
Monte Carlo Simulation
for

A Simple Portfolio Problem
Ken Judd

Penn State University
March, 2019

In[3606]:= a = 0; Remove["Global`*"]

In this notebook, I will show that Monte Carlo integration does not do a good job in solving a simple
portfolio problem.

The basic problem is that an enormous number of draws is necessary to get good accuracy when you
take the conventional approach used in economics.

This problem is revealed by simple experiments where we solve the problem several times using
different seeds for our random number generator.

I will then illustrate the surrogate function approach where we first use a moderate number of draws to
create a good approximation (called a surrogate) of the objective function, and then optimize the
surrogate function.

Closed-Form solution

Description

Portfolio problem:
one safe asset ($1 invested today produces $R tomorrow)
one risky asset ($1 invested today produces $Z tomorrow, Z is Normal[μ,σ])
exponential utility function (constant absolute risk aversion, ARA)

2 1 Portfolio problem PSU 2019 new.nb

General case

Constant absolute risk aversion utility

In[3607]:= util[x_] = -Exp[-ARA x];

If you have one unit of wealth and put a fraction θ in the risky asset then your wealth tomorrow will be
the random variable W:

In[3608]:= W = θ Z + (1 - θ) R;

In[3609]:= dist = NormalDistribution[μ, σ];
TrueMoments = {Mean[dist], StandardDeviation[dist], Skewness[dist], Kurtosis[dist]}

Out[3610]= {μ, σ, 0, 3}

Compute expected utility as a function of theta

In[3611]:= EU[θ_] = Expectation[util[W], Z  NormalDistribution[μ, σ]]

Out[3611]= -ⅇ
ARA R (-1+θ)+ 1

2
ARA θ -2 μ+ARA θ σ

2


Solve for the optimal theta

In[3612]:= EU'[θ] // FullSimplify

Out[3612]= -ARA ⅇ
ARA R (-1+θ)+ 1

2
ARA θ -2 μ+ARA θ σ

2


R - μ + ARA θ σ
2


The first terms of this expression are never zero, so we find the zero of the last term.

In[3613]:= Solve[(% // Last) ⩵ 0, θ][[1]]

Out[3613]= θ →

-R + μ

ARA σ
2


In[3614]:= θsol = θ /. %

Out[3614]=

-R + μ

ARA σ
2

1 Portfolio problem PSU 2019 new.nb 3

Specific case

For the remainder of this notebook, we examine one specific example defined by the following parame-
ter choices:

In[3615]:= R = 1; μ = 1.07; σ = 1 / 10.; ARA = 5;

The expected utility function is a function of θ.

In[3616]:= EU[x]
Plot[EU[x], {x, 0, 3}]

Out[3616]= -ⅇ
5 (-1+x)+ 5

2
(-2.14+0.05 x) x

Out[3617]=

0.5 1.0 1.5 2.0 2.5 3.0

-0.0070

-0.0065

-0.0060

-0.0055

The computational challenge

This example is function EU[θ] is usually difficult to compute because there is no analytic solution to
the integration. The common approach to this is to use Monte Carlo methods to approximate the
integral.

We will show that there are two ways to use MCmethods to solve this problem - the “common random
variables” method and the “surrogate function” approach.

4 1 Portfolio problem PSU 2019 new.nb

Standard approach for applying simulation
In[3618]:= SetOptionsFindMaximum, AccuracyGoal → 6, PrecisionGoal → 6;

SetOptionsListPlot, PlotStyle → Red, PointSize[Large];

The standard procedure consists of three steps
1: Make one set of random draws for Z,
2: In the definition of EU[θ], replace the random variable Z with those draws, creating a function
EUSim[θ] which we use as an approximation of EU[θ]
3: Use EUSim[θ] in the optimization problem

1 Portfolio problem PSU 2019 new.nb 5

Step-by-step description with Ndraws = 10

We first do a very simple example where you can see all the details.

(* Make 10 draws *)

Ndraws = 10;
returns = RandomReal[NormalDistribution[μ, σ], Ndraws] // Sort

Out[3621]= {0.798023, 0.988623, 1.00358, 1.01451,
1.01556, 1.05103, 1.10515, 1.124, 1.20967, 1.36337}

In[3622]:= (* Compute the vector of wealths *)

W = θ returns + (1 - θ) R

Out[3622]= {1 - 0.201977 θ, 1 - 0.0113771 θ, 1 + 0.00358134 θ, 1 + 0.0145133 θ, 1 + 0.0155587 θ,
1 + 0.0510266 θ, 1 + 0.105149 θ, 1 + 0.124004 θ, 1 + 0.209671 θ, 1 + 0.363375 θ}

In[3623]:= (* Define expected utility as function of θ *)

EUSim[θ_] = Mean@util@W

Out[3623]=

1

10
-ⅇ

-5 (1-0.201977 θ)
- ⅇ

-5 (1-0.0113771 θ)
- ⅇ

-5 (1+0.00358134 θ)
- ⅇ

-5 (1+0.0145133 θ)
- ⅇ

-5 (1+0.0155587 θ)
-

ⅇ
-5 (1+0.0510266 θ)

- ⅇ
-5 (1+0.105149 θ)

- ⅇ
-5 (1+0.124004 θ)

- ⅇ
-5 (1+0.209671 θ)

- ⅇ
-5 (1+0.363375 θ)



In[3624]:= (* Compute optimal portfolio weight *)

th = θ /. FindMaximum[EUSim[θ], {θ, 0., 3.}][[2]];
(* Display optimal portfolio and estimated utility *)

{th, EUSim[th]}

Out[3625]= {0.711054, -0.00599001}

Analysis of error

EUSim is an approximation of EU. When we plot EUSim and EU, we see that EUSim is not a good approxi-
mation of EU. This is not surprising when we use so few draws, but let us examine the nature of the
error

Compare the moments of the true distribution and the 10 draws wemade.

In[3657]:= dist = returns;
{{"mean", "standard deviation", "skewness", "kurtosis"},

TrueMoments, {Mean[dist], StandardDeviation[dist],
Skewness[dist], Kurtosis[dist]}} // TableForm

Out[3658]//TableForm=

mean standard deviation skewness kurtosis
1.07 0.1 0 3
1.06735 0.149468 0.297561 3.3228

Themoments of the draws differ significantly from the true moments. We see this when we plot the

6 1 Portfolio problem PSU 2019 new.nb

CDF of the true distribution along with the CDF of the 10 draws.

In[3667]:= (* Plot the CDF *)

gr1 = ListPlot[{returns // Sort, Range[1, Ndraws] / 10} // Transpose];
min = Min[returns]; max = Max[returns];
gr2 = Plot[CDF[NormalDistribution[μ, σ], x] // Evaluate, {x, min, max}];
Show[gr1, gr2]

Out[3670]=

0.9 1.0 1.1 1.2 1.3

0.2

0.4

0.6

0.8

1.0

Plot EU and the approximation EUSim. We find that EUSim is generally below EU. This is consistent
with the simulated standard deviation being greater than the true standard deviation

In[3671]:= Plot[{EU[θ], EUSim[θ]}, {θ, -1, 4}, PlotLabels → {"EU", "EUSim"}]

Out[3671]=

The key fact is that we use the same draws each time we compute EU[θ], which means that the stan-
dard deviation is too high at each θ.

1 Portfolio problem PSU 2019 new.nb 7

More serious applications

Ndraws=1000

The Ndraws=5 example did not do well because the number of draws was so small. We now do a
serious example.

In[3206]:= Ndraws = 1000;
(* Draw returns *)

returns = RandomReal[NormalDistribution[μ, σ], Ndraws];
(* Plot the CDF *)

ListPlot[{returns // Sort, Range[1, Ndraws]} // Transpose]

Out[3208]=

0.8 0.9 1.0 1.1 1.2 1.3

200

400

600

800

1000

In[3209]:= (* Compute ex post W over those draws as a function of theta *)

W = θ returns + (1 - θ) R;
(* Define expected utility as function of θ *)

EUSim[θ_] = Mean@util@W;

Plot EU and EUSim. We see that EUSim is a moderately good approximation of EU

In[3211]:= Plot[{EUSim[θ], EU[θ]}, {θ, -1, 3}, PlotLabels → {"EU", "EUSim"}]

Out[3211]=

8 1 Portfolio problem PSU 2019 new.nb

In[3212]:= (* Compute optimal portfolio weight *)

th = θ /. FindMaximum[EUSim[θ], {θ, 0., 3.}][[2]];
(* Display optimal portfolio and estimated utility *)

{th, EUSim[th]}

Out[3213]= {1.53752, -0.00510098}

The estimate is not a good one.

1 Portfolio problem PSU 2019 new.nb 9

Ndraws=1000 does better. However, we need to remember that the solution to the optimization prob-
lem is a random variable because it depends on the random vector of draws. We want to determine the
variance of the solution. We do this by repeating the procedure Ntests times, each time using a differ-
ent set of draws for the returns.

The following does this Ntests times.

In[3318]:= resultss := 

results = Table

returns = RandomRealNormalDistribution[μ, σ], Ndraws;

W = θ returns + (1 - θ) R;
ClearEUSim; EUSim[θ_] = Mean@util@W;

th = θ /. FindMaximumEUSim[θ], {θ, 6., 8.}[[2]];

th, EUSim[th],

{Ntests};

ListPlot[results] // Print;
resultsT = results // Transpose;
Print"mean solution = ", Mean[resultsT[[1]]],

" stdev = ", StandardDeviation[resultsT[[1]]]



Set Ntests to 10

In[3319]:= Ntests = 10;

In[3320]:= Ndraws = 1000;
time = resultss // AbsoluteTiming // First; Print ["time = ", time]

1.30 1.35 1.40 1.45 1.50 1.55

-0.0055

-0.0054

-0.0053

-0.0052

-0.0051

mean solution = 1.41042 stdev = 0.0915779

time = 0.345418

The average estimate is good, but the individual ones are spread out over a nontrivial interval. The plot
below looks at the approximation in the last test.

10 1 Portfolio problem PSU 2019 new.nb

Plot[{EUSim[θ] // Evaluate, EU[θ]}, {θ, -1, 3}, PlotLabels → {"EU", "EUSim"}]

1 Portfolio problem PSU 2019 new.nb 11

Ndraws=10,000

Repeat but with Ndraws=10,000

In[3322]:= Ndraws = 10000;
time = resultss // AbsoluteTiming // First; Print ["time = ", time]

1.34 1.36 1.38 1.40 1.42 1.44 1.46

-0.00535

-0.00530

-0.00525

mean solution = 1.38628 stdev = 0.035513

time = 3.83394

In[3324]:= Plot[{EUSim[θ] // Evaluate, EU[θ]}, {θ, -1, 3}, PlotLabels → {"EU", "EUSim"}]

Out[3324]=

The average solution is very close to the true solution, but the solutions were still scattered over a
montrivial range and the standard deviation was not negligible.

12 1 Portfolio problem PSU 2019 new.nb

Ndraws=100,000

Repeat but with Ndraws=100,000

In[3218]:= Ndraws = 100000;
time = resultss // AbsoluteTiming // First; Print ["time = ", time]

1.390 1.395 1.400 1.405 1.410

-0.00529

-0.00528

-0.00527

-0.00526

mean solution = 1.39912 stdev = 0.00962624

time = 47.3467

This is better but the time has gone up in proportion to Ndraws.

1 Portfolio problem PSU 2019 new.nb 13

Surrogate Function Method: Approximating the objective
In[3351]:= Chebpts[xmin_, xmax_, npts_] :=

((xmin + xmax)/2 + Cos[(2 Range[1, npts] - 1) π/(2 npts)] (xmax - xmin)/2) // Reverse

Idea

We need to approximate EU[θ] in some way. EUSim[θ] is one way to do this. It replaces the random
variable with a finite set of realizations and uses those realizations for each value of θ.

The surrogate function method uses approximation theory to construct an approximation. Approxima-
tion theory first approximates EU[θ] at each θ in some prespecified set, and then uses some curve-
fitting method (regression, splines, etc.) to construct an approximation.

Strategy

Pick a finite set of thetas, thetas = {θ1, θ1, θ1 ...θNthetas}
At each θi, use Monte Carlo integration to approximate EU[θi]
Use regression to approximate the EU[θ] function; call that EUSurr[θ]
Maximize EUSurr[θ]

Define some commands

Every time we invoke ExpUtil it will cause returns to be evaluated, resulting in a new set of draws, and
then the state-contingent W vector is computed, and then the expected utility is computed.

In[3352]:= returns := RandomReal[NormalDistribution[μ, σ], Ndraws];
W := theta returns + (1 - theta) R;
ExpUtil := Mean@util@W;

14 1 Portfolio problem PSU 2019 new.nb

Step-by-step description

In[3355]:= (* Choose range and number of thetas (Nthetas) to be examined *)

thmin = -1; thmax = 4.; thmean = (thmin + thmax) / 2;
Nthetas = 5; θvals = Chebpts[thmin, thmax, Nthetas]

Out[3356]= {-0.877641, 0.0305369, 1.5, 2.96946, 3.87764}

In[3357]:= (* Choose number of draws *)

Ndraws = 1 000000;

Compute the expected utility for each θ, using a different set of 1,000,000 Normal draws for each θ

In[3358]:= EUvals = Range[1, Nthetas]; (* create a vector for expected utilities *);

In[3359]:= Do[
theta = θvals[[i]];
EUvals[[i]] = ExpUtil,
{i, 1, Nthetas}]

1 Portfolio problem PSU 2019 new.nb 15

Collect data.

In[3364]:= data = {θvals, EUvals} // Transpose;
% // TableForm

Out[3365]//TableForm=

-0.877641 -0.0100871
0.0305369 -0.00666706
1.5 -0.00528168
2.96946 -0.00719419
3.87764 -0.0113286

We next define the functional form that we will use in a regression.
model will be the functional form with variables a, b, and c.

In[3366]:= Clear[model, a, b, c];
model = a + b θ + c θ

2;
vars = {a, b, c};

The next command computes a least-squares fit of the data to the model

In[3369]:= fit = FindFit[data, model, vars, θ]

Out[3369]= {a → -0.00688479, b → 0.00274157, c → -0.000993355}

We use these regression coefficients to define value

In[3370]:= EUSurr[θ_] = model /. fit;

gr0 = Plot[EU[θ], {θ, thmin, thmax}];

In[3372]:= gr1 = ListPlot[data]; gr2 = Plot[EUSurr[θ], {θ, thmin, thmax}];
Show[gr1, gr2, gr0]

Out[3373]=

1 2 3

-0.010

-0.008

-0.006

-0.004

-0.002

16 1 Portfolio problem PSU 2019 new.nb

In[3374]:= Plot[{EU[θ], EUSurr[θ]}, {θ, thmin, thmax}, PlotLabels → {"EU", "EUSurr"}]

Out[3374]=

Find optimal θ

In[3375]:= thsol = θ /. FindMaximum[{EUSurr[θ], {thmin ≤ θ ≤ thmax}}, {θ, thmean}][[2]]

Out[3375]= 1.37996

1 Portfolio problem PSU 2019 new.nb 17

The next code
1) sets Nthetas, θvals, and Ndraws
2) computes expected utility for each θ in θvals,
3) computes a curve that runs through those points, and
4) finds the max of the regression curve.

In[3376]:= run :=
(EUvals = θvals;
Do[
theta = θvals[[itheta]]; EUvals[[itheta]] = Mean@util@W,
{itheta, 1, Nthetas}];

data = {θvals, EUvals} // Transpose;
gr1 = ListPlot[data];
fit = FindFit[data, model, vars, θ];
Clear[EUSurr]; EUSurr[θ_] = model /. fit;
gr2 = Plot[EUSurr[theta], {theta, thmin, thmax}];
thsol = θ /. FindMaximum[{EUSurr[θ], {thmin ≤ θ ≤ thmax}}, {θ, thmean}][[2]]

)

We define a script that will call run Ncases times and report the results

In[3377]:= rrun := (start = AbsoluteTime[];
results = Table[run, {Ncases}];
time = AbsoluteTime[] - start;
Print["Time for ", Ncases, " cases was ", time, " seconds"];
Print["mean estimate is ", Mean[results],
" with standard deviation ", StandardDeviation[results]])

18 1 Portfolio problem PSU 2019 new.nb

In[3378]:= Clear[model, a, b, c];
model = a + b θ + c θ

2;
vars = {a, b, c};

In[3381]:= thmin = -1; thmax = 4.; thmean = (thmin + thmax) / 2; Nthetas = 11;
θvals = Chebpts[thmin, thmax, Nthetas]

Out[3382]= {-0.974554, -0.77408, -0.389374, 0.148398,
0.795669, 1.5, 2.20433, 2.8516, 3.38937, 3.77408, 3.97455}

In[3383]:= Ndraws = 10000; Ncases = 10;

In[3384]:= rrun

Time for 10 cases was 0.419052 seconds

mean estimate is 1.38758 with standard deviation 0.0207673

In[3385]:= Show[gr1, gr2]

Out[3385]=

-1 1 2 3 4

-0.012

-0.010

-0.008

-0.006

-0.004

-0.002

In[3386]:= Ndraws = 100000; Ncases = 10;

In[3387]:= rrun

Time for 10 cases was 0.657793 seconds

mean estimate is 1.38135 with standard deviation 0.0112333

1 Portfolio problem PSU 2019 new.nb 19

In[3388]:= Show[gr1, gr2]

Out[3388]=

-1 1 2 3 4

-0.012

-0.010

-0.008

-0.006

-0.004

-0.002

In[3389]:= Ndraws = 1 000000; Ncases = 10;

In[3390]:= rrun

Time for 10 cases was 3.569983 seconds

mean estimate is 1.38006 with standard deviation 0.00274248

In[3391]:= Show[gr1, gr2]

Out[3391]=

-1 1 2 3 4

-0.012

-0.010

-0.008

-0.006

-0.004

-0.002

20 1 Portfolio problem PSU 2019 new.nb

second iteration: reduce interval

The solution in the first iteration was 1.38. The approximation was a quadratic function over a wide
range. We next repeat the procedure but now over a smaller range that contains the first solution. In
this case, we choose the interval [1, 2].

In[3392]:= thmin = 1.; thmax = 2.; thmean = (thmin + thmax) / 2;
θvals = Chebpts[thmin, thmax, Nthetas]

Out[3393]= {1.00509, 1.04518, 1.12213, 1.22968, 1.35913,
1.5, 1.64087, 1.77032, 1.87787, 1.95482, 1.99491}

We now approximate the objective function over this smaller range for a total of 10 times, each time
with a different seed:

In[3394]:= Ndraws = 1000; rrun

Time for 10 cases was 0.399605 seconds

mean estimate is 1.33282 with standard deviation 0.144059

In[3395]:= Show[gr1, gr2]

Out[3395]=

1.2 1.4 1.6 1.8 2.0

-0.0057

-0.0056

-0.0055

-0.0054

-0.0053

In[3396]:= Ndraws = 10000; rrun

Time for 10 cases was 0.409211 seconds

mean estimate is 1.40411 with standard deviation 0.0259402

1 Portfolio problem PSU 2019 new.nb 21

In[3397]:= Show[gr1, gr2]

Out[3397]=

1.2 1.4 1.6 1.8 2.0

-0.0055

-0.0054

-0.0053

In[3398]:= Ndraws = 100000; rrun

Time for 10 cases was 0.650467 seconds

mean estimate is 1.39976 with standard deviation 0.00996922

In[3400]:= Show[gr1, gr2]

Out[3400]=

1.2 1.4 1.6 1.8 2.0

-0.00550

-0.00545

-0.00540

-0.00535

-0.00530

Very good solutions with small variation

22 1 Portfolio problem PSU 2019 new.nb

Quartic model, Nthetas=21

This time we use a degree 4 polynomial approximation

In[3401]:= Clear[model]; model = a + b θ + c θ
2
+ d θ

3
+ e θ

4; vars = {a, b, c, d, e};

In[3402]:= thmin = 0.; thmax = 4.; thmean = (thmin + thmax) / 2;

In[3403]:= Nthetas = 21;
θvals = Chebpts[thmin, thmax, Nthetas]

Out[3404]= {0.00559241, 0.0501442, 0.138253, 0.267949, 0.436337, 0.639655,
0.87336, 1.13223, 1.41049, 1.70192, 2., 2.29808, 2.58951, 2.86777,
3.12664, 3.36035, 3.56366, 3.73205, 3.86175, 3.94986, 3.99441}

In[3405]:= Ndraws = 1000; rrun

Time for 10 cases was 0.460238 seconds

mean estimate is 1.29856 with standard deviation 0.247833

In[3406]:= Show[gr1, gr2]

Out[3406]=

1 2 3 4

-0.010

-0.008

-0.006

-0.004

-0.002

In[3407]:= Ndraws = 10000; rrun

Time for 10 cases was 0.463709 seconds

mean estimate is 1.3838 with standard deviation 0.0786548

1 Portfolio problem PSU 2019 new.nb 23

In[3408]:= Show[gr1, gr2]

Out[3408]=

1 2 3 4

-0.012

-0.010

-0.008

-0.006

-0.004

-0.002

In[3409]:= Ndraws = 100000; rrun

Time for 10 cases was 0.912983 seconds

mean estimate is 1.36959 with standard deviation 0.0376642

In[3410]:= Show[gr1, gr2]

Out[3410]=

1 2 3 4

-0.012

-0.010

-0.008

-0.006

-0.004

-0.002

In[3411]:= thmin = 1.; thmax = 2; thmean = (thmin + thmax) / 2;

In[3412]:= Nthetas = 21;
θvals = Chebpts[thmin, thmax, Nthetas]

Out[3413]= {1.0014, 1.01254, 1.03456, 1.06699, 1.10908, 1.15991,
1.21834, 1.28306, 1.35262, 1.42548, 1.5, 1.57452, 1.64738, 1.71694,
1.78166, 1.84009, 1.89092, 1.93301, 1.96544, 1.98746, 1.9986}

In[3414]:= Ndraws = 1000; rrun

Time for 10 cases was 0.417582 seconds

mean estimate is 1.42975 with standard deviation 0.190921

24 1 Portfolio problem PSU 2019 new.nb

In[3415]:= Show[gr1, gr2]

Out[3415]=

1.2 1.4 1.6 1.8 2.0

-0.0058

-0.0056

-0.0054

-0.0052

-0.0050

In[3416]:= Ndraws = 10000; rrun

Time for 10 cases was 0.468097 seconds

mean estimate is 1.40729 with standard deviation 0.0906905

In[3417]:= Show[gr1, gr2]

Out[3417]=

1.2 1.4 1.6 1.8 2.0

-0.00555

-0.00550

-0.00545

-0.00540

-0.00535

-0.00530

-0.00525

In[3418]:= Ndraws = 100000; rrun

Time for 10 cases was 0.927141 seconds

mean estimate is 1.3995 with standard deviation 0.0210758

In[3419]:= Show[gr1, gr2]

Out[3419]=

1.2 1.4 1.6 1.8 2.0

-0.00550

-0.00545

-0.00540

-0.00535

-0.00530

1 Portfolio problem PSU 2019 new.nb 25

In[3420]:= Ndraws = 1 000000; rrun

Time for 10 cases was 8.347595 seconds

mean estimate is 1.39621 with standard deviation 0.0101574

In[3421]:= Show[gr1, gr2]

Out[3421]=

1.2 1.4 1.6 1.8 2.0

-0.00550

-0.00545

-0.00540

-0.00535

-0.00530

In[3422]:= Plot[{EUSurr[θ] - EU[θ]}, {θ, thmin, thmax}]

Out[3422]=

1.2 1.4 1.6 1.8 2.0

-8.×10
-6

-6.×10
-6

-4.×10
-6

-2.×10
-6

2.×10
-6

4.×10
-6

In[3423]:=

26 1 Portfolio problem PSU 2019 new.nb

Degree six polynomial model, Nthetas=21

This time we use a degree 6 polynomial approximation

In[3424]:= Clear[model]; model = a + b θ + c θ
2
+ d θ

3
+ e θ

4
+ f θ

5
+ g θ

6; vars = {a, b, c, d, e, f, g};

In[3425]:= thmin = 0.; thmax = 4.; thmean = (thmin + thmax) / 2;

In[3426]:= Nthetas = 21;
θvals = Chebpts[thmin, thmax, Nthetas]

Out[3427]= {0.00559241, 0.0501442, 0.138253, 0.267949, 0.436337, 0.639655,
0.87336, 1.13223, 1.41049, 1.70192, 2., 2.29808, 2.58951, 2.86777,
3.12664, 3.36035, 3.56366, 3.73205, 3.86175, 3.94986, 3.99441}

In[3428]:= Ndraws = 1000; rrun

Time for 10 cases was 0.470788 seconds

mean estimate is 1.42231 with standard deviation 0.269263

In[3429]:= Ndraws = 10000; rrun

Time for 10 cases was 0.490968 seconds

mean estimate is 1.4105 with standard deviation 0.115562

In[3430]:= Ndraws = 100000; rrun

Time for 10 cases was 1.453138 seconds

mean estimate is 1.39276 with standard deviation 0.0429931

In[3431]:= thmin = 1.; thmax = 2; thmean = (thmin + thmax) / 2;

In[3432]:= Nthetas = 21;
θvals = Chebpts[thmin, thmax, Nthetas]

Out[3433]= {1.0014, 1.01254, 1.03456, 1.06699, 1.10908, 1.15991,
1.21834, 1.28306, 1.35262, 1.42548, 1.5, 1.57452, 1.64738, 1.71694,
1.78166, 1.84009, 1.89092, 1.93301, 1.96544, 1.98746, 1.9986}

In[3434]:= Ndraws = 1000; rrun

Time for 10 cases was 0.917441 seconds

mean estimate is 1.47976 with standard deviation 0.16556

In[3435]:= Ndraws = 10000; rrun

Time for 10 cases was 2.276581 seconds

mean estimate is 1.41588 with standard deviation 0.121692

1 Portfolio problem PSU 2019 new.nb 27

In[3436]:= Show[gr1, gr2]

Out[3436]=

1.2 1.4 1.6 1.8 2.0

-0.0056

-0.0055

-0.0054

-0.0053

-0.0052

In[3437]:= Ndraws = 100000; rrun

Time for 10 cases was 0.907011 seconds

mean estimate is 1.413 with standard deviation 0.0425698

In[3438]:= Show[gr1, gr2]

Out[3438]=

1.2 1.4 1.6 1.8 2.0

-0.00550

-0.00545

-0.00540

-0.00535

-0.00530

In[3439]:= Ndraws = 1 000000; rrun

Time for 10 cases was 7.215463 seconds

mean estimate is 1.3919 with standard deviation 0.00960508

In[3440]:= Show[gr1, gr2]

Out[3440]=

1.2 1.4 1.6 1.8 2.0

-0.00550

-0.00545

-0.00540

-0.00535

-0.00530

28 1 Portfolio problem PSU 2019 new.nb

In[3441]:= Plot[{EUSurr[θ] - EU[θ]}, {θ, thmin, thmax}]

Out[3441]=

1.2 1.4 1.6 1.8 2.0

-4.×10
-6

-2.×10
-6

2.×10
-6

In[3442]:= Ndraws = 10000000; rrun

Time for 10 cases was 65.430050 seconds

mean estimate is 1.40116 with standard deviation 0.00581504

In[3443]:= Show[gr1, gr2]

Out[3443]=

1.2 1.4 1.6 1.8 2.0

-0.00550

-0.00545

-0.00540

-0.00535

-0.00530

In[3444]:= Plot[{EUSurr[θ] - EU[θ]}, {θ, thmin, thmax}]

Out[3444]=

1.2 1.4 1.6 1.8 2.0

-1.×10
-6

-5.×10
-7

5.×10
-7

1.×10
-6

In[3445]:=

1 Portfolio problem PSU 2019 new.nb 29

