to Method of Moments}}
	large {�lue { Formulation for Method of Moments}}
	large {�lue {GMM Parametric Bootstrap Estimates}}
	large {�lue {MPEC Approach to Games}}
	large {�lue {Example: Bertrand Pricing Game}}
	large {�lue {Example: Bertrand Pricing Game}}
	large {�lue {Example: Bertrand Pricing Game}}
	large {�lue {Example: Bertrand Pricing Game}}
	large {�lue {Comparison with Rust Implementation}}
	large {�lue {Comparison with Rust Implementation}}
	large {�lue {Comparison with Rust Implementation}}
	large {�lue {J-S AMPL Implementation}}
	large {�lue {Future Work and Applications}}
	large {�lue {Conclusion}}

