CONSTRAINEDOPTIMIZATION APPROACHES TO
ESTIMATION OF STRUCTURAL MODELS: COMMENT*

FEDOR ISKHAKOV JOHN RusT!
UNIVERSITY OF NEW SOUTH WALES GEORGETOWNUNIVERSITY

BERTEL SCHIERNING
UNIVERSITY OF COPENHAGEN

JUNE 2014

Abstract

We revisit the comparison of mathematical programming wdhilibrium constraints (MPEC)
and nested fixed point (NFXP) algorithms for estimating cttrital dynamic models by Judd
and Su (JS, 2012). They used an inefficient version, NFXP{B&, relies on the method
of successive approximations to solve the fixed point prabléVe re-do their comparison
using the more efficient version of NFXP that Rust (1987) us&eXP-NK, which combines

successive approximations and Newton-Kantorovich it@matto solve the fixed point problem.
MPEC and NFXP-NK are similar in performance when the fixedhpdimension and sample
size are relatively small and the discount factor is not tmseto 1. However for higher
dimensional problems, or problems with large sample sidEXP-NK outperforms MPEC by

orders of magnitude. MPEC fails to converge with high pralitstas the fixed point dimension
increases, or as the discount factor approaches 1.

KEYWORDS: Structural estimation, dynamic discrete choice, NFXP,B@P successive ap-
proximations, Newton-Kantorovich algorithm.

*We are grateful to Harry J. Paarsch and Che-Lin Su for helpfahments. An early version of this paper was
presented by Bertel Schjerning at the ZICE2014 workshopetiniversity of Zurich. We are grateful to participants
of the ZICE2014 workshop for helpful feedback that lead t® ¢rrent draft of this comment. This paper is part of
the IRUC research project financed by the Danish Council fat&€gic Research (DSF). Financial support is gratefully
acknowledged.

TCorresponding author, emajir 1393@geor get own. edu.

1 Introduction

In their paper “Constrained optimization approaches toredion of structural models”
Judd and Su (2012), hereafter JS, proposed a constrainedizgiton method for struc-
tural estimation of infinite horizon dynamic discrete cleomodels termed mathematical
programming with equilibrium constraints (MPEC).

The standard approach for solving this type of problemsaadsted fixed poif{ftNFXP)
algorithm proposed by Rust (1987). NFXP exploits the faat the likelihood function de-
pends on a value function from dynamic programming. Thisi@dlinction is in turn the
unique fixed point to a contraction mapping, and under weakraptions will be a smooth
implicit function of the structural parameters. This ingdithat the likelihood can be max-
imized using a standandnconstrainedjuasi-Newton optimization algorithm. However,
each time the likelihood is evaluated, NFXP must call a fixeohpalgorithm to compute
the value function implied by the current parameter values.

In contrast to NFXP, the MPEC method does not need a speatiadilgorithm to com-
pute the fixed point: it treats the problem of maximizing kelihood function with respect
to theK structural parameters pli levels of the value function, whei¢ is the number
of grid points in the discretized state space. These valuess satisfy the contraction fixed
point constraint. Thus MPEC also implicitly solves the fixent problem while searching
for structural parameter values that maximize the likadithdout using a general-purpose
constrainedoptimization aIgorithrH.

JS used the model of optimal replacement of bus engines df (R887) to conduct
a Monte Carlo study to compare the performance of the MPECNIRP algorithms.
They found that MPEC outperformed NFXP in terms of CPU timeupyto three orders
of magnitude. The point of this comment is to note that JS asenhefficient version of
the NFXP algorithm. JS used the methodsatcessive approximatiofSA) to solve the
inner fixed point problem, so we call the version of NFXP thegdiNFXP-SA. But it is
well known that successive approximations is an inefficagorithm for computing fixed

points of contraction mappings, especially when the magloluthe contraction (which

1The specific implementation JS use is KNITRO (see Byrd, Nakadd Waltz 2006).

equals the discount factor in the underlying dynamic prognéng problem) is close to 1.
We show that the poor performance of NFXP relative to MPEQiargifact of JS’s use of
an inefficient version of NFXP — NFXP-SA.

We redo the JS Monte Carlo study using the more efficient @ersi NFXP that Rust
(1987) employed. This version, which we abbreviate as NINKR-uses a combination
of successive approximations and the Newton-Kantorovit) (method to solve the in-
ner fixed point problem and is significantly faster and mof&lée, especially when the
discount factor is close to 1. We demonstrate that NFXP-N(KMREC are roughly equiv-
alent in their numerical performance when the sample siggfiaad point dimension are
relatively small, and when the discount factor is not tocselto 1. However as the dis-
count factor approaches 1, NFXP-NK is significantly morélstand converged in every
Monte Carlo trial, whereas MPEC failed to converge with @bty approaching 1 as the
discount factor approached 1. Furthermore, once the sasig@der fixed point dimension
is sufficiently large, NFXP is significantly faster than MPEC

Newton-Kantorovich is the preferred method for computiogtcaction fixed points
because it has guaranteed quadratic convergence rate mairdof attraction of the fixed
point. However the Newton-Kantorovich approach is onlyalbcconvergent, so the origi-
nal design of the NFXP algorithm (Rust 1987, 2000) starth sitccessive approximations
to ensure global convergence, and switches to Newton-Kawitth iterations only when
it detects that it is in a domain of attraction of the fixed pairmere the rapid quadratic
convergence takes hold. This hybrid algorithm or “polyaidpon” ensures that a highly
accurate solution can be found after only a small numbereséiions. In particular, the
combination of these two approaches makes the performdribe dIFXP-NK algorithm
independent of the value of the discount fagawhereas the CPU times of the NFXP-SA
algorithm steadily increase is— 1 as shown in Table 2 of JS (p. 2228).

We also show that NFXP-NK outperforms MPEC in larger proldenthe intuition
for this finding is that MPEC optimizes the likelihood ower- K variables subject tt
constraints, whereas NFXP performs an unconstrained @aiion over theK structural

parameters only. Nemirovsky and Yudin (1983) have provaniththe absence of “special

structure” for the optimization problem (e.g. concavitytlod objective function), the worst
case computational complexity of finding a global optimumaasmooth function is an
exponential function of the total number of variables beapgmized. NFXP-NK exploits
the special structure of the inner fixed point problem andsfardapproximate solution with

a worst case complexity that is polynomialii) namelyO(N?), and this isndependent of
of the discount factop as long a$3 is less than 1. Therefore the worst case complexity
of optimizing the likelihood using NFXP-NK is exponentialK only, whereas for MPEC

it is exponential inN + K. Our limited Monte Carlo experiments show that the ratio of
MPEC CPU times to NFXP-NK CPU times does indeed increaserexually inN and
that NFXP is three orders of magnitude faster than MPEC vihen2000. This finding is
consistent with the worst case complexity bound of Nemikgwand Yudin.

The rest of this comment is structured as follows. In secBome redo the original
comparison of MPEC and NFXP of JS using NFXP-NK instead of RFXA. Then we
present Tables 2 and 3 to show the effect of a) increased sasiz@, and b) larger fixed
point dimension on the relative performance of the two mashdhough we do not claim
that the conclusions from this limited numerical compamisd the two methods in the
bus engine replacement example necessarily applies to ptbielems, in the last section
we discuss our own view of the overall strengths and wealesegkthe two estimation

methods.

2 Results

Table 1 presents a comparison of CPU times for MPEC and NFXRdproduces Table 2
of JS. This is a “small” problem — both in terms of the numbeob$ervations (50 buses
followed for 120 months each, or 6,000 observations in yoaald the fixed point dimension
is relatively small N = 175). While we have developed our own code to implement NFXP-
NK, we have been using the exact same setup and computeraddéEC that was used

to produce the results of the original paper b)HJWe have replicated JS’s results for

23S have kindly provided well documented MPEC code for thidfem via Che-Lin Su’s website. Our NFXP code
is available on request.

Table 1: MPEC versus NFXP-NK: sample size 6,000, fixed pamedsion 175

Converged CPU Time # of Major # of Func. # of Bellm. # of N-K

B (out of 1250) (in sec.) Iter. Eval. Iter. Iter.
MPEC-Matlab
0.975 1248 2.619 60.9 69.8
0.985 1250 2.626 62.9 70.0
0.995 1248 2.657 67.5 74.2
0.999 1249 2.866 72.3 78.5
0.9995 1237 2.864 75.5 85.7
0.9999 104 3.904 171.6 609.5
MPEC-AMPL
0.975 1141 0.068 15.9 43.3
0.985 1141 0.074 13.3 23.6
0.995 849 0.075 12.9 20.1
0.999 1195 0.059 11.2 13.2
0.9995 27 0.050 5.9 8.0
0.9999 0 — — —
NFXP-NK

0.975 1250 0.075 11.2 13.7 213.5 33.3
0.985 1250 0.074 10.2 12.7 204.0 344
0.995 1250 0.076 9.4 12.0 192.7 36.6
0.999 1250 0.075 9.0 11.6 184.5 37.2
0.9995 1250 0.074 9.0 11.6 184.5 37.2
0.9999 1250 0.074 8.9 11.6 184.1 374

Notes: This table is a replication of Table 2 in Judd and Su22@vith NFXP-SA replaced by NFXP-NK. For eafh
five starting points were used for each of the 250 simulatetptss. CPU time, number of major iterations, number of
function evaluations and number of inner loop iteratioresthe averages over all runs. Inner loop iterations includk b
value function iterations and Newton-Kantorovich itepas. All statistics in Table 1 (and similarly in tables 2 and 3
pertain to the subset of runs that converged.

NFXP-SA, but since this version of NFXP is inefficient and dsrpletely dominated by
NFXP-NK, we only report results for the latter in Table 1 IWH)TO conserve space we
omit the table of structural estimates (Table 1 of JS), wisicbws that in all converging

runs the structural parameters of the model were accurastiyated by both methods.

3We used the same specification of the bus engine replacenueied rimcluding the same true parameter values, same
sample size and fixed point dimension, and the same numbepnfeMCarlo replications as in Table 2 of JS. We fixed
the stopping tolerance for the inner fixed point in the NFXR-&gorithm at 1012 as in Rust (1987), which is/1000
of the stopping tolerance 18° that JS used for NFXP-SA. Similarly to JS, we estimated ttamsprobabilities for
mileage travelled by buses jointly with other parametegpl@cement cost and maintenance cost) by maximizing the ful
likelihood function, following the partial likelihood ojmhization as described in Rust (1987, 2000). We used the BHHH
algorithm on the outer loop of NFXP-NK and frequency basadisty values for the transition probability parameters.

Itis clear from Table 1 and Figure 1 that when the efficient FFXK algorithm is used,
the CPU times are comparable to those of MPEC-AMPL, the AMfplementation of
MPEC method utilizing first and second order analytic deiwes of the objective function.
It takes both methods about 0.07 to 0.08 of a second to stalistestimate the bus engine
replacement model. The MPEC-MATLAB implementation, whides first order analytic
derivatives only (andtrlink function enabling KNITRO in Matlab), is about two orders of
magnitude slower.

As the third panel of Table 1 shows, NFXP-NK uses far fewecessive approximation
steps compared to the NFXP-SA results in Table 2 of JS, asdghihe main reason why
NFXP-NK is so much faster. For the highest discount fafter0.995 in Table 2 of JS, an
average of nearly 750,000 successive approximationibestvere required, compared to
just 184 for NFXP-NK. With an average of 37 Newton-Kantowdviterations per estima-
tion, the average number of both types of inner loop iteratior NFXP-NK is remarkably
insensitive to the discount factor. It takes NFXP-NK an agerof only 20 successive ap-
proximation steps and 4 Newton-Kantorovich iterationsfpection evaluation to compute
a highly accurate fixed point (to a tolerance of %) whenf > 0.9995.

Note the heavy right tail of the distribution of CPU times MPEC in the left panel
of Figure 1. This indicates that MPEC experiences a nonigietg set of “problematic”
cases that take up to 2 to 3 times longer for it to find the optimwWhen[3 = 0.9995
MPEC-AMPL converged in only 27 of the 1250 Monte Carlo tr&ls

For all discount factors we tried, NFXP-NK convergedewerycase, and within a
small range of CPU times, ranging from a minimum time of justler 005 seconds to
a maximum time of (L1 seconds. Overall, besides the similarity in run times &B\-
AMPL and NFXP-NK, the most striking aspect of Table 1 is thghhiate of convergence
failures of both versions of MPEC. Our findings are thus caatgly contrary to the main
conclusion of JS (2012) that “MPEC is significantly fasteatiNFXP” (p. 2228). We
believe that their conclusion is an artifact of their usehafinefficient NFXP-SA algorithm,

and we have shown that MPEC experiences a rapid increasewergence failures when

4Contrary to all other runs, in this case the structural patamestimates were also notably downward biased.

Table 2: MPEC versus NFXP-NK: sample size 60,000, fixed pdimension 175

Converged CPU Time # of Major # of Func. # of Bellm. # of N-K

B (out of 1250) (in sec.) Iter. Eval. Iter. Iter.
MPEC-AMPL
0.975 1188 0.70 14.3 34.6
0.985 1228 0.71 134 25.6
0.995 794 0.85 12.5 19.1
0.999 1236 0.61 114 13.3
0.9995 0 — — —
0.9999 0 — — —
NFXP-NK

0.975 1250 0.16 8.1 11.3 150.3 29.0
0.985 1250 0.16 8.6 11.5 164.4 31.7
0.995 1250 0.16 9.1 11.9 175.8 36.2
0.999 1250 0.17 9.1 11.8 176.8 37.7
0.9995 1250 0.17 9.1 11.8 176.2 37.8
0.9999 1250 0.17 9.1 11.8 176.3 38.1

Notes: The experimental design in this Table is identicahéd of Table 1 except that the sample size is 60,000.

[3 exceeds the highest valug£ 0.995) considered by JS.

Table 2 reports another Monte Carlo experiment we conduotstudy the effect of a
larger sample size on the relative run times for MPEC-AMPH &i-XP-NK (we do not
consider MPEC-MATLAB further due to its run times being doatied by MPEC-AMPL).
We kept the fixed point dimension small & 175) but increased the sample size toGID
(500 buses followed for 120 months). Table 2 shows that NNXPis uniformly 3.8 to
5.3 times faster than MPEC-AMPL for the various discountdeswe considered. We see
that as in Table 1, MPEC-AMPL “breaks down” for sufficientligh discount factors, and
we were unable to get it convergeany of the 1250 Monte Carlo runs whé¢h> 0.9995.
The reason NFXP-NK dominates MPEC-AMPL in larger sampleslated to the fact that
unlike NFXP the likelihood as the function of observed data to be calculated relatively
more often during constrained maximization because thmutzlon of the fixed point is
not separated from the evaluation of likelihood function.

Table 3 studies the effect of increasing the fixed point disi@nN for a fixed sample

size (6,000 observations) and for a fixed (relatively lovgcdunt factor o3 = 0.975, so

Figure 1: Distributions of CPU times for MPEC-AMPL and NFXR&

B=0.985 (=0.9999

- - -MPEC/AMPL
—— NFXP-NK 02k

L L ,
0.15 0.2 0.24

0.1 0.15 0.1
CPU time (seconds) CPU time (seconds)

Notes: This figure plots the distribution of CPU times for 02bins of MPEC-AMPL and NFXP-NK. Distribution is
computed based on converging runs only. See further déiscrip Table 1.

that MPEC-AMPL’s failures to converge are likely to be a lesfithe dimensionality of
the fixed point rather than due to the discount factor beigctose to 1. Table 3 reports
the average CPU times to estimate the two key structurahpeteas (replacement cost and
maintenance cost parameter) of fertial likelihood function.This is the second step of
the consistent two step estimator described in Rust (198iérevthe first step involves
estimating the parameters of distribution of miles traelper month on the bus using
simple sample frequency (multinomial) estimators. We udg@thdependent Monte Carlo
samples to produce the results in Table 3.

In Table 3 we see a striking number of convergence failure$eEC-AMPL as the
fixed point dimensioN increases. In some cases (i.e. whire- 300,400 and 700),
MPEC-AMPL failed to converge iall 10 Monte Carlo samples. NFXP-NK always con-
verged, similar to what we observed in tables 1 and 2. We alsd¢ist for the subset of runs
where MPEC-AMPL did converge, the CPU time it took to estientiie model increased
dramatically withN, whereas the CPU time for NFXP-NK increased at a much sloater r
Recalling the discussion in the introduction, when weadiand increas@l, we expect that
the CPU time for NFXP-NK to increase at a polynomial rate hwabmplexity bounded
above byO(N3) rate (the upper bound on the time taken to solve a déhseéN system

of linear equations, which is the most time consuming parhef Newton-Kantorovich

Table 3: Effect of fixed point dimension on MPEC and NFXP-N&mgple size 6,006 = 0.975

MPEC-AMPL NFXP-NK
Converged CPU Time Converged CPU Time
N M (out of 10) (in sec.) (out of 10) in sec.
200 7 4 0.19 10 0.03
300 10 0 — 10 0.03
400 13 0 — 10 0.05
500 16 6 1.80 10 0.06
600 19 4 2.85 10 0.09
700 22 0 — 10 0.11
800 25 1 4.15 10 0.15
900 28 3 4.20 10 0.18
1000 31 1 7.00 10 0.20
1500 46 1 72.14 10 0.44
2000 61 1 203.49 10 0.77

Notes: Monthly mileage is assumed to be distributed acogriti a censored normal, i.e. nfa 0) wherex; ~ A(1, 6°)
andp = 3.2889 and? = 1.4686 is set to the mean monthly mileage for bus types 1,2, 3 amé&ust’s data sei; is then
discretized inN equally spaced. Parameters are identical to those frone Takllthough the slope parameter of the cost
function is scaled wittN/175 to preserve the same marginal cost of one additional Mitasition probabilities smaller
than 1012 are rounded off at zerdVl denotes the number of non-zero transition probability peters, which defines
the sparsity of the transition density matrix of mileage. ¥g&mated the two structural parameters using partial MLE
for 10 different datasets. We started both algorithms atrtievalue of the structural parameters and fixed the tiansit
probability parameters using a first step frequency estimat

iteration). However the worst case complexity theory of Nenwsky and Yudin (1983)
suggests that the CPU time for MPEC-AMPL should increaseraptially as a function
of the total number of parameters being estimahéd,2.

Figure 2 plots the CPU times for NFXP-NK and MPEC-AMPL on a stg scale.
If the NFXP-NK is a polynomial-time algorithm then its CPUnies should conform to a
regression line of the form I1¢d) = a+ b x log(N) + € whereT denotes the CPU time to
estimate the model. In particular, the regression estiwfatee coefficienb should satisfy
b < 3, corresponding to th&(N?®) worst-case complexity bound discussed above. In fact
the estimate i® = 1.98, substantially lower than 3. This is due to the use of gpara-
trix algorithms that exploit the special structure of thenition probability matrix which
determines the linear system of equations that must be ¢ddtvearry out the Newton-

Kantorovich iterations. Due to the fact that there is an ujpeeind on the number of miles

Figure 2: CPU times for MPEC-AMPL and NFXP-NK as a functiorfigéd point dimensiorN

log(cpu time)

o MPEC-AMPL
Exponential
= = = Polynomial
* NFXP-NK
—— Polynomial
| |

| | | | | |
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Fixed Point Dimension, N

Notes: Average CPU time is computed based on converging aalys Plotted polynomial and exponential regres-
sions are logTnexp) = —15.0+ 1.98x log(N) (R? = 0.9866), log TampL) = —1.55+ 0.003530« N (R? = 0.9336) and
log(TampL) = —17.2+ 2.84xlog(N) (R? = 0.9115). For experimental design, see note in Table 3.

that a bus can travel in any given month, the transition godiamatrix for the odometer
state variable in the bus engine replacement problebamsledand this special banded
structure is exploited by the NFXP-NK algorithm to resulffumther speedups compared
to “dense” linear algebra algorithms, e.g. Crout decontmsi

If the worst case CPU time of the MPEC-AMPL algorithm is expotial, as suggested
by the theory of Nemirovsky and Yudin (1983), then roughlgaking, CPU times should
conform to a regression line of the form I3 = a+ b x N +¢&. There will be a curse of
dimensionality (i.e. exponential increase in CPU timeblascreases) ib > 0.

In Figure 2 we can see that NFXP-NK clearly dominates MPECPAMor all fixed
point dimensions considered, and the gap in their relatingimes also increases wibh
However, with the limited CPU time data for MPEC-AMPL algbrm due to convergence

failures, it is hard to make decisive conclusion about itsypotational complexity. We
fitted both semi-log and log-log specifications on the awdddPEC-AMPL time data,
with estimation results given in the note of Figure 2. For ploé/nomial-time specifica-
tion, we estimatedb = 2.84 which lies below the theoretical upper boundoc 3 for an
O(N3) algorithm, though it is significantly higher than the estiethcoefficiento = 1.98
for NFXP With R2 = 0.93 the exponential specification provides a better fit to tR&JC
data for MPEC-AMPL than the polynomial specificatid®f & 0.91). We conclude that our
limited Monte Carlo results are consistent with the thaoatpredictions of Nemirovksy
and Yudin (1983) that MPEC-AMPL is subject to a “curse of dirsienality” as a function
of the fixed point dimensioN whereas NFXP-NK is a polynomial-time algorithmhihin
the worst case.

In contrast, NFXP exploits the fact that the objective fumtis a likelihood function
that is a smooth function of value functions, which are imtamooth functions of the
underlying structural parameters. It separates the taskmfputing the value function as
the fixed point to a contraction mapping and the problem ofimeng the likelihood
function into separate subproblems, and this enables itaximize the likelihood func-
tion using traditional unconstrained quasi-Newton/geatisearch algorithms such as the
Berndt-Hall-Hall-Hausman (BHHH) algorithm over a relaly small number structural
parameter.

Another major concern about MPEC is an alarming number afries to converge. We
conjecture that this is related to the much higher dimeradityrof the optimization problem
and MPEC's failure to fully exploit the structure of the dymia programming problem. In
contrast, NFXP-NK recognizes the fact that the objectivecfion is a sum of individual
likelihoods each of which is computed from the set of valuecfions that are smooth in
the structural parameters. This enables maximizationefikelihood function using the
globally convergent Berndt-Hall-Hall-Hausman (BHHH) atghm over a relatively small

number structural parametefs

5Note that MPEC-AMPLdoesalso exploit the sparsity of the banded transition profighihatrix structure of the
bus replacement problem, just as NFXP-NK does. Thus, tlieréifce in CPU times in Figure 2 cannot be ascribed to
NFXP-NK having an “unfair” advantage of exploiting the sgifyr structure. Thus, the significantly highecoefficient
for the MPEC-AMPL data is likely due to other reasons othantfailure to exploit sparsity.

10

The BHHH algorithm of Berndt et al. (1974) exploits the infation identity to ap-
proximate the Hessian of the likelihood with the negativehefouter product of the scores.
Since the Hessian approximation is always negative sefmig it ensures that BHHH
will always move in the direction of the gradient (i.e. todsthe maximum) even in convex
areas of the likelihood function. Hence, beyond the adypntd avoiding computation of
second order derivatives, BHHH has the major advantagevafyal moving uphill for small
enough step size, and thus being globally convergent. In gwewobustness of NFXP and
its ability to handle larger problems comes from explicélploiting the structure of the
problem, i.e. that the objective function is a sample sunr awdividual likelihoods and

that the nested fixed point problem is a contraction mapping.

3 Conclusion

We have shown that the main conclusion of JS (2012), namaly‘Monte Carlo results
confirmed that MPEC is significantly faster than NFXP, paticly when the discount
factor in the dynamic-programming model is close to 1.” (R28), appears to be an ar-
tifact of their use of an inefficient version of NFXP which walled NFXP-SA. We reran
the comparison using the version of NFXP that Rust (198 Qimmaily proposed, NFXP-
NK, and found that MPEC-AMPL and NFXP-NK are about equallgtfan the same test
problem that JS considered. We also compared MPEC and NFX®) fa larger range
of discount factorg3, b) different sample sizes, and c) different sizes for thedipoint
dimensiorN. We have shown that NFXP-NK is significantly more robust aidble than
MPEC-AMPL, particularly when the discount factor of the dymc programming prob-
lem, B, approaches 1. Further, we found that MPEC-AMPL may be Bogmitly slower
than NFXP for problems with large samples.

Yet, we believe that MPEC has many desirable features, tret important of which
is ease of use by people who are not interested in devoting tinthe special-purpose
programming necessary to implement NFXP-NK. As long as thblpm to be estimated is
not too “big” (both in terms of the number of observations gmeldimensiom of the fixed

point), and the discount factor is not too close to 1, ourltesndicate that MPEC is very

11

fast and competitive with NFXP-NK, and particularly in congtion with the easy, intuitive
AMPL language, it could save many users substantial prognagitime and enable them
to structurally estimate many models of interest.

However for “heavy duty” applications where either there imany observations, or the
dimension of the fixed point is sufficiently large, or where thiscount factor is likely to be
close to 1 (such as in problems with short time periods), esults indicate that the MPEC
method may not be reliable and efficient in such cases, atueéisbetter implementations
are available. In these cases there may be no alternativi® batur the fixed costs to
program the special-purpose fixed point algorithm that cquhoé the special structure of

the dynamic programming problem at hand.

References

[1] Byrd, R. H., J. Nocedal, and R. A. Waltz (2006): KNITRO: Mitegrated Package for
Non- linear Optimization, inLarge-Scale Nonlinear Optimizaticed. by G. di Pillo
and M. Roma. New York: Springer, 3559.

[2] Judd and Su (2012): “Constrained optimization appreadb estimation of structural
models”"Econometrica80-5 2213-2230.

[3] A. S. Nemirovsky and D. B. Yudin (1983roblem complexity and method efficiency
in optimizationWiley-Interscience. Translated by: E. R. Dawson.

[4] Rust (1987): “Optimal Replacement of GMC Bus Engines: Bmpirical Model of
Harold Zurcher’Econometricéb5-5 999-1033.

[5] Rust (2000): “Nested Fixed Point Algorithm DocumenvatManual: Version 6”
http://gem ni. econ. und. edu/ | rust/ nfxp. ht m

12

http://gemini.econ.umd.edu/jrust/nfxp.html

	Introduction
	Results
	Conclusion

