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Abstract We investigate the computational aspect of estimating discrete-choice
games under incomplete information. In these games, multiple equilibria can exist.
Also, different values of structural parameters can result in different numbers of
equilibria. Consequently, under maximum-likelihood estimation, the likelihood func-
tion is a discontinuous function of the structural parameters. We reformulate the
maximum-likelihood estimation problem as a constrained optimization problem in
the joint space of structural parameters and economic endogenous variables. Under
this formulation, the objective function and structural equations are smooth func-
tions. The constrained optimization approach does not require repeatedly solving the
game or finding all the equilibria. We use two static-game models to demonstrate
this approach, conducting Monte Carlo experiments to evaluate the finite-sample per-
formance of the maximum-likelihood estimator, two-step estimators, and the nested
pseudo-likelihood estimator.

Keywords Structural estimation · Discrete-choice games of incomplete
information · Constrained optimization · Multiple equilibria

JEL Classification C13 · C57 · C61

1 Introduction

During the past decade, estimating empirical models of games of incomplete infor-
mation has become an important and active research area in industrial organization,
applied econometrics and quantitative marketing; see Seim (2006), Ellickson and
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Misra (2008, 2011), Sweeting (2009), Zhu and Singh (2009), Bajari et al. (2010),
Vitorino (2012), Misra (2013) as well as Orhun (2013). An important feature of
empirical models of these games is that multiple equilibria can exist. This multiplic-
ity leads to the issue of which equilibria are being played in the data. To date, with
the exception of moment inequality estimators (see, for example, Ciliberto and Tamer
2009, and Pakes et al. 2011), it is commonly assumed that only one equilibrium is
played in each market in the data. Even under this assumption, however, it is still
conceivable that the number of equilibria can change for different values of structural
parameters, which raises another potential issue for maximum-likelihood estima-
tion of games: the likelihood function, which is defined as a function of structural
parameters, can be discontinuous. When applying the nested fixed-point algorithm,
researchers are confronted with two computational tasks: first, for each candidate
vector of parameters considered, all Nash equilibria must be found in order to evalu-
ate the corresponding likelihood value; second, the objective (likelihood) function is
potentially discontinuous. For the first task, no computational methods can guarantee
finding all the equilibria of a game, unless the equilibrium equations form a system
of polynomial equations; see Judd et al. (2012). Without finding all the equilibria, the
likelihood function can be mis-specified. For the second task, no reliable algorithm
exists to maximize a discontinuous function. Although some heuristic approaches
(for example, grid search or genetic algorithms) can be applied to find an approxi-
mated solution, in practice these methods tend to be very slow and, typically, do not
find good approximations.

Because of the potential computational costs that make implementing the nested
fixed-point algorithm impractical, researchers have proposed two-step estimators for
estimating games; see Bajari et al. (2007), Pakes et al. (2007), Pesendorfer and
Schmidt-Dengler (2008), and Arcidiacono and Miller (2011). The main advantage
of two-step estimators is their computational simplicity: they do not require solving
for an equilibrium. In a dynamic-game setting, where the cost of computing an equi-
librium can increase drastically as the number of firms and/or state space increases,
two-step estimators offer an attractive alternative to estimating structural models.
However, the performance of two-step estimators depends largely on the accuracy of
estimates in the first step and the criterion function used in the second step; see the
discussion in Pakes et al. (2007). For dynamic games with many states, more data will
be required to obtain an accurate estimate in the first step. Furthermore, if researchers
wish to conduct counterfactual policy analysis after obtaining parameter estimates,
then they still need to solve for an equilibrium (or the equilibria) of the game.

Aguirregabiria and Mira (2007) have proposed the nested pseudo-likelihood
(NPL) estimator for estimating discrete-choice games. The NPL estimator aims
to decrease the potentially large finite-sample biases with two-step estimators.
They also proposed the NPL algorithm, a recursive iteration of a two-step pseudo
maximum-likelihood estimator, to compute a solution of the NPL estimator. When
the NPL algorithm converges, it solves the structural equations and, hence, produces
an equilibrium of the game. It has, however, been shown by Pakes et al. (2007) as
well as Pesendorfer and Schmidt-Dengler (2008) that the NPL estimator can perform
worse than two-step estimators in finite samples. Moreover, to achieve convergence,
the NPL algorithm requires an implicit assumption that the equilibria that generate
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the observed data are stable under best response iterations or Lyapunov stable. This
requirement imposes an undesirable equilibrium selection criterion on the data gener-
ating process. Pesendorfer and Schmidt-Dengler (2010) has argued that best response
stability is not a convincing assumption for games of incomplete information. When
the best-response stable assumption is not satisfied, the NPL algorithm will either
fail to converge or, worse, converge to the wrong equilibria, which leads to incorrect
parameter estimates for the NPL estimator; see Pesendorfer and Schmidt-Dengler
(2010) for such an example.

Su and Judd (2012) have proposed a constrained optimization approach to estimate
structural models. They have demonstrated the use of their approach on the bus-
engine replacement model in Rust (1987), and presented a general formulation that,
in principle, can be applied to estimate games with multiple equilibria. Using the
insight from Su and Judd (2012), Vitorino (2012) was the first to use the constrained
optimization approach to estimate an empirical entry-and-exit game in the shopping
center industry.

One goal in this paper is to investigate the computational aspect of using
the constrained optimization approach to maximum-likelihood estimation of static
discrete-choice games of incomplete information. Assuming that only one equilib-
rium is played in each market in the data, we present a constrained optimization
formulation to maximum-likelihood estimation of discrete-choice games of incom-
plete information. Our formulation, defined over the joint space of both structural
parameters and economic equilibrium, yields a smooth likelihood function as the
objective, and smooth structural equations as the constraints. The constrained opti-
mization approach does not require repeatedly solving for an equilibrium or all the
equilibria at each guess of structural parameters. Thus, this approach reduces the per-
ceived computational burden of implementing the maximum-likelihood estimator.
While we do not claim that the constrained optimization approach can solve large-
scale dynamic games with billions of states, variables, and equations, we believe it
offers a valuable alternative for estimating structural models with up to 100,000 vari-
ables and constraints, which can accommodate models in many empirical papers in
the literature.

We also examined the computational performance of various estimators for esti-
mating static discrete-choice games. Using two static-game models as organizing
examples, we conducted Monte Carlo experiments to evaluate the finite-sample prop-
erties of the maximum-likelihood (ML), the two-step pseudo maximum-likelihood
(2S-PML), the two-step least squares (2S-LS), and the NPL estimators. We examined
different data generating processes, in which best-response stable and/or best-
response unstable equilibria were used. Conditional on the same observables, we also
varied the numbers of repeated observations in the data sets. These Monte Carlo exer-
cises considered here are reasonably general and the static game model resembles to
those studied in the literature.

Our Monte Carlo results demonstrate that, in most cases, the ML estimator per-
forms the best. For all the estimators, the biases in the estimators decrease as the
numbers of repeated observations increase in the data. The ML estimator produces
average estimates that are within one standard deviation of the true parameter val-
ues, even when only five or ten repeated observations per market exist in the data.
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The performance of the two-step estimators depends on the type of equilibria used in
the data generating process. If the data are generated by best-response stable equilib-
ria, then the 2S-PML estimator produces accurate parameter estimates with moderate
numbers of repeated observations, says twenty five or more per market. When the
data consist of best-response stable and best-response unstable equilibria, the two-
step estimators have high finite-sample biases in almost all cases; the biases decrease
considerably with large numbers (100 or 250) of repeated observations. In the experi-
ments, in most cases, the NPL estimator is more biased than the ML estimator. When
the data consist of best-response stable and unstable equilibria, the NPL algorithm
fails to converge for all data sets in the experiment using the first model; the NPL
algorithm converges in around ten data sets (out of one hundred) but produces highly
biased parameter estimates in those converged runs in the experiment using the sec-
ond model. Even when the data are generated by only best-response stable equilibria
given there are multiple equilibria in some markets at true parameter values, the NPL
algorithm, surprisingly, often fails to converge with small numbers of repeated obser-
vations per market; for example, with five repeated observations per market in the
data, the NPL algorithm converges in less than five data sets using the first model
and converges in sixty five data sets using the second model. The NPL algorithm
converges more frequently with more repeated observations per market. This finding
suggests that the NPL algorithm is not a reliable computational strategy unless the
underlying equilibria in the data generating process are stable under best-response
iterations and large numbers of repeated observations exist in the data.

The remainder of the paper is organized as follows: in Section 2, we describe a
simple static discrete-choice game of incomplete information originally proposed by
Rust (2008), while in Section 3, we discuss estimating this game using the method
of maximum-likelihood under two computational strategies: the nested fixed-point
(NFXP) algorithm and the constrained optimization approach. Using a numerical
example, we illustrate that the likelihood function of NFXP is discontinuous. Thus,
the outer-loop optimization problem in NFXP will be computationally intractable. we
then present the constrained optimization formulation for the maximum-likelihood
estimation and prove that the NFXP algorithm and the constrained optimization
approach give the same objective (likelihood) value and same solution. We also dis-
cuss the two-step estimators as well as the NPL estimator. In Section 4, we present the
results of the Monte Carlo experiments using the simple static game example, report-
ing the finite-sample performance of the ML estimator, the two-step estimators and
the NPL estimator. In Section 5, we consider a more realistic and empirically relevant
static game example developed by Ellickson and Misra (2011) based on the dynamic
game model in Jia (2008) and present Monte Carlo results as well as post-estimation
equilibrium analysis on We summarize the conclusions in Section 6.

2 Static discrete-choice games of incomplete information

The description of the example presented here follows closely the derivation of Rust
(2008). For simplicity, we first describe the model for one market and then generalize
the model to accommodate data observed in several differentiated markets. Similar
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but more general models of static discrete-choice games of incomplete information
have been proposed and studied by Seim (2006), Sweeting (2009), Zhu and Singh
(2009), Bajari et al. (2010), Misra and Ellickson (2008, 2011), Vitorino (2012) as
well as Orhun (2013).

2.1 A simple static-game model with one market

Consider a two-player, discrete-choice game of incomplete information with
observed as well as unobserved heterogeneity. Let the firms be labeled a and b, and
let ya and yb denote the choices of firms a and b, respectively. For simplicity, we
assume that each firm has two possible choices; see, for example, the entry-and-exit
games in Berry (1992), and Seim (2006) as well as Ciliberto and Tamer (2009).

Let

ya =
{

1 if firm a is active,
0 if firm a is inactive;

and define yb similarly. The ex post utility functions of firms a and b are assumed to
be

ua(ya, yb, xa, εa) =
⎧⎨
⎩
[α + yb(β − α)] xa + εa1, if ya = 1,

0 + εa0, if ya = 0;
and

ub(ya, yb, xb, εb) =
⎧⎨
⎩
[α + ya(β − α)] xb + εb1, if yb = 1,

0 + εb0, if yb = 0;
where a scalar xa is the observed type and a (2 × 1) vector εa = (εa0, εa1) is the
unobserved type for firm a. For firm b, xb and εb are defined similarly. The structural
parameters (to be estimated) (α, β) measure the effect of the observed type xa and
xb on firm a’s and b’s utility, respectively. Note that a firm’s utility is a function of
the joint decision of both firms, (ya, yb).

We assume that the observed types (xa, xb) are common knowledge among firms;
that unobserved types (εa, εb) are private information; that εa and εb are indepen-
dent; and that firm a knows the distribution of εb and firm b knows the distribution
of εa .

Because of the private information εa , firm a’s decision will be probabilistic from
firm b’s point of view. Let pa denote firm b’s belief of the probability that firm a will
be active. Similarly, let pb denote firm a’s belief of the probability that firm b will be
active. Given firm b’s belief pa , the expected utility of firm b for taking an action yb
is given by

Ub(yb, xb, εb) = paub(1, yb, xb, εb)+ (1 − pa)ub(0, yb, xb, εb)

=
⎧⎨
⎩
paβxb + (1 − pa)αxb + εb1, if yb = 1,

εb0, if yb = 0.



172 C.-L. Su

It follows that firm b will be active (yb = 1) if and only if

Ub(1, xb, εb) > Ub(0, xb, εb).

We assume that each component in the error terms εa and εb has a Type 1,
extreme-value distribution, so the probability density function is f (ε) =
exp(ε) exp[− exp(ε)]. Given firm b’s belief pa , the probability that firm b will be
active is given by the standard binomial logit formula

pb = Pr(yb = 1)

= Pr [εb|Ub(yb = 1, xb, εb) > Ub(yb = 0, xb, εb)]

= exp[paβxb + (1 − pa)αxb]
1 + exp[paβxb + (1 − pa)αxb]

= 1

1 + exp[−xbα + paxb(α − β)]
≡ �b(pa, pb, xb;α, β).

(1)

This formula can be thought of as a best response function for firm b given b’s belief
pa . Similarly, the best response for firm a, given a’s belief pb, is

pa = exp[pbβxa + (1 − pb)αxa]
1 + exp[pbβxa + (1 − pb)αxa]

= 1

1 + exp[−xaα + pbxa(α − β)]
≡ �a(pa, pb, xa;α, β).

(2)

A Bayes–Nash equilibrium is a pair of beliefs
(
p∗
a, p

∗
b

)
that are mutual best

responses:

p∗
a = 1

1 + exp[−xaα + p∗
bxa(α − β)] = �a(p

∗
a , p

∗
b, xa;α, β)

p∗
b = 1

1 + exp[−xbα + p∗
axb(α − β)] = �b(p

∗
a, p

∗
b, xb;α, β).

(3)

To simplify the notation, let θ = (α, β), x = (xa, xb), p = (pa, pb) and
� = (�a,�b). We rewrite the Bayes–Nash (BN) equilibrium (3) as

p = �(p, x; θ). (4)

Given the parameters θ and observed types x, there are two unknowns in p in the
two BN equilibrium equations defined in Eq. 3. Multiple solutions satisfying (3) can
exist and, hence, multiple BN equilibria can exist. However, one can show that there
are at most three equilibria in this model. The example below illustrates this case.
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Example 1 Suppose θ0 = (
α0, β0

) = (5,−11) and firms’ observed types
x = (0.52, 0.22). Substituting these values into Eq. 3 and solving the following two
equations for a BN equilibrium p∗:

pa = 1

1 + exp(−2.60 + 8.32pb)

pb = 1

1 + exp(−1.10 + 3.52pa)
.

(5)

We used the constrained optimization solver, KNITRO, to solve this system of two
equations and two unknowns. Since there could be multiple solutions, we tried one
hundred different starting points and found the following three BN equilibria:

p∗
1 = (0.030100, 0.729886),

p∗
2 = (0.616162, 0.255615),

p∗
3 = (0.773758, 0.164705).

One can verify that the equilibrium p∗
2 is not stable under best-response iterations,

which means that best-response iterations will not converge to p∗
2, even if the start-

ing point is very close to that solution.1 Note that best-response stable equilibrium
is not among the common notions of stable equilibrium, such as strategic stabil-
ity of Kohlberg and Mertens (1986), or Mertens (1989, 1991), or the evolutionarily
stable strategy (ESS), studied in the game theory literature; see also Chapter 11 in
Fudenberg and Tirole (1991).

2.2 A simple static-game model with multiple markets

We generalize the model described above to accommodate multiple differentiated
markets in the observed data. Assume that there are M markets. The characteris-
tics that differentiate these markets are the firms’ observed types. Thus, two vectors
of different observed types represent two different markets. We denote by xm =(
xma , x

m
b

)
the firms’ observed types in market m, for m = 1, . . . ,M . We assume

firms have the same vector of structural parameters θ = (α, β) in all markets, but
firms’ decisions are independent across the markets.

For each market, there is a set of BN equilibrium equations, parameterized by the
observed types. Let pm = (pm

a , p
m
b

)
denote a vector of a BN equilibrium in market

m, which satisfies the following equation:

pm = �(pm, xm; θ), for m = 1, . . . ,M. (6)

Let P = (pm)Mm=1 denote the collection of equilibrium probabilities and X =
(xm)Mm=1 denote the collection of the firms’ observed types for all markets,

1An equilibrium p is stable under best-response iteration if ρ[∇p�(p, x; θ)], the spectral radius of the
Jacobian mapping ∇p�(p, x; θ), is less than 1. It is easy to check that at p∗

2, ρ[∇p�(p∗
2 , x; θ0)] = 1.148,

while at p∗
1 and p∗

3, ρ[∇p�(p∗
1 , x; θ0)] = 0.4099 and ρ[∇p�(p∗

3 , x; θ0)] = 0.8398, respectively.
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Fig. 1 Numbers of equilibria in different markets

respectively. With a slight abuse of notation, we simplify the BN equilibrium
equations for all markets (6) as

P = �(P ,X; θ). (7)

From Eq. 6, it is clear that markets with different observed types can have differ-
ent BN equilibria. Also, the numbers of equilibria can be different for markets with
different observed types, as illustrated in the following example.

Example 2 We selected the same parameter values θ0 = (α0, β0) = (5,−11) as
in Example 1 and considered a case with 256 markets. Discretizing the interval
[0.12, 0.87] into sixteen equally spaced grid points yields sixteen different observed
types for each firm; jointly, there are 16 × 16 = 256 pairs of

(
xma , x

m
b

)
, for

m = 1, . . . , 256. Each of these pairs defines a market. For each market m, we solved
for the corresponding BN equilibrium (6) with 100 different starting values to find
all the BN equilibria pm∗ = (pm∗

a , pm∗
b

)
in that market.

In Fig. 1, we present the plot of the numbers of equilibria in each market. As one
can see, there are three equilibria in most markets. For markets with low xa and/or
xb, the equilibrium is, however, unique. A small change in the observed types can
result in a relatively large change in the number of equilibria; for example, there are
three equilibria in the market with observed types (0.17, 0.87), but there is only one
equilibrium in the market with the observed types (0.12, 0.87).

3 Estimation

In this section, we describe the data generating process and discuss various estimators
used to estimate static discrete-choice games of incomplete information.
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3.1 Data generating process

Following a common assumption in the literature (see, for example, Aguirregabiria
and Mira 2007, Bajari et al. 2007, Pakes et al. 2007 as well as Pesendorfer and
Schmidt-Dengler 2008), we assume that in each market, only one equilibrium is
played in the data. Since equilibrium solutions are different in different markets, as
was demonstrated in Example 2, in the data we allow different equilibria to be played
in different markets.

Assumption 2: In each market, the firms use the same equilibrium to play indepen-
dently over the T periods. However, equilibria played across different markets are
different.

Researchers observe firms’ types xm = (
xma , x

m
b

)
and decisions ym =(

ymt
a , ymt

b

)T
t=1 in each market m over T periods in the data. Let Zm denote the data

observed in market m:

Zm =
{
xm = (xma , xmb ) , ym = (ymt

a , ymt
b

)T
t=1

}
.

Data observed for all M markets over T periods are the collection of Zm for all m, so

Z = {Zm, for m = 1, . . . ,M}. (8)

3.2 Maximum-likelihood estimation

We consider estimating the parameters of the discrete-choice game using the method
of maximum-likelihood under Assumption 2. We first derive the logarithm of the
likelihood function and the formulation of the maximum likelihood estimation prob-
lem. We then describe the NFXP algorithm for implementing the ML estimator and
discuss its computational difficulties. To overcome the computational difficulties
associated with the NFXP algorithm, we reformulate the ML estimation problem
as a constrained optimization problem and show that the NFXP algorithm and the
constrained optimization approach produce the same estimates.

3.2.1 Deriving the likelihood function for models with one market

We derive the logarithm of the likelihood function, first under a general equilibrium
selection mechanism and then impose Assumption 2 that only one equilibrium is
played in the data. To simplify the notation, we consider the case of one market and
drop the superscript m for market index in the derivation below. We generalize the
formulation for models with multiple markets in the next subsection.

Given the parameter vector θ and firms’ observed types x, let E(θ , x) = {p̄k(θ)}k
denote the set of BN equilibria, where p̄k(θ) = (p̄ka(θ), p̄kb(θ )) is the k-th equi-

librium that solves the BN equilibrium (4). Also, let λ(θ) = {λk(θ)}|E(θ,x)|k=1 be the
specified equilibrium selection mechanism, where λk(θ) is the probability that the
k-th equilibrium is played in the data with

∑|E(θ,x)|
k=1 λk(θ) = 1. Following the deriva-

tion in Sweeting (2009) as well as de Paula (2013, Section 4), the logarithm of the
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likelihood function of observing the decisions y = (yta, ytb)Tt=1 in the market at the
parameters θ is

L[θ, λ(θ), {p̄k(θ)}k]

=
T∑
t=1

log

⎧⎨
⎩
|E(θ,x)|∑
k=1

λk(θ)
[
p̄ka(θ)

yta

][
(1 − p̄ka(θ))

1−yta

][
p̄kb(θ)

ytb

][
(1− p̄kb(θ))

1−ytb

]⎫⎬
⎭.
(9)

The ML estimator
(
θMLE, λMLE(θMLE)

)
then solves

maximize{θ,λ(θ)}
L[θ, λ(θ ), {p̄k(θ)}k], s.t.

|E(θ,x)|∑
k=1

λk(θ) = 1. (10)

Since the number of elements in the decision variables λ(θ) varies, depending on
the value of decision variables θ , the maximization problem formulated above is not
computationally tractable. However, given Assumption 2 that only one equilibrium
is played in the data, only one component in λ(θ) as well as λMLE

(
θMLE

)
is one

and all the other components are 0. Define

Li [(x, y); p̄k(θ); θ ]

=
T∑
t=1

log
{[

p̄ka(θ)
yta

] [
(1 − p̄ka(θ))

1−yta

] [
p̄kb(θ)

ytb

] [
(1 − p̄kb(θ))

1−ytb

]}

(11)
Under Assumption 2, the maximization problem (10) is equivalent to

maximize{θ ,p̄k(θ)∈E(θ,x)}
Li [(x, y); p̄k(θ); θ ]

= max
θ

{
max

p̄k(θ)∈E(θ,x)
Li [(x, y); p̄k(θ); θ ]

}
.

Hence, the ML estimator for models with one market is defined as

θMLE = argmax
θ

{
max

p̄k(θ)∈E(θ,x)
Li [(x, y); p̄k(θ); θ ]

}
. (12)

3.2.2 ML estimator for models with multiple markets

We present the formulation of the ML estimator for models with multiple markets.
For ease of presentation, we provide a generalization of the ML estimator defined
in Eqs. 11 and 12, and do not re-derive the likelihood function under a general
equilibrium selection mechanism.
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Given the parameter vector θ and firms’ observed types xm for market m, let
p̄m(θ ) = (p̄a(x

m; θ), p̄b(x
m; θ)) denote a BN equilibrium that solves (6). Given

Assumption 2 and following Eq. 11, if the observed decisions ym = (ymt
a , ymt

b

)T
t=1

were generated by p̄m(θ), then the logarithm of the likelihood of the observing data
Zm = (xm, ym) in market m at the parameters θ is

Li [Zm; p̄m(θ ); θ]

=
T∑
t=1

{
ymt
a × log[p̄a(x

m; θ)] + (1 − ymt
a )× log[1 − p̄a(x

m; θ)]}

+
T∑
t=1

{
ymt
b × log[p̄b(x

m; θ)] + (1 − ymt
b )× log[1 − p̄b(x

m; θ)]} ,
(13)

Let P̄ (θ) = (p̄m(θ))Mm=1. Thus, the logarithm of the likelihood of observing the data
Z for all markets at the parameters θ is

L[θ , P̄ (θ)] =
M∑

m=1

Li [Zm; p̄m(θ ), θ]. (14)

Since multiple BN equilibria can exist for each θ , the ML estimator is defined as

θMLE = argmax
θ

{
max
P̄ (θ)

L[θ , P̄ (θ)]
}
. (15)

3.2.3 Solving the ML estimator using the NFXP approach

The NFXP algorithm of Rust (1987) has been proposed to compute the ML estimator
θMLE defined in Eq. 15. The implementation of the NFXP algorithm is described as
follows: in the outer loop, search the structural parameter space over θ to maximize

the objective function

{
max
P̄ (θ)

L[θ , P̄ (θ)]
}

; in the inner loop, for a given θ , find all the

BN equilibria, evaluate the corresponding likelihood value at each BN equilibrium,
and choose the equilibrium that yields the highest likelihood value. The algorithm
then returns to the outer loop and repeats until it converges, or fails.

Two important computational difficulties arise when applying NFXP to solve
the ML estimator (15): first, researchers must find all the equilibria for any given

structural parameters θ ; second, the objective function

{
max
P̄ (θ)

L[θ , P̄ (θ )]
}

can be a

discontinuous function of θ . In the example below, we illustrate such a case.

Example 3 Consider the setting in Example 1, in which there are three BN equilib-
ria given θ0 = (α0, β0) = (5,−11) and firms’ observed types x = (0.52, 0.22).
We first assume that both firms use the equilibrium p∗

1 to play the game 1,000 times
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and, hence, randomly generate 1,000 pairs of observed decisions y1 = (yta1, y
t
b1

)1000
t=1

independently using p∗
1. Let Z1 denote this data set. Repeat the same procedure, but

use p∗
2 and p∗

2 to generate data sets Z2 and Z3, respectively. Fixing x = (0.52, 0.22),
we then plotted the numbers of equilibria in the parameter space θ and the corre-
sponding logarithm of the likelihood function for each of the three data sets in Fig. 2.
As one can see, the logarithm of the likelihood function for Z1 is continuous in θ ,
while the logarithms of the likelihood functions for Z2 and Z3 are discontinuous.
Recall that the equilibrium p∗

2 is unstable under best-response iterations, while p∗
2

is stable under best response. This example demonstrates that the discontinuity in
the likelihood function does not depend on best-response stability of an equilibrium.
Instead, the discontinuity arises from the change in the numbers of equilibria for
different θs.

In practice, almost all reliable and efficient numerical methods for solving opti-
mization problems are based on variants of Newton’s method, which requires the
objective function and the constraints in the underlying problems to be differen-
tiable. To date, the research in the optimization field on solving nonsmooth problems
is, although increasing, still quite sparse. To the best of our knowledge, we are not
aware of any reliable numerical methods or software that can solve problems with
discontinuous functions in a robust manner.

Fig. 2 Numbers of equilibria and examples of the logarithms of likelihood functions. The circle in b – d
indicates the maximizer obtained from grid search



Estimating discrete-choice games of incomplete information 179

3.2.4 ML estimation using the constrained optimization approach

We next describe the constrained optimization approach to estimating games of
incomplete information under the method of maximum-likelihood.2

Let pm = (
pm
a , p

m
b

)
denote any vector of probabilities in market m and

P = (pm)Mm=1. Assuming the observed decisions ym = (
ymt
a , ymt

b

)T
t=1 were gen-

erated by pm, we define the augmented logarithm of the likelihood function for
observing Zm in market m as

Li (Z
m;pm, θ) =

T∑
t=1

[
ymt
a × log(pm

a )+ (1 − ymt
a )× log(1 − pm

a )
]

+
T∑
t=1

[
ymt
b × log(pm

b )+ (1 − ymt
b )× log(1 − pm

b )
]
.

(16)

The augmented logarithm of the likelihood of observing the full dataZ for all markets
is

L(θ ,P ) =
M∑

m=1

Li (Z
m;pm, θ). (17)

To ensure that, given θ , P is a collection of BN equilibria for all markets, we
imposed the BN equilibrium (7) as constraints. The ML estimation problem is then

max
(θ,P )

L(θ ,P )

subject to P = �(P , x, θ).
(18)

The decision variables in our formulation are θ and P . Note, too, that the structural
parameters θ do not directly enter either the augmented function (16) or the objective
function (17). Instead of defining the likelihood function as a (potentially) discontin-
uous function of θ in Eq. 15, the objective function L(θ ,P ) is a smooth function of
the equilibrium probabilities P . Thus, the constrained optimization approach yields
a smooth objective function as well as smooth constraints. Consequently, one can
use state-of-the-art constrained optimization solvers to compute a solution to the ML
estimation problem (18).

Following Proposition 1 in Su and Judd (2012), we state the equivalence in
the likelihood value and solutions of the two optimization problems formulated in
Eqs. 15 and 18.

Proposition 1 Let θ̄ be a solution of the ML estimation problem defined in Eq. 15.
Denote P̄

∗
(θ) = argmax

P̄ (θ)

L[θ , P̄ (θ)]. Let (θ∗,P ∗) be a solution of the constrained

optimization problem (18). Then L[θ̄ , P̄ ∗
(θ̄)] = L(θ∗,P ∗). If the model is identified,

then θ̄ = θ∗.

2The derivation of the constrained optimization formulation under a general equilibrium selection
mechanism is given in Appendix A.
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Proof See Proposition 1 in Su and Judd (2012).

Aitchison and Silvey (1958) as well as Silvey (1975) have shown that the ML esti-
mator formulated in Eq. 18 is consistent as well as asymptotically normal. Similar
results are also stated in Section 10.3 in Gourieroux and Monfort (1995). Below we
state the asymptotic results of the ML estimator defined in Eq. 18 in the framework
of Aitchison and Silvey (1958), assuming that the number of market M is fixed and
number of periods T goes to infinity. We refer the readers to Aitchison and Silvey
(1958) for detailed derivation and proof, and Silvey (1975) for a concise discussion.

Inference. Let ϑ̄ = (θ̄ , P̄ ) be a solution of ML estimation problem (18) and
ϑ0 = (θ0,P 0) be the true parameter vector of the data generating process, respec-

tively. Denote the information matrix I0 = −IE

[
∂2L(ϑ0)

∂ϑ∂ϑ ′

]
and the constraint

Jacobian H 0 = h(ϑ0)

∂ϑ
at the true parameter vector ϑ0. Let I be an identity matrix.

Under assumptions and regularity conditions stated in Aitchison and Silvey (1958),
the random variable

√
T (ϑ̄ − ϑ0) is asymptotically normally distributed with

√
T (ϑ̄ − ϑ0)

d−→ N (0,�0),

where �0 = I−1
0

[
I −H ′

0

(
H 0I−1

0 H ′
0

)−1
H 0I−1

0

]
.

3.3 Two-step estimators

Hotz and Miller (1993) pioneered using two-step estimators to estimate single-agent
dynamic discrete-choice models. One attractive feature of two-step estimators is
computational simplicity, at least when compared to the NFXP algorithm or the con-
strained optimization approach. In this section, we describe the 2S-PML estimator
and the 2S-LS estimator for estimating the discrete-choice game.

For a given vector of probabilities P̂ = (p̂
m
)Mm=1, the pseudo likelihood function

of observing the data Zm in market m is defined as

LPML
i (Zm, p̂m; θ)

=
T∑
t=1

{
ymt
a ×log[�a(p̂

m
a , p̂

m
b , x

m, θ)]+(1−ymt
a )× log[1−�a(p̂

m
a , p̂

m
b , x

m, θ)]}

+
T∑
t=1

{
ymt
b ×log[�b(p̂

m
a , p̂

m
b , x

m, θ)]+(1−ymt
b )×log[1−�b(p̂

m
a , p̂

m
b , x

m, θ)]}.

The pseudo likelihood of observing the full data Z for all markets is then

LPML(θ , P̂ ) =
M∑

m=1

LPML
i (Zm, p̂m; θ). (19)



Estimating discrete-choice games of incomplete information 181

Notice that when defining the pseudo likelihood function (19), the component p̂m

in P̂ need not be a BN equilibrium. The pesudo likelihood function is well defined
for any probabilities P̂ .

The 2S-PML estimator is as follows:

Step 1: Find P̂ 0, a consistent estimate of the true equilibrium probabilities P 0.

Step 2: Fix P̂ 0. Solve the pseudo maximum-likelihood estimator:

θ2S−PML = argmax
θ

LPML(θ , P̂ 0).

(20)
One can also use the 2S-LS estimator of Pesendorfer and Schmidt-Dengler (2008).

Instead of maximizing the pseudo likelihood function, one chooses structural param-
eters θ to minimize the �2 norm of the errors in the BN equilibrium (7) in the 2S-LS
estimator:3

Step 1: Find P̂ 0, a consistent estimate of the true equilibrium probabilities P 0.

Step 2: Fix P̂ 0. Solve the least square problem:

θ2S−LS = argmin
θ

‖P̂ 0 −�(P̂ 0, x; θ)‖2
2.

(21)
For two-step estimators, the optimization problem in the second step involves only

structural parameters. Also, the BN equilibrium equations are not imposed in the
second step and, hence, may not be satisfied. Because two-step estimators do not
solve the BN equilibrium equations, they are computationally light. However, two-
step estimators can perform poorly in finite samples when the first-step estimates
are imprecise due to insufficient amounts of data, or when researchers do not choose
suitable criterion functions in the second step; see the discussion in Pakes et al.
(2007).

3.4 The nested pseudo-likelihood estimator

Recognizing the limitations of two-step estimators, Aguirregabiria and Mira (2007)
have proposed the NPL estimator for estimating dynamic discrete games, aiming to
reduce the finite-sample biases of the 2S-PML. They also proposed the NPL algo-
rithm, a recursive iteration of the 2S-PML estimator, to compute a solution of the
NPL estimator.

The NPL algorithm is described as follows: first, find an initial guess of equi-
librium probabilities P̃ 0. For K ≥ 1, fix P̃K−1 and solve the pseudo maximum-
likelihood estimator for θ̃K :

θ̃K = argmax
θ

LPML(θ , P̃K−1). (22)

3Pesendorfer and Schmidt-Dengler (2008) proposed an asymptotic least-squares estimator and derived
the asymptotically optimal weight matrix. Here, we do not derive the optimal weight matrix and use the
identity matrix as the weight matrix in this example.
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Given θ̃K , obtain P̃K by one best-response iteration on the equilibrium (7):

P̃K = �(P̃K−1, x; θ̃K). (23)

Increase K by 1 and repeat the above procedure until convergence or if the maximum
number of iterations K̄ is reached, then declare a failed run and restart with a new
initial guess.

When the NPL algorithm converges, a solution (θNPL,PNPL) satisfies the BN
equilibrium (7). However, there are serious drawbacks with the NPL algorithm and,
hence, the NPL estimator. First, since the NPL algorithm performs one best-response
iteration (23) to update the equilibrium probabilities P̃K in the K th recursive itera-
tion, it will only converge to equilibria that are stable under best response. If the data
were generated by equilibria that are unstable under best response iterations, then
the NPL algorithm will either fail to converge or, worse, converge to wrong equi-
libria, which then leads to incorrect parameter estimates for the NPL estimator; see
Pesendorfer and Schmidt-Dengler (2010) for such an example. Second, even when
the data are generated by best-response stable equilibria, the NPL algorithm can gen-
erate cycling iterations and, consequently, fail to converge. Third, the NPL algorithm
can take many recursive iterations before it converges and, computationally, it is not
as efficient as the constrained optimization approach. We illustrate these points using
the Monte Carlo experiments below.

4 Monte Carlo

We used Example 2 as the econometric model in the Monte Carlo experiments to
study finite-sample performance of four estimators: the ML (with the constrained
optimization approach), the 2S-PML, the 2S-LS, and the NPL estimators.4 Recall
that, in Example 2, the true parameter values are θ0 = (5,−11) and M = 256
differentiated markets exist.

4.1 Experiment specifications

In generating the data, we maintained the assumption that in each market only
one equilibrium is played; however, different equilibria can be played in different
markets. We describe the types of equilibria used in the data generating process
below.

Scenario 1: The best-response stable equilibrium with lowest probability of being
active for firm a is played in each market for markets with multiple equilibria.

Scenario 2: Randomly choose one of the best-response stable equilibria to be
played in each market for markets with multiple equilibria.

4As noted by Pakes et al. (2007), the pseudo likelihood function is an inappropriate criterion function to
use in the second step. The reason that we still use the 2S-PML estimator in our Monte Carlo experiments
is to provide a direct comparison on the performance of the 2S-PML to that of the ML estimator and the
NPL estimator.
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Scenario 3: Randomly choose one equilibrium to be played in each mar-
ket. The equilibrium chosen can be stable or unstable under best response
iterations.

For each data set, we simulated the static game for T periods to generate T pairs
of observed decisions, ym = (ymt

a , ymt
b

)T
t=1 in each market m = 1, . . . , 256. Condi-

tional on the observables xm, the number of periods T (ranging from 5 to 250) gives
the number of repeated observations per market in the data. For each scenario, we
constructed one hundred data sets for each T .

Since the firms’ decisions are observed in every market, we used a frequency
estimator to estimate the first-step equilibrium probabilities for two-step estimators.

The estimated equilibrium probabilities P̂ freq =
(
p̂m

freq

)256

m=1
from the frequency

estimator solve

p̂m
a,freq = 1

T

T∑
t=1

ymt
a , p̂m

b,freq = 1

T

T∑
t=1

ymt
b , for m = 1, . . . , 256.

For the constrained optimization approach, there are 2 + 2 × 256 = 514 deci-
sion variables and 512 equality constraints (two equilibrium probabilities

(
pm
a , p

m
b

)
as well as two BN equilibrium equations in each market). To find the parameter
estimates for each data set, we used one hundred different starting points for θ and
the frequency estimates P̂ freq as the starting value for P . For the NPL estimator,

we used P̂ freq,
3P̂ freq

4 , and
P̂ freq

2 as the three initial guesses of equilibrium prob-
abilities for the NPL algorithm for each data set. In addition, we also used logit
probabilities as an initial guess for the NPL algorithm. We choose 1.0e-6 as the
convergence tolerance for the NPL algorithm and set the maximum number of NPL
iterations to K̄ = 1000. If the difference of parameter values and equilibrium prob-
abilities in successive iterates is less than the chosen tolerance, then we declare the
NPL algorithm converges. If the number of NPL iterations reaches K̄ before conver-
gence, then we declared that the NPL algorithm failed to converge in that run. If the
NPL algorithm failed to converge from all four starting values, we declared that the
NPL algorithm failed to converge to a solution for the NPL estimator for that data
set.

We coded the optimization problem for each estimator in AMPL and called the
nonlinear optimization solver KNITRO to solve the problem. We use the default
value 1.0-6 as optimality and feasibility tolerance. We chose AMPL as the pro-
graming platform because AMPL uses automatic differentiation to compute exact
first-order and second-order derivatives efficiently and passes the derivative informa-
tion together with sparsity structure of the constrained Jacobian and Hessian matrices
to optimization solvers. The derivatives as well as the sparsity structure informa-
tion are necessary for KNITRO (and other optimization solvers) to perform well,
especially on large-scale problems. With this choice of software for numerical imple-
mentation, we hope to provide a fair comparison on the numerical performance of
each estimator.
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4.2 Monte Carlo results

The Monte Carlo results are reported in Tables 1, 2 and 3. Overall, our results indicate
that the ML estimator performs the best and the NPL estimator the worst. For the
two-step estimators, in general, the 2S-PML estimator performs better than the 2S-
LS estimator.5 For the NPL estimator, Aguirregabiria and Mira (2007) found that
the NPL algorithm with logit estimates as an initial guess converged faster than that
with frequency estimates. On the contrary, we find the NPL algorithm with frequency
estimates as initial guesses performs better.6 Except for T = 5 in Scenario 1, NPL
with logit estimates either often fails to converge (in Scenario 1) or converges to
wrong parameter estimates (in Scenario 2). Hence, we focus on the performance of
NPL with frequency estimates as initial guesses in the discussion below.

For many experiments in Scenarios 1 and 2, the ML and the 2S-PML estimators
do quite well at recovering the true parameter values. Even with small numbers of
repeated observations (T = 5 or 10) per market, the mean of the ML estimator is
within one standard deviation of the true parameters values; on the contrary, the mean
of parameter estimates on α of two-step estimators are one standard devision away
from the true value. The biases and the root mean square error (RMSE) in the ML
estimator are significantly smaller than those of the two-step estimators when the
numbers of repeated observations per market are small. The 2S-PML estimator pro-
duces accurate parameter estimates with twenty-five or more repeated observations
per market in the data. Given sufficiently many repeated observations, the two-step
estimators can provide good parameter estimates with little computational efforts.
The NPL estimator, surprisingly, fails frequently for T = 50 or smaller; for example,
the NPL algorithm converges in only two data sets for T = 5 and in 29 data sets for
T = 10 in Scenario 1. In those failed runs, the NPL algorithm generates cycling iter-
ations without any indication of achieving convergence. This finding suggests that
the convergence of the NPL algorithm is not as robust as perceived in Aguirregabiria
and Mira (2007), even when data are generated by best-response stable equilibria.
In cases where the NPL algorithm does converge, the NPL estimator is more biased
than the ML estimator or the two-step estimators. The NPL estimator requires large
numbers of repeated observations (T = 100 for Scenario 1 and T = 250 for Sce-
nario 2) to obtain estimates that are comparable to those of the ML and the two-step
estimators.

In terms of computation time, the two-step estimators are fast, perhaps not a
surprising result because the two-step estimators do not require solving a BN equilib-
rium. Both the constrained optimization approach and the NPL estimator impose the
equilibrium constraints to be satisfied and, hence, require more computational time
than the two-step estimators. As one can see from Tables 1 and 2, the constrained
optimization approach requires only one to two seconds of computing time per

5One can improve the performance of the 2S-LS estimator by using the optimal weighting matrix, which
has been suggested by Pesendorfer and Schmidt-Dengler (2008).
6In our experiment, the NPL algorithm usually converges to the same parameter estimates from starting

values P̂ freq,
3P̂ freq

4 , and
P̂ freq

2 .
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Table 1 Scenario 1 – best-response stable equilibrium with lowest probabilities of entry for firm a used
in DGP

T Estimator Estimates RMSE CPU Num. of Avg.

α β
Time Data sets NPL

Truth 5 −11

(sec.) Conv. Iter.

5 ML 5.234 −11.238 0.665 0.692 100 –

(Cons. Opt.) (0.278) (0.506)

5 2S-PML 4.459 −10.646 1.058 0.040 100 –

(0.276) (0.796)

5 2S-LS 4.514 −11.369 1.300 0.053 100 –

(0.347) (1.100)

5 NPL 4.863 −10.019 1.639 36.051 2 987

(freq. prob.) (0.241) (1.830)

5 NPL 5.105 −10.173 1.057 28.477 39 762

(logit prob.) (0.193) (0.629)

10 ML 5.065 −11.111 0.393 0.441 100 –

(Cons. Opt.) (0.143) (0.345)

10 2S-PML 4.787 −10.886 0.602 0.043 100 –

(0.165) (0.529)

10 2S-LS 4.914 −11.473 1.002 0.055 100 –

(0.238) (0.852)

10 NPL 5.054 −10.411 0.958 33.153 29 808

(freq. prob.) (0.241) (1.830)

10 NPL 5.096 -10.219 0.928 35.840 28 847

(logit prob.) (0.136) (0.482)

25 ML 5.018 −11.022 0.197 0.417 100 –

(Cons. Opt.) (0.076) (0.181)

25 2S-PML 4.926 −11.040 0.298 0.058 100 –

(0.114) (0.264)

25 2S-LS 5.014 −11.387 0.632 0.057 100 –

(0.147) (0.479)

25 NPL 4.995 −10.607 0.688 29.122 71 543

(freq. prob.) (0.081) (0.563)

25 NPL 5.076 −10.164 0.888 50.674 28 856

(logit prob.) (0.096) (0.280)

50 ML 5.000 −11.000 0.146 0.398 100 –

(Cons. Opt.) (0.061) (0.133)

50 2S-PML 4.956 −10.983 0.218 0.090 100 –

(0.080) (0.198)

50 2S-LS 5.007 −11.119 0.365 0.056 100 –

(0.109) (0.329)
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Table 1 (continued)

T Estimator Estimates RMSE CPU Num. of Avg.

α β
Time Data sets NPL

Truth 5 −11

(sec.) Conv. Iter.

50 NPL 4.998 −10.665 0.581 32.133 86 409

(freq. prob.) (0.070) (0.472)

50 NPL 5.119 −10.226 0.821 80.510 16 913

(logit prob.) (0.093) (0.238)

100 ML 5.005 −10.996 0.112 0.858 100 –

(Cons. Opt.) (0.046) (0.103)

100 2S-PML 4.985 −11.011 0.175 0.164 100 –

(0.060) (0.164)

100 2S-LS 5.011 −11.090 0.265 0.056 100 –

(0.077) (0.238)

100 NPL 5.005 −10.908 0.301 34.516 96 242

(freq. prob.) (0.051) (0.283)

100 NPL 5.061 −10.130 0.906 155.480 15 942

(logit prob.) (0.048) (0.249)

250 ML 5.000 −10.995 0.069 1.798 100 –

(Cons. Opt.) (0.031) (0.062)

250 2S-PML 4.994 −11.002 0.099 0.379 100 –

(0.037) (0.092)

250 2S-LS 5.005 −11.025 0.160 0.057 100 –

(0.042) (0.152)

250 NPL 5.002 −10.955 0.198 57.083 100 174

(freq. prob.) (0.051) (0.283)

250 NPL 5.138 −10.276 0.739 383.240 3 985

(logit prob.) (0.022) (0.045)

Standard deviations are reported in parentheses. CPU time is the averaged time per run

starting point. Aguirregabiria and Mira (2007) suggested that the NPL estimator
requires a relatively small additional computational cost over the 2S-PML estima-
tor. In our experiments, however, the NPL algorithm requires on average more than
160 NPL iterations (i.e., iterating over the 2S-PML for more than 160 times) and
around thirty seconds to converge per starting point for T = 100 or sixty seconds
for T = 250. Hence, for Scenarios 1 and 2, the constrained optimization approach is
about thirty times faster than the NPL algorithm in computing time for T = 100 and
T = 250.

For Scenario 3, the ML estimator is the only estimator that recovers the true param-
eter values. Even though some equilibria used to generate data are unstable under best
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Table 2 Scenario 2 – best-response stable equilibrium in each market used in DGP

T Estimator Estimates RMSE CPU Num. of Avg.

α β
Time Data sets PL

Truth 5 −11

(sec.) Conv. Iter.

5 ML 5.197 −11.189 0.588 0.803 100 –

(Cons. Opt.) (0.245) (0.463)

5 2S-PML 4.380 −10.427 1.132 0.040 100 –

(0.263) (0.711)

5 2S-LS 4.395 −11.131 1.278 0.053 100 –

(0.318) (1.078)

5 NPL 4.707 −8.534 2.574 34.847 4 975

(freq. prob.) (0.241) (1.830)

5 NPL 1.738 −3.318 8.346 28.712 3 988

(logit prob.) (0.026) (0.046)

10 ML 5.104 −11.038 0.354 0.472 100 –

(Cons. Opt.) (0.149) (0.304)

10 2S-PML 4.787 −10.831 0.615 0.043 100 –

(0.181) (0.523)

10 2S-LS 4.893 −11.418 0.942 0.055 100 –

(0.243) (0.805)

10 NPL 5.019 −9.732 1.534 28.135 46 682

(freq. prob.) (0.148) (0.753)

10 NPL N/A N/A N/A 33.175 0 1000

(logit prob.) (N/A) (N/A)

25 ML 5.040 −10.992 0.214 0.245 100 –

(Cons. Opt.) (0.085) (0.193)

25 2S-PML 4.945 −10.943 0.335 0.059 100 –

(0.113) (0.307)

25 2S-LS 5.022 −11.175 0.553 0.057 100 –

(0.135) (0.509)

25 NPL 5.032 −10.087 1.229 25.661 75 469

(freq. prob.) (0.088) (0.824)

25 NPL 1.781 −3.364 8.287 46.136 1 1000

(logit prob.) (0.000) (0.000)

50 ML 5.009 −10.999 0.160 0.380 100 –

(Cons. Opt.) (0.060) (0.149)

50 2S-PML 4.967 −10.990 0.223 0.091 100 –

(0.089) (0.203)

50 2S-LS 5.016 −11.106 0.374 0.058 100 –

(0.111) (0.343)
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Table 2 (continued)

T Estimator Estimates RMSE CPU Num. of Avg.

α β
Time Data sets NPL

Truth 5 −11

(sec.) Conv. Iter.

50 NPL 5.018 −10.243 1.087 30.148 86 384

(freq. prob.) (0.071) (0.780)

50 NPL 1.763 −3.386 8.274 69.820 1 998

(logit prob.) (0.000) (0.000)

100 ML 5.011 −10.982 0.107 0.821 100 –

(Cons. Opt.) (0.046) (0.095)

100 2S-PML 4.995 −11.011 0.176 0.164 100 –

(0.060) (0.164)

100 2S-LS 5.022 −11.090 0.275 0.059 100 –

(0.077) (0.249)

100 NPL 5.024 −10.661 0.733 30.406 99 225

(freq. prob.) (0.060) (0.650)

100 NPL 1.775 −3.379 8.276 123.580 1 999

(logit prob.) (0.000) (0.000)

250 ML 5.003 −10.993 0.062 1.838 100 –

(Cons. Opt.) (0.025) (0.057)

250 2S-PML 4.9957 −11.000 0.108 0.377 100 –

(0.034) (0.103)

250 2S-LS 5.008 −11.025 0.176 0.060 100 –

(0.040) (0.171)

250 NPL 5.010 −10.854 0.470 53.572 100 168

(freq. prob.) (0.060) (0.650)

250 NPL 1.774 −3.374 8.281 281.110 2 997

(logit prob.) (0.003) (0.000)

Standard deviations are reported in parentheses. CPU time is the averaged time per run

response, the mean of the ML estimator is within one standard derivation of the true
values. This finding should not be surprising because constrained optimization algo-
rithms do not rely on best-response iterations. Thus, the presence of best-response
unstable equilibria in the data should not affect the performance of the ML estimator
under the constrained optimization approach. For the two-step estimators, both the
2S-PML and the 2S-LS estimators reject the true parameter values θ0 = (5,−11).
The mean of parameter estimates are at least one standard deviation away from the
true values in all experiments; the biases are significantly higher than those of Sce-
narios 1 and 2. In general, the 2S-PML estimator performs better than the 2S-LS
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Table 3 Scenario 3 – randomly chosen equilibrium in each market used in DGP

T Estimator Estimates RMSE CPU Num. of Avg.

α β
Time Data sets NPL

Truth 5 −11

(sec.) Conv. Iter.

5 ML 5.027 −10.743 0.661 1.346 100 –

(Cons. Opt.) (0.179) (0.585)

5 2S-PML 3.068 −7.279 4.228 0.043 100 –

(0.208) (0.512)

5 2S-LS 2.918 −7.597 4.047 0.048 100 –

(0.203) (0.654)

5 NPL N/A N/A N/A 31.527 0 1000

(freq. prob.) (N/A) (N/A)

5 NPL N/A N/A N/A 33.748 0 1000

(logit prob.) (N/A) (N/A)

10 ML 5.029 −10.816 0.394 0.641 100 –

(Cons. Opt.) (0.126) (0.326)

10 2S-PML 3.719 −8.535 2.812 0.042 100 –

(0.165) (0.403)

10 2S-LS 3.459 −8.499 2.990 0.049 100 –

(0.164) (0.531)

10 NPL N/A N/A N/A 35.756 0 1000

(freq. prob.) (N/A) (N/A)

10 NPL N/A N/A N/A 37.786 0 1000

(logit prob.) (N/A) (N/A)

25 ML 5.018 −10.964 0.189 0.512 100 –

(Cons. Opt.) (0.084) (0.166)

25 2S-PML 4.302 −9.663 1.537 0.060 100 –

(0.122) (0.268)

25 2S-LS 3.959 −9.311 2.019 0.050 100 –

(0.134) (0.354)

25 NPL N/A N/A N/A 52.268 0 1000

(freq. prob.) (N/A) (N/A)

25 NPL N/A N/A N/A 54.315 0 1000

(logit prob.) (N/A) (N/A)

50 ML 5.005 −11.007 0.150 0.669 100 –

(Cons. Opt.) (0.056) (0.139)

50 2S-PML 4.590 −10.280 0.865 0.093 100 –

(0.099) (0.230)

50 2S-LS 4.279 −9.895 1.354 0.052 100 –

(0.109) (0.283)
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Table 3 (continued)

T Estimator Estimates RMSE CPU Num. of Avg.

α β
Time Data sets NPL

Truth 5 −11

(sec.) Conv. Iter.

50 NPL N/A N/A N/A 82.390 0 1000

(freq. prob.) (N/A) (N/A)

50 NPL N/A N/A N/A 84.415 0 1000

(logit prob.) (N/A) (N/A)

100 ML 5.006 −10.997 0.102 1.252 100 –

(Cons. Opt.) (0.045) (0.092)

100 2S-PML 4.773 −10.607 0.487 0.174 100 –

(0.067) (0.165)

100 2S-LS 4.533 −10.285 0.881 0.053 100 –

(0.084) (0.200)

100 NPL N/A N/A N/A 150.220 0 1000

(freq. prob.) (N/A) (N/A)

100 NPL N/A N/A N/A 152.560 0 1000

(logit prob.) (N/A) (N/A)

250 ML 5.000 −10.999 0.063 2.512 100 –

(Cons. Opt.) (0.028) (0.057)

250 2S-PML 4.905 −10.828 0.231 0.410 100 –

(0.043) (0.114)

250 2S-LS 4.905 −10.624 0.472 0.054 100 –

(0.051) (0.157)

250 NPL N/A N/A N/A 351.990 0 1000

(freq. prob.) (N/A) (N/A)

250 NPL N/A N/A N/A 354.470 0 1000

(logit prob.) (N/A) (N/A)

Standard deviations are reported in parentheses. CPU time is the averaged time per run

estimator; however, 250 repeated observations are required for the 2S-PML estimator
to produce reasonable parameter estimates. The NPL algorithm fails to converge and
cannot compute a solution of the NPL estimator in all one hundred data sets in this
scenario. Pesendorfer and Schmidt-Dengler (2010) have provided a counterexample
that illustrates that the NPL algorithm produces wrong parameter values. By using
the one best-response iteration update in Eq. (23), the NPL algorithm and, as a result,
the NPL estimator implicitly requires that equilibria in the data are stable under best
response. Obviously, this assumption is violated in the data generating process for
Scenario 3.
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5 Empirical application: discount retailers’ entry decisions

5.1 The model

Based on the empirical application studied in Jia (2008), we consider a more realis-
tic model of static game of incomplete information to examine the performance of
the estimators discussed in previous sections. In this model, there are two discount
retailers, Walmart and Kmart, making entry decisions in various markets, indexed
by m = 1, . . . ,M . Following the specifications in Ellickson and Misra (2011) and
Misra (2013), the entry probabilities of Walmart and Kmart in market m, denoted by
pm
W and pm

K , respectively, are given as follows:

pm
W = exp(α′xm + β ′

Wxm
W − δpm

K)

1 + exp(α′xm + β ′
Wxm

W − δpm
K)

= �W(xm, xm
W, pm

K ; θ)

pm
K = exp(α′xm + β ′

Kx
m
K − δpm

W )

1 + exp(α′xm + β ′
Kx

m
K − δpm

W )
= �K(x

m, xmK, p
m
W ; θ),

(24)

where θ = (α,βW ,βK, δ) is the vector of structural parameters, and the data in
each market m are county demographics xm = (

xm1 , xm2 , xm3

)
, Walmart specifics

xm
W = (

xmW0, x
m
W1, x

m
W2

)
, and Kmart specifics xm

K = (
xmK0, x

m
K1

)
. The descriptions

of the data xm, xm
W , and xm

K are given in the next subsection. Within structural
parameters, α = (α1, α2, α3) and δ are common (or identical) among the two
firms, βW = (βW0, βW1, βW2) are parameters associated with Walmart only, and
βK = (βK0, βK1) are associated with Kmart only. The parameter δ captures the
effect of the rival firm’s entry decision on the focal firm’s payoff, if the focal firm
decides to enter the market. Following the notation used in Eq. (7) in Section 2, we
represent the BN equilibrium equations for all markets as

P = �(P ,X; θ),

where P = (pm
W , pm

K

)M
m=1, � = (�W,�K) and X = (xm, xm

W, xm
K

)M
m=1.

5.2 Data and experiment specifications

We used a subset of Jia’s year 1997 data in our numerical experiments. Specifically,
we used data from 200 markets, starting from county identifier 158 to 506.7 In these
200 markets, 30.5 % ( 61 counties) had Walmart stores only, 4.5 % (9 counties) had
Kmart stores only, and (13 % (26 counties) had both Walmart and Kmart stores,
which are fairly representative of the same summary statistics in the whole data set.8

7These are Row 117 to 316 in Jia’s data file, XMat97.out.
8In the whole date sets with 2065 counties, 33.6 % (694 counties) had Walmart stores only, 5 % (103
counties) had Kmart stores only, and 13.9 % (287 counties) had both Walmart and Kmart stores.
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The descriptions of the data xm, xm
W , and xm

K in each of the 200 markets are given
below with the corresponding structural parameters in the parenthesis:

xm =
⎧⎨
⎩
xm1 : log of county population (α1)

xm2 : log county retail sales per capita (α2)

xm3 : percentage of urban population (α3)

xm
W =

⎧⎨
⎩
xmW0 : Walmart dummy (βW0)

xmW1 : distance to Bentonville, AK (βW1)

xmW2 : southern market dummy (βW2)

xm
K =

{
xmK0 : Kmart dummy (βK0)

xmK1 : midwest market dummy (βK1).

We examined two sets of parameter values in our Monte Carlo experiments:

α0 = (1.75, 2.08, 1.50),
β0
W = (−16.95,−1.06, 0.88),

β0
K = (−24.26, 0.38),

δ0 = 0.71 or 6.

(25)

In the first set, we chose δ0 = 0.71.9 Given this set of true parameter values, one

can verify that ρ
[
∇P�(P ,X; θ0)

]
, the spectral radius of the Jacobian mapping

∇P�(P ,X; θ0) is always less than 1, regardless of the equilibrium probabilities.
This implies that a unique equilibrium exists in each of the 200 markets.

To create an example with multiple equilibria in some markets, the spectral radius

ρ
[
∇P�(P ,X; θ0)

]
needs to be greater than 1. This, in turn, requires that the true

parameter value δ0 needs to be greater than 4.10 In the second set of parameter values,
we chose true parameter value δ0 = 6 while keeping the other parameters at the same
values given in Eq. 25. Indeed, with this choice of parameter values, we found three
equilibria in 7 of the 200 markets. The county identifier of these 7 markets and the
corresponding equilibrium probabilities are reported in Table 4.

We consider three different scenarios and describe the types of equilibrium used
in the data generating process below. As before, the assumption that only one equi-
librium is played in each market (Assumption 2) is maintained in generating the
data.

Scenario 4: Parameter values given in Eq. 25 with δ0 = 0.71 are chosen as the
truth. In this scenario, a unique equilibrium exists in each of the 200 markets.

Scenario 5: Parameter values given in Eq. 25 with δ0 = 6 are chosen as the truth.
In each of the 7 markets with multiple equilibria, Equilibrium 1 (a best-response
stable equilibrium) reported in Table 4 is played in the data.

9These numbers are close to those reported in Jia (2008), Ellickson and Misra (2011) and Misra (2013).
10We provide more detailed discussion on ρ

[
∇P�(P ,X; θ0)

]
and the condition on δ0 in Appendix B.
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Table 4 Markets with multiple equilibria with δ0 = 6

Market index County identifier Equilibrium probabilities (pW , pK)

Equilibrium 1 Equilibrium 2 Equilibrium 3

162 258 (0.0458, 0.8833) (0.4378, 0.4187) (0.8774, 0.0490)

164 261 (0.0927, 0.4662) (0.1896, 0.3281) (0.5482, 0.0537)

165 262 (0.0454, 0.9018) (0.4749, 0.4110) (0.8834, 0.0567)

171 273 (0.0358, 0.7788) (0.3750, 0.3151) (0.7509, 0.0460)

177 282 (0.0382, 0.6783) (0.3539, 0.2407) (0.6157, 0.0618)

181 288 (0.0405, 0.7092) (0.3311, 0.2991) (0.6926, 0.0465)

187 298 (0.0437, 0.8540) (0.4011, 0.4066) (0.8559, 0.0428)

Scenario 6: Parameter values given in Eq. 25 with δ0 = 6 are chosen as the truth.
In each of the 7 markets with multiple equilibria, Equilibrium 2 (the best-response
unstable equilibrium) reported in Table 4 is played in the data.

In simulating the data, we considered different number of repeated observations
T , ranging from 5 to 50. For each scenario, we constructed one hundred data sets
for each T . Since the 2S-LS estimator was outperformed by the 2S-PML estimator
in the Monte Carlo experiments in Section 4, we excluded the 2S-LS estimator from
this exercise. To find the parameter estimates for each data set, we used one hundred
different starting points for the constrained optimization approach. For the 2S-PML
estimator, we used frequency estimates of the equilibrium probabilities in the first
step. For the NPL estimator, we used five different starting values of equilibrium
probabilities and set the maximum number of NPL iterations to K̄ = 1000. We chose
1.0e-6 as the convergence tolerances for the NPL algorithm and the constrained
optimization approach.

5.3 Estimation results

The Monte Carlo results, reported in Tables 5, 6 and 7, present qualitatively simi-
lar observations to those using the simple static example in Section 4. Overall, ML
estimator still perform the best, producing estimates with mean that is within in
one standard deviation of the true parameter values in all experiments. The 2S-PML
estimator does quite well at recovering true values for most parameters, but has dif-
ficulties with the parameter δ, the coefficient that captures the strategic interactions
among firms. In all experiments except for T = 25 and 50 in Scenario 4, the mean
of the 2S-PML estimator on the parameter δ is one standard deviation away from the
true value.

The performance of the NPL estimator varies across the three scenarios. In Sce-
nario 4, the NPL estimator successfully converges in all one hundred data sets and
produce accurate parameter estimates. However, the performance of the NPL estima-
tor and the NPL algorithm worsens in Scenarios 5 and 6 with δ0 = 6. In Scenario 5,
while the NPL estimator still does well at recovering true parameter values, the NPL
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algorithm fails to converge in 35 data sets for T = 5 and in 12 data sets for T = 50.
In Scenario 6 where the best response unstable equilibria are played in the data, the
NPL algorithm fails to converge frequently; for example, it converges in only 7 data
sets for T = 5 and in 11 data sets for T = 50. While this finding is an improvement
over the results in Scenario 3 where the NPL algorithm fails to converge in all one
hundred data sets, the mean of the NPL estimator on the interaction coefficient δ from
those converged data sets, except for T = 25, are two standard deviations or more
away from the truth. Hence, the NPL estimator would reject the true parameter value
δ0 = 6. Further examining the properties of the converged equilibrium by the NPL
algorithm in each converged run, we find that the spectral radius ρ [∇P�(P ,X; θ)]
evaluated at the converged equilibrium and the parameter estimates is strictly less
than 1. This finding confirms the observation that implicitly, the NPL algorithm is
searching for best response stable equilibrium in the iteration process. When best
response unstable equilibria are played in the data, the NPL estimator cannot provide
consistent estimates.

5.4 Post-estimation equilibrium analysis

In this subsection, we conduct post-estimation equilibrium analysis. To better under-
stand the effects of using different estimators on the equilibrium structure (i.e.,
number of equilibria) and corresponding equilibrium probabilities, we use the mean
of the three estimators from Scenario 6 and resolve the BN equilibrium model (6)
for each of the 200 markets. In Table 8, we report only those markets in which the
number of equilibria at the given parameter estimates differs from that at the true
parameter values θ0.

Our results indicate that using the mean of the ML estimator preserves the equi-
librium structure, except in four markets for T = 5 and three markets for T = 10.
On the contrary, using the mean of the 2S-PML and the NPL estimators tend to
underpredidct the number of equilibria, especially when T is small. Recall that, at
true parameter values θ0 with δ0 = 6, there are 7 markets with three equilibria; see
Table 4. Using the mean of the ML estimator, we find three equilibria in these 7 mar-
kets for all T . In addition, we also find three equilibria in another 4 markets (Market
137, 155, 174, and 185) for T = 5 and in another 3 markets (Market 137, 155 and
174) for T = 10. Using the mean of the 2S-PML and the NPL estimators for T = 5,
we find very different equilibrium structure: a unique equilibrium exists in each of
the 200 markets. As we increase T , the equilibrium structure implied by the mean of
the 2S-PML and the NPL estimators become more similar to that at the true param-
eter values θ0. For example, for T = 50, given the mean of the 2S-PML estimator, a
unique equilibrium exists in one market (Market Index 164), and using the mean of
the NPL estimator, a unique equilibrium exists in two markets (Market 164 and 177).

In Tables 9 and 10, we also report the corresponding equilibrium probabilities cal-
culated using the mean of the three estimators for T = 5 and T = 50, respectively.11

As shown in the tables, the equilibrium probabilities calculated using the mean of the

11Results for T = 10 and T = 25 provide similar observations to those for T = 5 and T = 50, and are
omitted here.
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Table 8 Post estimation analysis for scenario 6 – number of equilibria in each market at given parameter
estimates

Market index County identifier Number of equilibria

T = 5

θ0 θMLE θ2S−PML θNPL

137 184 1 3 1 1

155 241 1 3 1 1

162 258 3 3 1 1

164 261 3 3 1 1

165 262 3 3 1 1

171 273 3 3 1 1

174 277 1 3 1 1

177 282 3 3 1 1

181 288 3 3 1 1

185 293 1 3 1 1

187 298 3 3 1 1

T = 10

θ0 θMLE θ2S−PML θNPL

137 184 1 3 1 1

155 241 1 3 1 1

162 258 3 3 3 3

164 261 3 3 1 1

165 262 3 3 3 3

171 273 3 3 1 3

174 277 1 3 1 1

177 282 3 3 1 1

181 288 3 3 1 3

187 298 3 3 3 3

T = 25

θ0 θMLE θ2S−PML θNPL

123 164 1 1 1 3

134 179 1 1 1 3

162 258 3 3 3 1

164 261 3 3 1 1

165 262 3 3 3 1

171 273 3 3 3 1

177 282 3 3 1 1

181 288 3 3 3 1

187 298 3 3 3 1
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Table 8 (continued)

Market index County identifier Number of equilibria

T = 50

θ0 θMLE θ2S−PML θNPL

162 258 3 3 3 3

164 261 3 3 1 1

165 262 3 3 3 3

171 273 3 3 3 3

177 282 3 3 3 1

181 288 3 3 3 3

187 298 3 3 3 3

Table 9 Post-estimation analysis for scenario 6 – equilibrium probabilities at given parameter estimates
for T = 5

Market index County identifier Parameter Equilibrium probabilities (pW , pK)

values
Equilibrium 1 Equilibrium 2 Equilibrium 3

137 184 θ0 (0.0248, 0.7693) – –

θMLE (0.0218, 0.7727) (0.4725, 0.1739) (0.6143, 0.0807)

θ2S−PML (0.1663, 0.4619) – –

θNPL (0.0000, 0.6584) – –

155 241 θ0 – – (0.4625, 0.0705)

θMLE (0.0968, 0.4156) (0.1752, 0.3048) (0.4937, 0.0579)

θ2S−PML – – (0.2700, 0.1843)

θNPL (0.0001, 0.4418) – –

162 258 θ0 (0.0458, 0.8833) (0.4378, 0.4187) (0.8774, 0.0490)

θMLE (0.0393, 0.8893) (0.4321, 0.4157) (0.8843, 0.0418)

θ2S−PML – (0.5617, 0.3465) –

θNPL (0.0001, 0.8433) – –

164 261 θ0 (0.0927, 0.4662) (0.1896, 0.3281) (0.5482, 0.0537)

θMLE (0.0683, 0.5190) (0.2101, 0.3103) (0.5788, 0.0442)

θ2S−PML – – (0.3264, 0.1955)

θNPL (0.0001, 0.5058) – –

165 262 θ0 (0.0454, 0.9018) (0.4749, 0.4110) (0.8834, 0.0567)

θMLE (0.0393, 0.9067) (0.4665, 0.4103) (0.8909, 0.0482)

θ2S−PML (0.3289, 0.6156) – –

θNPL (0.0001, 0.8656) – –

171 273 θ0 (0.0358, 0.7788) (0.3750, 0.3151) (0.7509, 0.0460)

θMLE (0.0308, 0.7812) (0.3649, 0.3123) (0.7564, 0.0390)

θ2S−PML – (0.3199, 0.3693) –

θNPL (0.0001, 0.6950) – –
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Table 9 (continued)

Market index County identifier Parameter Equilibrium probabilities (pW , pK)

values
Equilibrium 1 Equilibrium 2 Equilibrium 3

174 277 θ0 – – (0.6032, 0.0404)

θMLE (0.0969, 0.4761) (0.1511, 0.3940) (0.6206, 0.0346)

θ2S−PML – – (0.3720, 0.1611)

θNPL (0.0001, 0.4969) – –

177 282 θ0 (0.0382, 0.6783) (0.3539, 0.2407) (0.6157, 0.0618)

θMLE (0.0330, 0.6881) (0.3421, 0.2466) (0.6350, 0.0510)

θ2S−PML – (0.2562, 0.3267) –

θNPL (0.0001, 0.6030) – –

181 288 θ0 (0.0405, 0.7092) (0.3311, 0.2991) (0.6926, 0.0465)

θMLE (0.0348, 0.7183) (0.3252, 0.2980) (0.7040, 0.0394)

θ2S−PML – (0.3279, 0.2902) –

θNPL (0.0001, 0.6347) – –

185 293 θ0 (0.0722, 0.4518) – –

θMLE (0.0608, 0.4766) (0.3236, 0.1524) (0.3740, 0.1164)

θ2S−PML (0.2153, 0.2216) – –

θNPL (0.0001, 0.4420) – –

187 298 θ0 (0.0437, 0.8540) (0.4011, 0.4066) (0.8559, 0.0428)

θMLE (0.0375, 0.8626) (0.3984, 0.4038) (0.8645, 0.0368)

θ2S−PML – – (0.5729, 0.2807)

θNPL (0.0001, 0.8102) – –

ML estimator match those at the true parameter values well, especially for T = 50.
Although for T = 5, using the mean of ML estimator results in overpredicting the
number of equilibria in 4 markets (Market 137, 155, 174, and 185), one of the three
ML equilibria in each of those 4 markets is close to the true equilibrium at the true
parameter values θ0; see Table 9. For the 2S-PML estimator, the equilibrium proba-
bilities calculated using the mean of the 2S-PML estimator for T = 5 are off from
the true equilibrium probabilities by at least 10 % in most markets, except for Mar-
ket 171 and 181. When we use the mean of the 2S-PML estimator for T = 50, the
implied equilibrium probabilities are fairly accurate, with the difference being less
than 2 % from the true equilibrium in most cases; see Table 10.

Using the mean the NPL estimator for T = 5, we find only one type of equilib-
rium in the markets: Walmart enters the market with very low probability (0.01 %
or less ) and Kmart enters with high probability (between 44 % in Market 155 and
86 % in Market 165); see Table 9. Clearly, this policy is very different from the
equilibrium probabilities at the true parameter values. For T = 50, using the mean
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Table 10 Post-estimation analysis for scenario 6 – equilibrium probabilities at given parameter estimates
for T = 50

Market index County identifier Parameter Equilibrium probabilities (pW , pK)

values
Equilibrium 1 Equilibrium 2 Equilibrium 3

162 258 θ0 (0.0458, 0.8833) (0.4378, 0.4187) (0.8774, 0.0490)

θMLE (0.0466, 0.8836) (0.4392, 0.4199) (0.8776, 0.0499)

θ2S−PML (0.0620, 0.8628) (0.4415, 0.4239) (0.8570, 0.0656)

θNPL (0.1423, 0.7862) (0.4361, 0.4690) (0.7991, 0.1318)

164 261 θ0 (0.0927, 0.4662) (0.1896, 0.3281) (0.5482, 0.0537)

θMLE (0.0928, 0.4687) (0.1911, 0.3287) (0.5501, 0.0541)

θ2S−PML – – (0.5021, 0.0751)

θNPL – – (0.4317, 0.1296)

165 262 θ0 (0.0454, 0.9018) (0.4749, 0.4110) (0.8834, 0.0567)

θMLE (0.0463, 0.9021) (0.4766, 0.4123) (0.8836, 0.0578)

θ2S−PML (0.0608, 0.8846) (0.4841, 0.4118) (0.8622, 0.0763)

θNPL (0.1330, 0.8237) (0.5078, 0.4310) (0.7951, 0.1581)

171 273 θ0 (0.0358, 0.7788) (0.3750, 0.3151) (0.7509, 0.0460)

θMLE (0.0363, 0.7775) (0.3754, 0.3147) (0.7493, 0.0467)

θ2S−PML (0.0501, 0.7451) (0.3808, 0.3107) (0.7116, 0.0649)

θNPL (0.1234, 0.6321) (0.3894, 0.3209) (0.5975, 0.1468)

177 282 θ0 (0.0382, 0.6783) (0.3539, 0.2407) (0.6157, 0.0618)

θMLE (0.0387, 0.6773) (0.3550, 0.2402) (0.6139, 0.0629)

θ2S−PML (0.0545, 0.6355) (0.3771, 0.2196) (0.5482, 0.0966)

θNPL (0.1391, 0.4982) – –

181 288 θ0 (0.0405, 0.7092) (0.3311, 0.2991) (0.6926, 0.0465)

θMLE (0.0412, 0.7074) (0.3313, 0.2987) (0.6904, 0.0473)

θ2S−PML (0.0585, 0.6654) (0.3320, 0.2975) (0.6472, 0.0665)

θNPL (0.1790, 0.4817) (0.2826, 0.3599) (0.5231, 0.1489)

187 298 θ0 (0.0437, 0.8540) (0.4011, 0.4066) (0.8559, 0.0428)

θMLE (0.0444, 0.8542) (0.4024, 0.4077) (0.8561, 0.0436)

θ2S−PML (0.0601, 0.8292) (0.4011, 0.4138) (0.8339, 0.0576)

θNPL (0.1466, 0.7326) (0.3746, 0.4753) (0.7752, 0.1148)

of the NPL estimates tends to overestimate (underestimate) the entry probability of
Walmart (Kmart) in Equilibrium 1 but underestimate (overestimate) the entry prob-
ability of Walmart (Kmart) in Equilibrium 3; see Table 10. In some cases, the
difference between the equilibrium probabilities at the mean of the NPL estimator
and at the true equilibrium probabilities is around 10 % or larger; see, for example,
Market 171 or 181 in Table 10.
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6 Conclusion

We have proposed a constrained optimization formulation of the ML estimation
problem for static games of incomplete information and conducted Monte Carlo
experiments to examine the finite-sample performance of the ML estimator, the
2S-PML and 2S-LS estimators, and the NPL estimator. Our Monte Carlo results
demonstrate that the finite-sample performance of the ML estimator is superior to
those of the two-step estimators as well as the NPL estimator, particularly when
small numbers of repeated observations exist in the data. The 2S-PML and 2S-LS
estimators perform well when there are sufficiently many repeated observations to
estimate equilibrium probabilities accurately in the first step; however, they can be
biased when only small numbers of repeated observations are available or when
the data are generated by best-response unstable equilibria. In practice, if there are
sufficient amounts of data available to researchers to accurately estimate choice
probabilities in the first stage, then 2S-PML and 2S-LS estimators provide a viable
and computationally efficient way to obtain parameter estimates. The NPL estima-
tor frequently fails to converge when only small numbers of repeated observations
are available or when best-response unstable equilibria are played in the data. In
the latter case, the NPL estimator produces highly biased estimates when the NPL
algorithm converges. Given that one cannot test whether data were generated by best-
response stable or unstable equilibria prior to estimating the model, we believe the
ML estimator implemented by the constrained optimization approach is the better
choice, provided the size of the estimation problem to be solved is computationally
manageable.

In the post-estimation equilibrium analysis, we also find that with small number
of repeated observations, the 2S-PML and the NPL estimators can predict fairly dif-
ferent equilibrium structure and equilibrium policies when the data are generated by
best-response unstable equilibria, while the ML estimator preserve the equilibrium
structure and equilibrium probabilities quite well.

While we do not have a general characterization theorem to indicate which esti-
mator will work better under certain situations or which numerical algorithm will
converge faster in practice on specific models, our findings from Monte Carlo
experiments are still important and valuable. Researchers need to be aware of the
trade-off between computational costs and the accuracy of parameter estimates
as well implied equilibrium probabilities at the parameter estimates in the post-
estimation equilibrium analysis. To avoid unintended consequences, researchers also
need to understand the implications of choosing specific computational procedures
to implement specific estimation methods.
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Appendix A: The constrained optimization formulation for the ML estimator
under general equilibrium selection mechanism

In this appendix, we derive the constrained optimization formulation of the maximum
likelihood estimation problem under a general equilibrium selection mechanism.
To simplify the notation, we only consider the case of one market and drop the
superscript m for market index in the notation used in Section 3.

Given the parameter vector θ and firms’ observed types x, let E(θ , x) = {p̄k(θ)}k
denote the set of BN equilibria, where p̄k(θ) = (p̄ka(θ ), p̄kb(θ )) is the k-th equilib-
rium that solves the BN equilibrium (4). For the constrained optimization approach,
given θ , an equilibrium selection mechanism λ = {λk}|E(θ,x)|k=1 and any given set of

probabilities {pk = (pka, pkb)}|E(θ,x)|k=1 (which do not need to be the equilibrium prob-
abilities that solve the BN equilibrium equation), we define the augmented logarithm
of the likelihood function of observing the decisions y = (yta, y

t
b)

T
t=1 as

L
[
θ , λ, {pk}k

]=
T∑
t=1

log

⎧⎨
⎩
|E(θ,x)|∑
k=1

λk

[
(pka)

yta

][
(1−pka)

1−yta
][
(pkb)

ytb

][
(1−pkb)

1−ytb
]⎫⎬
⎭.

(26)
The constrained optimization formulation of the ML estimator is then defined as:

maximize{θ,λ,{pk}k}
L
[
θ , λ, {pk}k

]

s.t.
|E(θ,x)|∑
k=1

λk = 1,

pk = �(pk, x; θ), k = 1, . . . , |E(θ, x)|.

(27)

Notice the constrained optimization problem formulated above is not computable
because the number of constraints, |E(θ , x)|, in Eq. 27 depends on the values of
decision variables θ . Nonetheless, we can characterize the equivalence in objective
value of the two problems (10) and (27) in the following proposition.

Proposition 2 Let (θ̄ , λ̄(θ̄)) be a solution of the ML estimation problem

defined in Eq. 10 with corresponding equilibrium probabilities {p̄k(θ̄)}|E(θ̄,x)|k=1 . Let

(θ∗, λ∗, {p∗
k}|E(θ

∗,x)|
k=1 ) be a solution of the constrained optimization problem (27).

Then L[θ̄ , λ̄(θ̄), {p̄k(θ̄)}k] = L
[
θ∗, λ∗, {p∗

k}k
]
. If the model is identified, then

θ̄ = θ∗.

Proof By definition, L[θ̄, λ̄(θ̄), {p̄k(θ̄)}k] ≥ L[θ , λ(θ), {p̄k(θ)}k] for any given θ ,
λ(θ) and {p̄k(θ)}k that satisfy the BN equilibrium equation p = �(p, x, θ). Since

the pair (θ∗, {p∗
k}|E(θ

∗,x)|
k=1 ) satisfies the BN equation as the constraints in Eq. 27, it

follows that

L[θ̄, λ̄(θ̄ ), {p̄k(θ̄)}k]] ≥ L
[
θ∗, λ∗, {p∗

k}k
] = L

[
θ∗, λ∗, {p∗

k}k
]
.
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Conversely, since the tuple (θ̄ , λ̄(θ̄), {p̄k(θ̄)}|E(θ̄,x)|k=1 ) satisfies the constraints in
Eq. 27, we have

L
[
θ∗, λ∗, {p∗

k}k
] ≥ L[θ̄, λ̄(θ̄), {p̄k(θ̄)}k] = L[θ̄, λ̄(θ̄), {p̄k(θ̄)}k].

If the model is identified, the solution is unique, so θ̄ = θ∗.

Assuming only one equilibrium is played in the data, only one component in λ is 1
and all the others are 0. Then the constrained optimization problem (27) is equivalent
to

maximize{θ ,{pk}k}
max

k=1,...,|E(θ,x)|

[
T∑
t=1

log
{
(pka)

yta (1 − pka)
1−yta (pkb)

ytb (1 − pkb)
1−ytb

}]

s.t. pk = �(pk, x; θ), k = 1, . . . , |E(θ, x)|.
(28)

Notice that the constrained optimization problem formulated in Eq. 28 is also not
computable because its size (the number of constraints, |E(θ , x)| and decision vari-
ables {pk}k) depend on the values of decision variables θ ; it also involves finding all

the equilibrium solutions {pk}|E(θ,x)|k=1 at any given θ . We present a computationally
tractable reformulation of the problem (28) as follows:

maximize{θ,p}

T∑
t=1

log
{
(pa)

yta (1 − pa)
1−yta (pb)

ytb (1 − pb)
1−ytb

}

s.t. p = �(p, x; θ).
(29)

Notice that the size (number of decision variables and constraints) of the problem (29)
is fixed and does not depend on the value of θ . Moreover, we do not need to find all
equilibria at any given θ ; only one equilibriump is needed since only one equilibrium
constraint is imposed. The equivalence in the objective value and solutions between
the problems (28) and (29) is stated below. We omit the proof since it follows similar
arguments used in proving Proposition 2.

Proposition 3 Let
(
θ∗, {p∗

k}|E(θ
∗,x)|

k=1

)
denote the solution to the optimization prob-

lem (28) withp∗̄
k
∈ {p∗

k}k being the equilibrium that maximizes the objective function,
i.e.,

k̄ = argmax
k=1,...,|E(θ,x)|

[
T∑
t=1

log
{
(p∗

ka)
yta
(
1 − p∗

ka

)1−yta (p∗
kb)

ytb
(
1 − p∗

kb

)1−ytb
}]

.

Then, the vector
(
θ∗,p∗̄

k

)
is also an optimal solution to the optimization problem

(29). Conversely, let
(
θ̂ , p̂

)
denote a solution of the problem (29). Then the pair(

θ̂ , p̂
)

together with all the other equilibrium probabilities {pk}k \ p̂ at θ̂ is an

solution to the problem (28).
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Finally, the formulation in Eq. 29 can be generalized to the constrained optimiza-
tion problem for the ML estimator defined in Eq. 18 for the case of observing data in
multiple markets.

Appendix B: Creating examples with multiple equilibria

In this appendix, we derive the formula for calculating the spectral radius
ρ [∇P�(P ,X; θ)] for the model in Section 5. We first derive the formula for calcu-
lating the spectral radius for one market and then generalize the formula to the case
with multiple markets. Recall that in Section 5, for m = 1, . . . ,M , we have

pm
W = exp(α′xm + β ′

Wxm
W − δpm

K)

1 + exp(α′xm + β ′
Wxm

W − δpm
K)

= �W(xm, xm
W, pm

K ; θ)

pm
K = exp(α′xm + β ′

Kx
m
K − δpm

W )

1 + exp(α′xm + β ′
Kx

m
K − δpm

W )
= �K(x

m, xmK, p
m
W ; θ),

We represent the BN equilibrium equations above for market m as

pm = �(pm,Xm; θ),
where pm = (pm

W , pm
K), � = (�W,�K), and Xm = (xm, xmW , xm

K). The Jacobian of
the mapping �(pm,Xm; θ) with respect to pm is

∇pm�(pm,Xm; θ) =
[

∂�W

∂pm
W

∂�W

∂pm
K

∂�K

∂pm
W

∂�K

∂pm
K

]
=
[

0 pm
W(1 − pm

W)δ

pm
K(1 − pm

K)δ 0

]
.

The eigenvalues λm of ∇pm�(pm,Xm; θ) satisfy the following conditions:

det
(∇pm�(pm,Xm; θ)− λmI

) = (λm)2 − pm
W(1 − pm

W)pm
K(1 − pm

K)δ
2 = 0,

where I is the identity matrix. Hence, we have

λm = ±δ

√
pm
W(1 − pm

W)pm
K(1 − pm

K).

The spectral radius of the Jacobian mapping ∇pm�(pm,Xm; θ) for market m is then

ρ[∇pm�(pm,Xm; θ)] = max |λm| = |δ|
√
pm
W(1 − pm

W)pm
K(1 − pm

K).

Next we generalize the derivation above to the case with multiple markets. Recall we
represent the BN equilibrium equations for all markets m = 1, . . . ,M as

P = �(P ,X; θ),
where P = (pm

W , pm
K)

M
m=1, � = (�W,�K) and X = (xm, xm

W, xm
K)

M
m=1. Observe

that the Jacobian matrix ∇P�(P ,X; θ) has the block-diagonal structure

∇P�(P ,X; θ)=

⎡
⎢⎢⎢⎣
∇p1�(p1,X1; θ) 0 · · · 0

0 ∇p2�(p2,X2; θ) · · · 0
...

...
. . .

...

0 0 · · · ∇pM�(pM,XM ; θ)

⎤
⎥⎥⎥⎦ .
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Consequently, the spectral radius of the Jacobian mapping ∇P�(P ,X; θ) is given as

ρ[∇P�(P ,X; θ)] = max
m=1,...,M

|λm| = max
m=1,...,M

{
|δ|
√
pm
W(1 − pm

W)pm
K(1 − pm

K)
}
.

To create an example with multiple equilibria in some markets, we need
the spectral radius ρ[∇P�(P ∗,X; θ0)] evaluated at structural parameters θ0

and the corresponding equilibrium P to be greater than 1, which implies
|δ0|√pm

W(1 − pm
W)pm

K(1 − pm
K) > 1 for some m. This, in turns, requires that

|δ0| > 4,

since
√
pm
W(1 − pm

W)pm
K(1 − pm

K) < 1/4. As a conservative choice, we choose δ0 =
6 in the second set of true parameter values in Eq. 25.
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