
CONSTRAINEDOPTIMIZATION APPROACHES TO

ESTIMATION OF STRUCTURAL MODELS: COMMENT∗

FEDOR ISKHAKOV

UNIVERSITY OF NEW SOUTH WALES

JOHN RUST†

GEORGETOWNUNIVERSITY

BERTEL SCHJERNING

UNIVERSITY OF COPENHAGEN

JUNE 2014

Abstract

We revisit the comparison of mathematical programming withequilibrium constraints (MPEC)
and nested fixed point (NFXP) algorithms for estimating structural dynamic models by Judd
and Su (JS, 2012). They used an inefficient version, NFXP-SA,that relies on the method
of successive approximations to solve the fixed point problem. We re-do their comparison
using the more efficient version of NFXP that Rust (1987) used, NFXP-NK, which combines
successive approximations and Newton-Kantorovich iterations to solve the fixed point problem.
MPEC and NFXP-NK are similar in performance when the fixed point dimension and sample
size are relatively small and the discount factor is not too close to 1. However for higher
dimensional problems, or problems with large sample sizes,NFXP-NK outperforms MPEC by
orders of magnitude. MPEC fails to converge with high probability as the fixed point dimension
increases, or as the discount factor approaches 1.

KEYWORDS: Structural estimation, dynamic discrete choice, NFXP, MPEC, successive ap-
proximations, Newton-Kantorovich algorithm.

∗We are grateful to Harry J. Paarsch and Che-Lin Su for helpfulcomments. An early version of this paper was
presented by Bertel Schjerning at the ZICE2014 workshop at the University of Zurich. We are grateful to participants
of the ZICE2014 workshop for helpful feedback that lead to the current draft of this comment. This paper is part of
the IRUC research project financed by the Danish Council for Strategic Research (DSF). Financial support is gratefully
acknowledged.

†Corresponding author, email:jr1393@georgetown.edu.



1 Introduction

In their paper “Constrained optimization approaches to estimation of structural models”

Judd and Su (2012), hereafter JS, proposed a constrained optimization method for struc-

tural estimation of infinite horizon dynamic discrete choice models termed mathematical

programming with equilibrium constraints (MPEC).

The standard approach for solving this type of problems is thenested fixed point(NFXP)

algorithm proposed by Rust (1987). NFXP exploits the fact that the likelihood function de-

pends on a value function from dynamic programming. This value function is in turn the

unique fixed point to a contraction mapping, and under weak assumptions will be a smooth

implicit function of the structural parameters. This implies that the likelihood can be max-

imized using a standardunconstrainedquasi-Newton optimization algorithm. However,

each time the likelihood is evaluated, NFXP must call a fixed point algorithm to compute

the value function implied by the current parameter values.

In contrast to NFXP, the MPEC method does not need a specialized algorithm to com-

pute the fixed point: it treats the problem of maximizing the likelihood function with respect

to theK structural parameters plusN levels of the value function, whereN is the number

of grid points in the discretized state space. These values must satisfy the contraction fixed

point constraint. Thus MPEC also implicitly solves the fixedpoint problem while searching

for structural parameter values that maximize the likelihood, but using a general-purpose

constrainedoptimization algorithm1.

JS used the model of optimal replacement of bus engines of Rust (1987) to conduct

a Monte Carlo study to compare the performance of the MPEC andNFXP algorithms.

They found that MPEC outperformed NFXP in terms of CPU time byup to three orders

of magnitude. The point of this comment is to note that JS usedan inefficient version of

the NFXP algorithm. JS used the method ofsuccessive approximations(SA) to solve the

inner fixed point problem, so we call the version of NFXP they used NFXP-SA. But it is

well known that successive approximations is an inefficientalgorithm for computing fixed

points of contraction mappings, especially when the modulus of the contraction (which

1The specific implementation JS use is KNITRO (see Byrd, Nocedal and Waltz 2006).

1



equals the discount factor in the underlying dynamic programming problem) is close to 1.

We show that the poor performance of NFXP relative to MPEC is an artifact of JS’s use of

an inefficient version of NFXP — NFXP-SA.

We redo the JS Monte Carlo study using the more efficient version of NFXP that Rust

(1987) employed. This version, which we abbreviate as NFXP-NK, uses a combination

of successive approximations and the Newton-Kantorovich (NK) method to solve the in-

ner fixed point problem and is significantly faster and more reliable, especially when the

discount factor is close to 1. We demonstrate that NFXP-NK and MPEC are roughly equiv-

alent in their numerical performance when the sample size and fixed point dimension are

relatively small, and when the discount factor is not too close to 1. However as the dis-

count factor approaches 1, NFXP-NK is significantly more stable and converged in every

Monte Carlo trial, whereas MPEC failed to converge with probability approaching 1 as the

discount factor approached 1. Furthermore, once the samplesize or fixed point dimension

is sufficiently large, NFXP is significantly faster than MPEC.

Newton-Kantorovich is the preferred method for computing contraction fixed points

because it has guaranteed quadratic convergence rate in a domain of attraction of the fixed

point. However the Newton-Kantorovich approach is only locally convergent, so the origi-

nal design of the NFXP algorithm (Rust 1987, 2000) starts with successive approximations

to ensure global convergence, and switches to Newton-Kantorovich iterations only when

it detects that it is in a domain of attraction of the fixed point where the rapid quadratic

convergence takes hold. This hybrid algorithm or “polyalgorithm” ensures that a highly

accurate solution can be found after only a small number of iterations. In particular, the

combination of these two approaches makes the performance of the NFXP-NK algorithm

independent of the value of the discount factorβ whereas the CPU times of the NFXP-SA

algorithm steadily increase asβ → 1 as shown in Table 2 of JS (p. 2228).

We also show that NFXP-NK outperforms MPEC in larger problems. The intuition

for this finding is that MPEC optimizes the likelihood overN+K variables subject toN

constraints, whereas NFXP performs an unconstrained optimization over theK structural

parameters only. Nemirovsky and Yudin (1983) have proven that in the absence of “special

2



structure” for the optimization problem (e.g. concavity ofthe objective function), the worst

case computational complexity of finding a global optimum ofa smooth function is an

exponential function of the total number of variables beingoptimized. NFXP-NK exploits

the special structure of the inner fixed point problem and finds an approximate solution with

a worst case complexity that is polynomial inN, namelyO(N3), and this isindependent of

of the discount factorβ as long asβ is less than 1. Therefore the worst case complexity

of optimizing the likelihood using NFXP-NK is exponential in K only, whereas for MPEC

it is exponential inN+K. Our limited Monte Carlo experiments show that the ratio of

MPEC CPU times to NFXP-NK CPU times does indeed increase exponentially inN and

that NFXP is three orders of magnitude faster than MPEC whenN = 2000. This finding is

consistent with the worst case complexity bound of Nemirovsky and Yudin.

The rest of this comment is structured as follows. In section2 we redo the original

comparison of MPEC and NFXP of JS using NFXP-NK instead of NFXP-SA. Then we

present Tables 2 and 3 to show the effect of a) increased sample size, and b) larger fixed

point dimension on the relative performance of the two methods. Though we do not claim

that the conclusions from this limited numerical comparison of the two methods in the

bus engine replacement example necessarily applies to other problems, in the last section

we discuss our own view of the overall strengths and weaknesses of the two estimation

methods.

2 Results

Table 1 presents a comparison of CPU times for MPEC and NFXP that reproduces Table 2

of JS. This is a “small” problem — both in terms of the number ofobservations (50 buses

followed for 120 months each, or 6,000 observations in total), and the fixed point dimension

is relatively small (N= 175). While we have developed our own code to implement NFXP-

NK, we have been using the exact same setup and computer code for MPEC that was used

to produce the results of the original paper by JS.2 We have replicated JS’s results for

2JS have kindly provided well documented MPEC code for this problem via Che-Lin Su’s website. Our NFXP code
is available on request.

3



Table 1: MPEC versus NFXP-NK: sample size 6,000, fixed point dimension 175

Converged CPU Time # of Major # of Func. # of Bellm. # of N-K

β (out of 1250) (in sec.) Iter. Eval. Iter. Iter.

MPEC-Matlab
0.975 1248 2.619 60.9 69.8
0.985 1250 2.626 62.9 70.0
0.995 1248 2.657 67.5 74.2
0.999 1249 2.866 72.3 78.5
0.9995 1237 2.864 75.5 85.7
0.9999 104 3.904 171.6 609.5

MPEC-AMPL
0.975 1141 0.068 15.9 43.3
0.985 1141 0.074 13.3 23.6
0.995 849 0.075 12.9 20.1
0.999 1195 0.059 11.2 13.2
0.9995 27 0.050 5.9 8.0
0.9999 0 — —- —

NFXP-NK
0.975 1250 0.075 11.2 13.7 213.5 33.3
0.985 1250 0.074 10.2 12.7 204.0 34.4
0.995 1250 0.076 9.4 12.0 192.7 36.6
0.999 1250 0.075 9.0 11.6 184.5 37.2
0.9995 1250 0.074 9.0 11.6 184.5 37.2
0.9999 1250 0.074 8.9 11.6 184.1 37.4

Notes: This table is a replication of Table 2 in Judd and Su (2012) with NFXP-SA replaced by NFXP-NK. For eachβ,

five starting points were used for each of the 250 simulated samples. CPU time, number of major iterations, number of

function evaluations and number of inner loop iterations are the averages over all runs. Inner loop iterations include both

value function iterations and Newton-Kantorovich iterations. All statistics in Table 1 (and similarly in tables 2 and 3)

pertain to the subset of runs that converged.

NFXP-SA, but since this version of NFXP is inefficient and is completely dominated by

NFXP-NK, we only report results for the latter in Table 1 below.3 To conserve space we

omit the table of structural estimates (Table 1 of JS), whichshows that in all converging

runs the structural parameters of the model were accuratelyestimated by both methods.

3We used the same specification of the bus engine replacement model, including the same true parameter values, same
sample size and fixed point dimension, and the same number of Monte Carlo replications as in Table 2 of JS. We fixed
the stopping tolerance for the inner fixed point in the NFXP-NK algorithm at 10−13 as in Rust (1987), which is 1/1000
of the stopping tolerance 10−10 that JS used for NFXP-SA. Similarly to JS, we estimated transition probabilities for
mileage travelled by buses jointly with other parameters (replacement cost and maintenance cost) by maximizing the full
likelihood function, following the partial likelihood optimization as described in Rust (1987, 2000). We used the BHHH
algorithm on the outer loop of NFXP-NK and frequency based starting values for the transition probability parameters.

4



It is clear from Table 1 and Figure 1 that when the efficient NFXP-NK algorithm is used,

the CPU times are comparable to those of MPEC-AMPL, the AMPL implementation of

MPEC method utilizing first and second order analytic derivatives of the objective function.

It takes both methods about 0.07 to 0.08 of a second to structurally estimate the bus engine

replacement model. The MPEC-MATLAB implementation, whichuses first order analytic

derivatives only (andktrlink function enabling KNITRO in Matlab), is about two orders of

magnitude slower.

As the third panel of Table 1 shows, NFXP-NK uses far fewer successive approximation

steps compared to the NFXP-SA results in Table 2 of JS, and this is the main reason why

NFXP-NK is so much faster. For the highest discount factorβ = 0.995 in Table 2 of JS, an

average of nearly 750,000 successive approximation iterations were required, compared to

just 184 for NFXP-NK. With an average of 37 Newton-Kantorovich iterations per estima-

tion, the average number of both types of inner loop iterations for NFXP-NK is remarkably

insensitive to the discount factor. It takes NFXP-NK an average of only 20 successive ap-

proximation steps and 4 Newton-Kantorovich iterations perfunction evaluation to compute

a highly accurate fixed point (to a tolerance of 10−13) whenβ ≥ 0.9995.

Note the heavy right tail of the distribution of CPU times forMPEC in the left panel

of Figure 1. This indicates that MPEC experiences a non-negligible set of “problematic”

cases that take up to 2 to 3 times longer for it to find the optimum. Whenβ = 0.9995

MPEC-AMPL converged in only 27 of the 1250 Monte Carlo trials.4

For all discount factors we tried, NFXP-NK converged ineverycase, and within a

small range of CPU times, ranging from a minimum time of just under 0.05 seconds to

a maximum time of 0.11 seconds. Overall, besides the similarity in run times of MPEC-

AMPL and NFXP-NK, the most striking aspect of Table 1 is the high rate of convergence

failures of both versions of MPEC. Our findings are thus completely contrary to the main

conclusion of JS (2012) that “MPEC is significantly faster than NFXP” (p. 2228). We

believe that their conclusion is an artifact of their use of the inefficient NFXP-SA algorithm,

and we have shown that MPEC experiences a rapid increase in convergence failures when

4Contrary to all other runs, in this case the structural parameter estimates were also notably downward biased.

5



Table 2: MPEC versus NFXP-NK: sample size 60,000, fixed pointdimension 175

Converged CPU Time # of Major # of Func. # of Bellm. # of N-K

β (out of 1250) (in sec.) Iter. Eval. Iter. Iter.

MPEC-AMPL
0.975 1188 0.70 14.3 34.6
0.985 1228 0.71 13.4 25.6
0.995 794 0.85 12.5 19.1
0.999 1236 0.61 11.4 13.3
0.9995 0 — — —
0.9999 0 — —- —

NFXP-NK
0.975 1250 0.16 8.1 11.3 150.3 29.0
0.985 1250 0.16 8.6 11.5 164.4 31.7
0.995 1250 0.16 9.1 11.9 175.8 36.2
0.999 1250 0.17 9.1 11.8 176.8 37.7
0.9995 1250 0.17 9.1 11.8 176.2 37.8
0.9999 1250 0.17 9.1 11.8 176.3 38.1

Notes: The experimental design in this Table is identical tothat of Table 1 except that the sample size is 60,000.

β exceeds the highest value (β = 0.995) considered by JS.

Table 2 reports another Monte Carlo experiment we conductedto study the effect of a

larger sample size on the relative run times for MPEC-AMPL and NFXP-NK (we do not

consider MPEC-MATLAB further due to its run times being dominated by MPEC-AMPL).

We kept the fixed point dimension small (N = 175) but increased the sample size to 60,000

(500 buses followed for 120 months). Table 2 shows that NFXP-NK is uniformly 3.8 to

5.3 times faster than MPEC-AMPL for the various discount factors we considered. We see

that as in Table 1, MPEC-AMPL “breaks down” for sufficiently high discount factors, and

we were unable to get it converge inanyof the 1250 Monte Carlo runs whenβ ≥ 0.9995.

The reason NFXP-NK dominates MPEC-AMPL in larger samples isrelated to the fact that

unlike NFXP the likelihood as the function of observed data has to be calculated relatively

more often during constrained maximization because the calculation of the fixed point is

not separated from the evaluation of likelihood function.

Table 3 studies the effect of increasing the fixed point dimensionN for a fixed sample

size (6,000 observations) and for a fixed (relatively low) discount factor ofβ = 0.975, so

6



Figure 1: Distributions of CPU times for MPEC-AMPL and NFXP-NK

0 0.05 0.1 0.15 0.2 0.24
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CPU time (seconds)

β=0.985

 

 

MPEC/AMPL
NFXP−NK

0 0.05 0.1 0.15 0.2 0.24
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CPU time (seconds)

β=0.9999

 

 

Notes: This figure plots the distribution of CPU times for 1250 runs of MPEC-AMPL and NFXP-NK. Distribution is

computed based on converging runs only. See further description in Table 1.

that MPEC-AMPL’s failures to converge are likely to be a result of the dimensionality of

the fixed point rather than due to the discount factor being too close to 1. Table 3 reports

the average CPU times to estimate the two key structural parameters (replacement cost and

maintenance cost parameter) of thepartial likelihood function.This is the second step of

the consistent two step estimator described in Rust (1987) where the first step involves

estimating the parameters of distribution of miles travelled per month on the bus using

simple sample frequency (multinomial) estimators. We used10 independent Monte Carlo

samples to produce the results in Table 3.

In Table 3 we see a striking number of convergence failures for MPEC-AMPL as the

fixed point dimensionN increases. In some cases (i.e. whereN = 300,400 and 700),

MPEC-AMPL failed to converge inall 10 Monte Carlo samples. NFXP-NK always con-

verged, similar to what we observed in tables 1 and 2. We also see that for the subset of runs

where MPEC-AMPL did converge, the CPU time it took to estimate the model increased

dramatically withN, whereas the CPU time for NFXP-NK increased at a much slower rate.

Recalling the discussion in the introduction, when we fixK and increaseN, we expect that

the CPU time for NFXP-NK to increase at a polynomial rate, with complexity bounded

above byO(N3) rate (the upper bound on the time taken to solve a denseN×N system

of linear equations, which is the most time consuming part ofthe Newton-Kantorovich

7



Table 3: Effect of fixed point dimension on MPEC and NFXP-NK: sample size 6,000,β = 0.975

MPEC-AMPL NFXP-NK
Converged CPU Time Converged CPU Time

N M (out of 10) (in sec.) (out of 10) in sec.

200 7 4 0.19 10 0.03
300 10 0 — 10 0.03
400 13 0 — 10 0.05
500 16 6 1.80 10 0.06
600 19 4 2.85 10 0.09
700 22 0 — 10 0.11
800 25 1 4.15 10 0.15
900 28 3 4.20 10 0.18
1000 31 1 7.00 10 0.20
1500 46 1 72.14 10 0.44
2000 61 1 203.49 10 0.77

Notes: Monthly mileage is assumed to be distributed according to a censored normal, i.e. max(xt ,0) wherext ∼ N (µ,σ2)

andµ= 3.2889 andσ2 = 1.4686 is set to the mean monthly mileage for bus types 1,2,3 and4 in Rust’s data set.xt is then

discretized inN equally spaced. Parameters are identical to those from Table 1, although the slope parameter of the cost

function is scaled withN/175 to preserve the same marginal cost of one additional mile. Transition probabilities smaller

than 10−12 are rounded off at zero.M denotes the number of non-zero transition probability parameters, which defines

the sparsity of the transition density matrix of mileage. Weestimated the two structural parameters using partial MLE

for 10 different datasets. We started both algorithms at thetrue value of the structural parameters and fixed the transition

probability parameters using a first step frequency estimator.

iteration). However the worst case complexity theory of Nemirovsky and Yudin (1983)

suggests that the CPU time for MPEC-AMPL should increase exponentially as a function

of the total number of parameters being estimated,N+2.

Figure 2 plots the CPU times for NFXP-NK and MPEC-AMPL on a semi-log scale.

If the NFXP-NK is a polynomial-time algorithm then its CPU times should conform to a

regression line of the form log(T) = a+b× log(N)+ ε whereT denotes the CPU time to

estimate the model. In particular, the regression estimateof the coefficientb should satisfy

b≤ 3, corresponding to theO(N3) worst-case complexity bound discussed above. In fact

the estimate isb = 1.98, substantially lower than 3. This is due to the use of sparse ma-

trix algorithms that exploit the special structure of the transition probability matrix which

determines the linear system of equations that must be solved to carry out the Newton-

Kantorovich iterations. Due to the fact that there is an upper bound on the number of miles

8



Figure 2: CPU times for MPEC-AMPL and NFXP-NK as a function offixed point dimensionN

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−5

−4

−3

−2

−1

0

1

2

3

4

5

6

Fixed Point Dimension, N

lo
g(

cp
u 

tim
e)

 

 

MPEC−AMPL
Exponential
Polynomial
NFXP−NK
Polynomial

Notes: Average CPU time is computed based on converging runsonly. Plotted polynomial and exponential regres-

sions are log(TNFXP) = −15.0+1.98∗ log(N) (R2 = 0.9866), log(TAMPL) = −1.55+0.003530∗N (R2 = 0.9336) and

log(TAMPL) =−17.2+2.84∗ log(N) (R2 = 0.9115). For experimental design, see note in Table 3.

that a bus can travel in any given month, the transition probability matrix for the odometer

state variable in the bus engine replacement problem isbandedand this special banded

structure is exploited by the NFXP-NK algorithm to result infurther speedups compared

to “dense” linear algebra algorithms, e.g. Crout decomposition.

If the worst case CPU time of the MPEC-AMPL algorithm is exponential, as suggested

by the theory of Nemirovsky and Yudin (1983), then roughly speaking, CPU times should

conform to a regression line of the form log(T) = a+b×N+ ε. There will be a curse of

dimensionality (i.e. exponential increase in CPU times asN increases) ifb> 0.

In Figure 2 we can see that NFXP-NK clearly dominates MPEC-AMPL for all fixed

point dimensions considered, and the gap in their relative run times also increases withN.

However, with the limited CPU time data for MPEC-AMPL algorithm due to convergence

9



failures, it is hard to make decisive conclusion about its computational complexity. We

fitted both semi-log and log-log specifications on the available MPEC-AMPL time data,

with estimation results given in the note of Figure 2. For thepolynomial-time specifica-

tion, we estimatedb = 2.84 which lies below the theoretical upper bound ofb= 3 for an

O(N3) algorithm, though it is significantly higher than the estimated coefficientb = 1.98

for NFXP.5 With R2 = 0.93 the exponential specification provides a better fit to the CPU

data for MPEC-AMPL than the polynomial specification (R2= 0.91). We conclude that our

limited Monte Carlo results are consistent with the theoretical predictions of Nemirovksy

and Yudin (1983) that MPEC-AMPL is subject to a “curse of dimensionality” as a function

of the fixed point dimensionN whereas NFXP-NK is a polynomial-time algorithm inN in

the worst case.

In contrast, NFXP exploits the fact that the objective function is a likelihood function

that is a smooth function of value functions, which are in turn smooth functions of the

underlying structural parameters. It separates the task ofcomputing the value function as

the fixed point to a contraction mapping and the problem of maximizing the likelihood

function into separate subproblems, and this enables it to maximize the likelihood func-

tion using traditional unconstrained quasi-Newton/gradient search algorithms such as the

Berndt-Hall-Hall-Hausman (BHHH) algorithm over a relatively small number structural

parametersK.

Another major concern about MPEC is an alarming number of failures to converge. We

conjecture that this is related to the much higher dimensionality of the optimization problem

and MPEC’s failure to fully exploit the structure of the dynamic programming problem. In

contrast, NFXP-NK recognizes the fact that the objective function is a sum of individual

likelihoods each of which is computed from the set of value functions that are smooth in

the structural parameters. This enables maximization of the likelihood function using the

globally convergent Berndt-Hall-Hall-Hausman (BHHH) algorithm over a relatively small

number structural parametersK.

5Note that MPEC-AMPLdoesalso exploit the sparsity of the banded transition probability matrix structure of the
bus replacement problem, just as NFXP-NK does. Thus, the difference in CPU times in Figure 2 cannot be ascribed to
NFXP-NK having an “unfair” advantage of exploiting the sparsity structure. Thus, the significantly higherb coefficient
for the MPEC-AMPL data is likely due to other reasons other than failure to exploit sparsity.

10



The BHHH algorithm of Berndt et al. (1974) exploits the information identity to ap-

proximate the Hessian of the likelihood with the negative ofthe outer product of the scores.

Since the Hessian approximation is always negative semi-definite, it ensures that BHHH

will always move in the direction of the gradient (i.e. towards the maximum) even in convex

areas of the likelihood function. Hence, beyond the advantage of avoiding computation of

second order derivatives, BHHH has the major advantage of always moving uphill for small

enough step size, and thus being globally convergent. In sum, the robustness of NFXP and

its ability to handle larger problems comes from explicitlyexploiting the structure of the

problem, i.e. that the objective function is a sample sum over individual likelihoods and

that the nested fixed point problem is a contraction mapping.

3 Conclusion

We have shown that the main conclusion of JS (2012), namely that “Monte Carlo results

confirmed that MPEC is significantly faster than NFXP, particularly when the discount

factor in the dynamic-programming model is close to 1.” (p. 2228), appears to be an ar-

tifact of their use of an inefficient version of NFXP which we called NFXP-SA. We reran

the comparison using the version of NFXP that Rust (1987) originally proposed, NFXP-

NK, and found that MPEC-AMPL and NFXP-NK are about equally fast on the same test

problem that JS considered. We also compared MPEC and NFXP for a) a larger range

of discount factorsβ, b) different sample sizes, and c) different sizes for the fixed point

dimensionN. We have shown that NFXP-NK is significantly more robust and reliable than

MPEC-AMPL, particularly when the discount factor of the dynamic programming prob-

lem, β, approaches 1. Further, we found that MPEC-AMPL may be significantly slower

than NFXP for problems with large samples.

Yet, we believe that MPEC has many desirable features, the most important of which

is ease of use by people who are not interested in devoting time to the special-purpose

programming necessary to implement NFXP-NK. As long as the problem to be estimated is

not too “big” (both in terms of the number of observations andthe dimensionN of the fixed

point), and the discount factor is not too close to 1, our results indicate that MPEC is very

11



fast and competitive with NFXP-NK, and particularly in conjunction with the easy, intuitive

AMPL language, it could save many users substantial programming time and enable them

to structurally estimate many models of interest.

However for “heavy duty” applications where either there are many observations, or the

dimension of the fixed point is sufficiently large, or where the discount factor is likely to be

close to 1 (such as in problems with short time periods), our results indicate that the MPEC

method may not be reliable and efficient in such cases, at least until better implementations

are available. In these cases there may be no alternative butto incur the fixed costs to

program the special-purpose fixed point algorithm that can exploit the special structure of

the dynamic programming problem at hand.

References

[1] Byrd, R. H., J. Nocedal, and R. A. Waltz (2006): KNITRO: AnIntegrated Package for
Non- linear Optimization, inLarge-Scale Nonlinear Optimizationed. by G. di Pillo
and M. Roma. New York: Springer, 3559.

[2] Judd and Su (2012): “Constrained optimization approaches to estimation of structural
models”Econometrica80-5 2213-2230.

[3] A. S. Nemirovsky and D. B. Yudin (1983)Problem complexity and method efficiency
in optimizationWiley-Interscience. Translated by: E. R. Dawson.

[4] Rust (1987): “Optimal Replacement of GMC Bus Engines: AnEmpirical Model of
Harold Zurcher”Econometrica55-5 999-1033.

[5] Rust (2000): “Nested Fixed Point Algorithm Documentation Manual: Version 6”
http://gemini.econ.umd.edu/jrust/nfxp.html

12

http://gemini.econ.umd.edu/jrust/nfxp.html

	Introduction
	Results
	Conclusion

