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1 Introduction

Structural estimation of economic models is an important approach for analyzing economic

data. However, the computational burden of estimating structural models raises concern.

It is commonly believed that computational demands make it difficult to implement the

most powerful and efficient statistical methods. For example, Rust (1987) proposes a com-

putational strategy for maximum likelihood estimation of single-agent dynamic program-

ming models, an approach termed the nested fixed-point (NFXP) algorithm. Unfortunately,

NFXP is computationally demanding because it repeatedly takes a guess for structural pa-

rameters and solves for the corresponding endogenous economic variables with high accuracy

for each guess of these parameters. Furthermore, NFXP may not be valid for estimating

games. One feature that distinguishes games from single-agent dynamic decision models is

that games can admit multiple equilibria. When applying NFXP for maximum likelihood

estimation of games, one needs to find all Nash equilibria for each vector of parameters con-

sidered in order to calculate the corresponding likelihood value. Finding all the equilibria in a

game is a daunting computational task.1 Even if one can solve for all the equilibria for every

guess of structural parameters, the resulting likelihood function can be nonsmooth or even

discontinuous, which makes the outer-loop optimization problem extremely difficult. This

concern about the computational burden of implementing NFXP has led to the development

of estimators that are computationally light, for example, the well-known two-step estima-

tor by Hotz and Miller (1993) for estimating singe-agent dynamic discrete-choice models,

and two-step estimators by Bajari, Benkard, and Levin (2007), Pakes, Ostrovsky, and Berry

(2007), and Pesendorfer and Schmidt-Dengler (2008) for estimating dynamic games. How-

ever, two-step estimators are not asymptotically efficient and can be severely biased in finite

samples. Recognizing these limitations, Aguirregabiria and Mira (2002, 2007) propose the

nested pseudo-likelihood (NPL) estimator, a recursive two-step pseudo-likelihood estimator,

to improve the asymptotic properties and finite-sample performance of two-step estimators.

We present a direct constrained optimization approach, termed the Mathematical Pro-

gram with Equilibrium Constraints (MPEC; see Luo, Pang, and Ralph (1996)), for structural

estimation. The idea behind the MPEC approach is simple: choose structural parameters

and endogenous economic variables so as to maximize the likelihood (or minimize the moment

conditions) of the data subject to the constraints that the endogenous economic variables

1See the discussion in Besanko, Doraszelski, Kryukov, and Satterthwaite (2010) and Judd, Renner, and
Schmedders (2010).
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are consistent with an equilibrium for the structural parameters. When formulating the

estimation problem in this way, one can simply write down expressions that define the like-

lihood or the moment as the objective function and the equilibrium equations as constraints

and use one of the state-of-the-art constrained optimization solvers to solve the estimation

problem. The advantages of our approach are twofold. First, we do not repeatedly solve

for an equilibrium for each guess of structural parameters; in fact, the only equilibrium that

needed to be solved exactly is the one associated with the final estimate of parameters.

Modern constrained optimization algorithms do not enforce constraints to be satisfied until

the last iteration in the search process. This feature makes it possible for our approach to

be faster than NFXP. Second and more important, in the context of estimating games of

incomplete information, our approach preserves the smooth property of the objective (like-

lihood or moment) function and structural equations, while the objective function in NFXP

might be nonsmooth or discontinuous. This feature allows constrained optimization solvers

to be applied directly to estimation of games and makes estimating games conceptually no

more difficult than estimating than estimating dynamic programming models.

In many ways, the MPEC approach is not new, since it builds on ideas and methods

that have been developed and analyzed in the statistics and econometrics literature. In

particular, examples that we will examine below are constrained estimation problems of

the kind exposited in Aitchison and Silvey (1958), Silvey (1975), Gallant and Holly (1980),

Wolak (1987, 1989), and Gallant and Tauchen (1989).2 We demonstrate in this paper that the

constrained optimization approach is computationally feasible. Researchers can also access

state-of-the-art constrained optimization solvers used in our numerical implementation on

the NEOS Server.3

The rest of the paper is organized as follows. In Section 2, we give a brief overview on nu-

merical optimization. We describe the basic ideas behind algorithms for solving constrained

optimization problems and explain why constrained optimization methods are efficient and

capable of solving problems with tens or hundreds of thousands of variables and constraints

on a laptop or millions of variables on a workstation. In Section 3, we use a simple de-

mand example to illustrate the main idea of the MPEC approach. In Section 4, we study

the standard single-agent, dynamic discrete-choice models as in Rust (1987). We present

the MPEC formulation for estimating this model. We show the equivalence in solution be-

2We thank Ron Gallant for pointing us to the constrained estimation literature.
3The NEOS Server is at http://www.neos.gov. For reference, see Gropp and Moré (1997), and Czyzyk,

Mesnier, and Moré (1998).
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tween NFXP and MPEC, that is, a solution for NFXP is also a solution for MPEC and

vice versa. The Monte Carlo results show that while estimates from NFXP and MPEC are

almost identical, MPEC is significantly faster than NFXP, in particular when the discount

factor in the dynamic programming model is close to 1. In Section 5, we consider a model

of static discrete-choice game of incomplete information studied by Rust (2008). We show

in an example that the likelihood function of NFXP for estimating this game is discontinu-

ous. One can expect the outer-loop optimization problem in NFXP to be computationally

difficult because there is no reliable algorithm for maximizing a discontinuous function. In

contrast, the MPEC formulation, defined over the space of both structural parameters and

equilibrium, gives a smooth constrained optimization problem. The advantage of using this

formulation is that the presence of multiple equilibria has no impact on the smoothness

of the optimization problem solved by the MPEC approach. As a result, the problem of

estimating games is qualitatively no more difficult to solve than the standard single-agent

dynamic models. In Monte Carlo experiments, we study small sample properties of the

MPEC estimator, two-step pseudo maximum likelihood (2S-PML), two-step least squares

(2S-LS), and nested pseudo likelihood (NPL) with data generated by using best-reply stable

and/or best-reply unstable equilibria. The results show that MPEC estimator is superior

to other estimators considered. When data are generated from best-reply stable equilibria,

all estimators perform well, and the mean estimates are within 1 or 2 standard errors from

true parameters values. In term of computational speed, NPL needs more than 120 NPL

iterations to converge and is the slowest method: about 40 times slower than MPEC and

100 times slower than two-step estimators. When data is generated from equilibria that are

not stable under best-reply iteration, the MPEC estimator still recovers the structural pa-

rameters successfully, while two-step estimators reject the true parameter values. NPL fails

to converge in every run, suggesting that NPL is not reliable unless the underlying equilibria

in the data generating process are stable under best-reply iteration; see also the discussion

by Pesendorfer and Schmidt-Dengler (2010). We summarize our conclusions in Section 6.

2 Overview of Numerical Optimization Methods

We give an overview of numerical methods for solving unconstrained and constrained opti-

mization. We do not provide a comprehensive review. Instead, we describe the main ideas

in solving optimization problems and explain why modern numerical optimization methods

and solvers can solve large-scale problems with tens or hundreds of thousands of variables
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and constraints on laptop computers or millions of variables and constraints on workstations.

We refer readers to an excellent book by Nocedal and Wright (2006) and the reference within

for further details on numerical algorithms and their implementations for solving nonlinear

equations and optimization problems.

The central idea in numerical optimization is to apply a Newton-type method to solve

the system of first-order conditions of the corresponding (unconstrained or constrained)

optimization problem. For example, consider an unconstrained optimization problem

max
θ
f(θ), (1)

where θ ∈ Rn and f : Rn → R is at least twice-differentiable. If θ∗ is a local solution to this

problem, then θ∗ satisfies the following system of first-order conditions:

∇f(θ) = 0,

where ∇f(θ) ∈ Rn is the gradient of f . Since f is at least twice-differentiable, the second-

order derivatives ∇2f(θ) exist. We then can apply the Newton’s method to find a solution

to the system of first-order conditions.

The same idea applies to constrained optimization problems. Consider a constrained

optimization problem

max
(θ,y)

f(θ, y)

subject to g(θ, y) ≤ 0

h(θ, y) = 0,

(2)

where θ ∈ Rn, P ∈ Rm and f, g, and h are at least twice-differentiable. Let (θ∗, y∗) be a

local solution to the problem (2). Assuming that a constraint qualification (CQ) holds at

(θ∗, y∗),4 then there exists a vector of Lagrange multipliers (µ∗, λ∗) such that the following

4The simplest one is the linear-independence constraint qualification (LICQ); i.e., the gradients of binding
constraints in g(θ∗, y∗) = 0 and h(θ∗, y∗) ≤ 0 are linearly independent.
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first-order conditions are satisfied at (θ∗, y∗, µ∗, λ∗):

∇θf(θ, y)− λT∇θg(θ, y)− λT∇θh(θ, y) = 0

∇yf(θ, y)− λT∇yg(θ, y)− λT∇yh(θ, y) = 0

µ ≥ 0, g(θ, y) ≤ 0, µTg(θ, y) = 0

λ free, h(θ, y) = 0.

(3)

Again, we apply a Newton-type method to solve the system of first-order conditions (3)

for (θ∗, y∗, µ∗, λ∗). To accommodate the inequality constraints on g and µ, one can adopt a

line-search strategy in a Newton’s method to ensure that both the equations and inequalities

in the first-order conditions are satisfied at a solution.

Practical implementations of constrained optimization algorithms incorporate several

nice and important features that make state-of-the-art solvers efficient in speed and capable

of solving large-scale problems. We summarize these features below.

Using first-order and second-order derivatives. Most optimization methods require

knowledge of derivatives. In fact, in solving an optimization problem, much of the computa-

tional time is devoted to evaluating functions and obtaining first-order derivatives, such as

gradients and Jacobians, and second-order derivatives, such as Hessians. For most solvers,

users should provide at least first-order derivatives for the solver to perform well. Supplying

exact derivatives, instead of using finite-differencing derivatives, will significantly decrease

the number of iterations needed and improve the robustness of the search process. While

the cost for calculating derivatives was a concern in the past, the development of automatic

differentiation has eliminated this as a serious problem; see Griewank and Walther (2008).

We give the basic ideas of automatic differentiation in Appendix B.

Allowing infeasibility during the search process. Solving nonlinear equations or equiv-

alently finding a feasible solution to constraints is computationally costly. In the implemen-

tation of optimization algorithms, intermediate iterates are allowed to be infeasible, and

constraints, g(θ, y) ≤ 0, h(θ, y) = 0 do no need to be satisfied until the last few iterations.

The advantage of allowing the constraints to be violated during the search process is that

one does not waste effort in finding a feasible solution that is not optimal. Furthermore,

allowing the algorithm to move into the infeasible region can result in needing few iterations

to converge to an optimal solution.

6



Enabling quadratic convergence. Newton-typ methods can be shown to be quadratically

convergent near a solution.5 This nice property enables Newton-type methods to converge

in a few iterations and hence reduce the number of function and gradient evaluations when

the iterates are in the neighborhood of a solution.

Exploring sparsity structure in the constraint Jacobian and Hessian. While the

number of variables and constraints may be large in an optimization problem, what really

matters in the computation are the non-zeros in the constraint Jacobian and Hessian. Sup-

pose that there are n variables and m constraints in an optimization problem. If the Jacobian

and Hessian are dense, the memory required for a constrained optimization method is on the

order of (n+m) ∗ (n+m). However, for sparse Jacobian and Hessian, the time and memory

needed is usually on the order of the number of nonzeros in Jacobian and Hessian. In many

applied models, sparsity structure in constraint Jacobian and Hessian arises naturally. For

example, the constraint Jacobian of the Bellman equation in Rust’s Zucher bus repair model

has a sparse diagonal structure, as illustrated in Figure 1. The number of nonzeros in this

constraint Jacobian is on the order of n, the number of variables. Modern solvers explore

sparsity structure in matrices and utilize sparse numerical linear algebra techniques to speed

the computation and save the memory needed in the computation.
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Figure 1: Sparsity pattern in constraint Jacobian of the Zucher model

5Quadratic convergence means that when the error is small (less than 1), the square of the error at one
iteration is proportional to the error at the next iteration.
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3 MPEC Approach to Estimation

In this section, we give a general formulation of MPEC approach for estimating structural

models. We discuss the asymptotic distribution of the estimator using the MPEC approach.

3.1 Formulation

Suppose that an economic model is described by parameters θ, state x, and a vector of

endogenous variables σ. The data is X = {xm, dm}Mm=1, where xm is the observed state, dm

is the observed equilibrium outcome of the underlying decision model and M is the number

of data points. One example is a dynamic programming problem where θ are the parameters

for costs, profits, laws of motion and stochastic shocks, and where σ is the policy function

of a decisionmaker in an environment described by the structural parameters θ. In general,

σ will depend on θ through a set of equilibrium conditions such as first-order conditions,

Bellman equations, market balance conditions, etc., which are expressed in the system of

equations denoted by

h (θ, σ) = 0. (4)

For any given θ, let Σ (θ) be the set of all σ such that G (θ, σ) = 0, that is,

Σ(θ) := {σ : h(θ, σ) = 0}.

We let σ(θ) denote the element in the solution set Σ(θ). For applications such as single-agent

dynamic discrete choice models, σ(θ), representing the expected value function, is uniquely

determined and the set Σ(θ) is a singleton for any given θ. For other applications such as

games, there can be multiple equilibria in σ(θ) and hence, the set Σ(θ) can be multi-valued

for some θ.

We use L (θ,σ(θ);X) to denote the log-likelihood of observing the data X conditional

on parameter θ.6 If σ(θ) is unique for all θ, the maximum likelihood estimator is defined as

θ = argmax
θ

1

M
L (θ,σ(θ);X) . (5)

6If there are multiple solutions in σ(θ), we assume that the data comes from a single equilibrium so that
one can write the likelihood function.
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If there are multiple solutions in σ(θ), with the assumption that data comes from a single

equilibrium, the maximum likelihood estimator is defined as

θ = argmax
θ

1

M

{
max

σ(θ)∈Σ(θ)
L (θ,σ(θ);X)

}
. (6)

Notice that the consistency requirement between θ and σ described in (4) is implicitly taken

into account by σ(θ) in the likelihood function.

This formulation implicitly expresses the dependence of L on σ. In many applications,

σ is more directly related to the likelihood than some components of θ. For example, in a

life-cycle problem, the likelihood of an observation depends on the consumption and labor

decisions, not on, for example, the elasticity of labor supply which could be a component of

θ. Elasticities affect likelihood only indirectly through their impact on decision rules.

We construct an augmented likelihood function7, denoted by L (θ, σ;X), by simply re-

placing the equilibrium solution σ(θ) in the likelihood function by any σ. This function

explicitly expresses the dependence of the likelihood on σ and makes no requirement that θ

and σ are consistent with the equilibrium conditions of the economic model. For example, in

a life-cycle model, the policy function σ together with the components of θ related to exoge-

nous shock processes defines a stochastic process for the observables. A stochastic process

is well-defined even if σ and θ are not consistent with equilibrium. An augmented likelihood

function allows us to treat σ and θ independently when we compute the likelihood.

When we estimate the structural parameters θ, we need σ to be consistent with θ. This is

achieved by imposing the equilibrium conditions (4). Therefore, we can formulate maximum

likelihood estimation problem as a constrained optimization problem

max
(θ,σ)

1

M
L (θ, σ;X)

subject to h (θ, σ) = 0.

(7)

One can show that the two formulations (6) and (7) (or (5) and (7) if σ(θ) is unique)

are mathematically equivalent. We state the equivalence result formally when we discuss

specific applications in the sections below .

The MPEC approach described above is not limited to maximum likelihood estimation.

7We thank Peter Rossi for suggesting this term.
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It can be applied to any loss (or gain) function, such as least squares, weighted GMM,

simulated maximum likelihood, etc., as the objective. See, for example, Dubé, Fox and Su

(2008) on GMM estimator for random-coefficient demand estimation.

3.2 Inference

Computing standard errors for maximum likelihood estimates requires the computation of

the Hessian of the likelihood function L (θ,σ(θ);X). This Hessian matrix or an approxima-

tion of it can be obtained directly if one uses a numerical procedure to solve (5) or (6). While

the MPEC approach is simply a different way to compute the maximum likelihood estimator,

conducting inference is more complex with the MPEC approach. Aitchison and Silvey (1958)

consider maximum likelihood estimation of parameters with equality constraints and study

the conditions under which a maximum exists.8 They also derive asymptotic distributions

of estimates. Although their model does not include endogenous variables, the derivation

and analysis there can be carried over to the our setting. Below we discuss the large sample

properties of the maximum likelihood estimates based the MPEC approach without includ-

ing the proof. We refer the reader to Aitchison and Silvey (1958) for detailed derivation and

proof and Silvey (1975) for a concise discussion.

Proposition 1. Let θ0 ∈ Θ be the true parameter vector in the population and let σ0 be the

corresponding endogenous variables such that h(θ0, σ0) = 0. Denote ϑ = (θ, σ), H0 = ∂h(ϑ0)
∂ϑ

,

and B0 = IE
[
∂L(ϑ0)
∂ϑ

∂L(ϑ0)
∂ϑ′

]
. Assume the following conditions hold:

(i) Θ is compact.

(ii) θ0 is in the interior of Θ.

(iii) The observations {xm, dm} are independent.

(iv) The likelihood function L is at least three-times differentiable and the constraint h is

at least twice differentiable.

(v) The matrix B0 is positive definite.

Under some regularity conditions, the random variable
√
M(ϑ∗ − ϑ0) is asymptotically nor-

mally distributed with √
M(ϑ∗ − ϑ0)

d−→ N (0, P0),

where P0 = B−1
0 [I −H0(H ′0B

−1
0 H−1

0 )H ′0B
−1
0 ].

8Wolak (1987) analyzes problems with both equality and inequality constraints.

10



4 Single-Agent Dynamic Discrete Choice Models

We consider a single-agent dynamic discrete choice model as in Rust (1987).We choose the

Rust model since it has become the standard framework for modeling dynamic discrete-

choice problems. It is also often used to evaluate the performance of alternative estimators.

We first describe the nested fixed-point algorithm (NFXP) proposed by Rust for estimating

this model. As an alternative, we present the MPEC formulation for this model and show

the equivalence in formulation and solution between NFXP and MPEC. We compare the

numerical performance of these two methods in several Monte Carlo experiments.

4.1 Bus Engine Replacement Problem: The Model

The bus engine replacement problem in Rust (1987) considers the dynamic decisions faced

by a repairman, Harold Zurcher. In each period, a bus arrives in state x, the accumulated

mileage since the last engine replacement. Given the observed mileage state x and other

unobserved state variables ε, Harold Zurcher decides whether to perform extensive repairs

on a bus or to implement less costly activities. Formally, the discrete decision in time t is

defined as follows:

dt =

{
1, replacing the engine

0, performing regular maintenance.

If Zucher chooses to replace the engine, the mileage state x after the replacement will be

reset to 0 before the bus goes out to travel for another period.

Let c (x; θ1) be the expected operating costs per period at mileage x, where θ1 is a vector

of parameters to be estimated. Let RC denote the expected replacement cost to install a

new engine, net of any scrap value of the old engine. Given the state (x, ε) and action d, the

utility per period is

u(x, d, ε; θ1, RC) = ν(x, d; θ1, RC) + ε(d),

where

ν(x, d; θ1, RC) =

 −c(x; θ1), if d = 0

−RC − c(0; θ1), if d = 1,

and ε = (ε(0), ε(1)) represents utility shocks.

The state (xt, εt) evolves after a decision dt is chosen, and the evolution is described
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by the transition probability p(xt+1, εt+1|xt, εt, dt; θ2, θ3), where θ2 and θ3 are parameters to

be estimated. Note that the transition probability p is Markovian since it depends only on

current state (xt, εt). Let β ∈ (0, 1) be a discount factor. Given the current state (xt, εt),

the agent chooses a sequence of decision to maximize the total expected discounted utility

over infinite horizons:

max
{dt,dt+1,dt+2,...}

IEp

[
∞∑
τ=t

βτ−tu(x, d, ε; θ1, RC)

]
, (8)

where the expectation is taken over the stochastic evolution of future states.

Define the value function V by

V (xt, εt) = max
{dt,dt+1,dt+2,...}

IEp

[
∞∑
τ=t

βτ−tu(xτ , dτ , ετ ; θ1, RC)

]
. (9)

Since the transition probability p is Markovian, the optimal decision rule for the infinite-

horizon decision problem is time invariant and we can drop the time index t. The infinite-

horizon optimal decision problem in (8) can be formulated as a solution to the Bellman

equation

V (x, ε) = max
d

{
ν(x, d; θ1, RC) + ε(d) + β

∫
x′

∫
ε′
V (x′, ε′)p(x′, ε′|x, ε, d; θ2, θ3)dx′dε′.

}
,

(10)

where (x′, ε′) denote the state variable in the next period.

Rust (1987) discusses the computational difficulties in estimating the model specified

above and introduces the conditional independence assumption on the transition probability

p to simplify the estimation problem.

Assumption 1: Conditional Independence. The Markov transition probability of state

variables (x, ε) can be decomposed as p(x′, ε′|x, ε, d; θ2, θ3) = p2(ε′|x′; θ2)p3(x′|x, d; θ3).

With Assumption CI, we define the expected value function

EV (x) =

∫
ε

V (x, ε)p2(ε|x; θ2)dε,
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and the choice-specific value function

EV (x, d) = ν(x, d; θ1, RC) + β

∫
x′
EV (x′)p3(x′|x, d; θ3)dx′.

Taking the expectation with respect to ε on both side of the Bellman equation (10) and

using EV (x) and EV (x, d) defined above, one can obtain the integrated Bellman equation

EV (x) =

∫
ε′

max
d
{EV (x, d)} p2(ε′|x; θ2)dε′. (11)

Let θ = (RC, θ1, θ2, θ3). Assuming p2(ε′|x; θ2) is a multivariate extreme value distribution,

Rust derives the multinomial logit formula to characterize conditional choice probability :

P (d|x; θ) =
exp{ν(x, d, θ) + βEV (x, d)}∑

d′∈{0,1}

exp{ν(x, d′, θ) + βEV (x, d′)}
, (12)

where P (d|x; θ) is the probability of choosing decision d given the mileage state x and

parameter vectors θ. Furthermore, the choice-specific value function EV (x, d) in (12) is the

unique fixed point solution to the contraction mapping

EV (x, d) =

∫ ∞
x′=0

log

 ∑
d′∈{0,1}

exp{ν(x′, d′; θ1, RC) + βEV (x′, d′)}

 p3(dx′|x, d, θ3). (13)

Since the mileage state space x is continuous, EV (x, d) is a functional. Following Rust

(1987), we discretize the mileage state space x by K grid points x̂ = {x̂1, . . . , x̂K} with

x̂1 = 0. We require the fixed point equation (13) to be satisfied at those grid points. Given

the current state x̂k, we assume that the mileage state in the next period x′ can move up at

most J grid points and specify the Markov transition probabilities as

p3(x′|xk, d, θ3) =

 Pr{x′ = x̂k+j|θ3}, if d = 0

Pr{x′ = x̂1+j|θ3}, if d = 1,
(14)

for j = 0, 1, . . . , J . With a slight abuse of notation, we now denote

EV = (EV (x̂1, 0), . . . , EV (x̂K , 0), EV (x̂1, 1), . . . , EV (x̂K , 1)) ∈ R2K
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as a vector of expected value function and rewrite the fixed point equation (13) as

EV (x̂k, d) =
J∑
j=0

log

 ∑
d′∈{0,1}

exp{ν(x′, d′; θ1, RC) + βEV (x′, d′)}

 p3(x′|x̂k, d, θ3). (15)

To simplify the notation, we denote the fixed-point equation (15) as

EV = T (EV, θ). (16)

This characterization allows us to calculate the conditional choice probability P (d|x; θ) for

a given vector of structural parameters θ by first solving the fixed-point equation (15) for

EV (x, d′) for all d′. We refer readers to Rust (1987, 1994) for detailed derivation and

discussions.9

4.2 Maximum Likelihood Estimation

The econometrician observes the mileage state and the corresponding decision in each period

and for each bus in the data. Let X i = (xit, d
i
t)
T
t=1 be the time series data for bus i = 1, . . . ,M ;

xit is the mileage state of bus i examined in period t and dit is the replacement decision made

for that bus. For simplicity, we assume xit stays on the grid x̂ = {x̂1, . . . , x̂K}.10 The full

data including all buses is denoted by X = (X i)Mi=1.

Rust (1987) proposes to estimate structural parameters θ using maximum likelihood

estimation. The likelihood of observing data X i for bus i is

li(X
i; θ) =

T∏
t=2

P (dit|xit; θ)p3(xit|xit−1, d
i
t−1; θ3),

where P is given by (12). The likelihood function of the full data X = (X i)Mi=1 is

l(θ) =
M∏
i=1

li(X
i; θ) =

M∏
i=1

T∏
t=2

P (dit|xit; θ)p3(xit|xit−1, d
i
t−1; θ3), (17)

9With the Markov transition probabilities p3(x′|xk, d, θ3) defined in (14), we have EV (x̂k, 1) = EV (x̂1, 0)
for all k = 1, . . . ,K. As a result, one can define EV = (EV (x̂1, 0), . . . , EV (x̂K , 0). See Rust (2000, p. 14).

10If xit is not on the grid x̂, then we around xit up or down to the nearest grid point.
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and the log-likelihood function is denoted by

L(θ) = log l(θ) =
M∑
i=1

T∑
t=2

log
(
P (dit|xit; θ)

)
+

M∑
i=1

T∑
t=2

log
(
p3(xit|xit−1, d

i
t−1; θ3)

)
}. (18)

We infer the unknown parameter vector θ = (RC, θ1, θ3) by maximizing the log-likelihood

function

max
θ

1

M
L(θ). (19)

To calculate the value of the log-likelihood function for a given θ, one needs to know the

value of the term P (dit|xit; θ), which in turn is a solution of the fixed-point equation (15).

This observation motivates the nested fixed-point algorithm proposed in Rust (1987). NFXP

consists of an outer loop and an inner loop. In the outer loop, a maximization procedure

is carried out to maximize the log-likelihood function L(θ) by changing the structural pa-

rameters θ; in the inner loop, for a given θ, one solves the fixed-point equation (15) for EV

to calculate the conditional choice probabilities P (dit|xit; θ), and evaluate the log-likelihood

function L(θ). Furthermore, Rust (1988) proves that the log-likelihood function L(θ) is a

smooth function of θ, an attractive property that makes Newton’s method (e.g., BHHH) a

valid approach. Rust shows that one can compute the exact derivatives of L(θ) with respect

to θ using implicit function theorem. Supplying exact derivatives in the implementation of

Newton’s method makes the algorithm faster and more robust than when finite-difference

methods are used to approximate derivatives.

NFXP requires the fixed-point equation (15) to be solved very accurately for every vector

of parameters θ considered in the maximization procedure.11 Aguirregabiria and Mira (2002)

point out that repeatedly solving the fixed-point equation is not computationally efficient

since it is not necessary to enforce the fixed-point equation to be satisfied during the search

process in NFXP’s outer loop. They propose a nested pseudo-likelihood estimator to avoid

repeated solution of the fixed-point equation. With the same motivation in mind, we propose

a constrained optimization approach for solving the maximum likelihood estimation of Rust’s

bus model. The idea behind our constrained optimization approach is simple: reformulate the

log-likelihood function as a function of both EV and θ, jointly maximize the (reformulated)

log-likelihood function in both EV and θ space, and impose structural equations, the Bellman

fixed-point equation in this case, as constraints. Modern numerical constrained optimization

11Rust (1987) starts with contraction mapping (with a tolerance level of 1.0e − 13) and then switches to
Newton’s method to solve the fixed-point equation with very high accuracy; see also Rust (2000).
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solvers do not require the constraints to be satisfied during the search process; hence, they

minimize the need for repeatedly solving the fixed-point equation.

To be more specific, we construct an augmented likelihood function as a function of both

structural parameters θ and expected value function EV :

L(θ, EV )

=
M∑
i=1

T∑
t=2

log
(
P (dit|xit; θ)

)
+

M∑
i=1

T∑
t=2

log
(
p3(xit|xit−1, d

i
t−1; θ3)

)

=
M∑
i=1

T∑
t=2

log

 exp{ν(xit, d
i
t, θ) + βEV (xit, d

i
t)}∑

d′∈{0,1}

exp{ν(xit, d
′, θ) + βEV (xit, d

′)}


+

M∑
i=1

T∑
t=2

log
(
p3(xit|xit−1, d

i
t−1; θ3)

)
.

(20)

Notice that in defining the augmented likelihood function, we have substituted the conditional-

choice probability P (d|x; θ) in the log-likelihood function L(θ) in (18) by the multinomial

formula given in (12). The augmented likelihood function L(θ, EV ) is a well-defined smooth

function of θ and EV , and its first- and second-order derivatives with respect to θ and EV

exist.

To ensure that EV and θ are consistent in the structural equation, we impose the inte-

grated Bellman equation (16) as constraints. Combining the augmented likelihood function

as the objective function and the integrated Bellman equation as constraints gives the fol-

lowing constrained optimization problem:

max
(θ,EV )

1

M
L(θ, EV )

subject to EV = T (EV, θ).

(21)

As we illustrate in Figure 1, the constraint Jacobian of this model is highly sparse. Let

dim(z) denote the dimension of a vector z. One can verify that the number of non-zero

elements in the Jacobian is around (dim(θ) + dim(θ3) + 1) ∗ dim(EV ). The Hessian is even

more sparse; the number of non-zero elements in the Hessian is around (2 ∗ (dim(RC) +

dim(θ1)) + dim(θ3)) ∗ (dim(θ) + dim(EV )). Assuming dim(θ) � dim(EV ), which is the
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case for most dynamic discrete choice models, the memory needed for the constrained opti-

mization approach on Zucher’s model is on the order of dim(θ) + dim(EV ), the number of

variables in the MPEC estimator.

4.3 Equivalence in Formulation between NFXP and MPEC

In this section, we show that the maximum likelihood estimation problem defined in (19)

and the constrained optimization problem (21) are mathematically equivalent. We state the

results in Proposition 2.

Proposition 2. Define the maximum likelihood estimator

θ̂ = argmax
θ

1

M
L(θ).

Let ÊV be the unique solution of the Bellman fixed-point equation (16) given the structural

parameters θ̂, i.e.,

ÊV = T (ÊV , θ̂).

Denote (θ∗, EV ∗) a solution of the constrained optimization problem (21). The following

results hold:

(i) L(θ) = L(θ, EV ), ∀ θ and EV such that EV = T (EV, θ).

(ii) L(θ̂) = L(θ∗, EV ∗).

(iii) If the model is uniquely identified, then θ̂ = θ∗, and ÊV = EV ∗.

Proposition 2 states that NFXP and MPEC give the same estimates and are equivalent

in formulation. Dubé, Fox and Su (2009) further prove the equivalence in solutions to the

first-order conditions of NFXP and MPEC. They also discuss the finite-sample and large-

sample properties of NFXP in the presence of inner-loop error.12 NFXP and MPEC solves

the same MLE problem. The only difference between NFXP and MPEC is how they solve

the MLE problem.

12Dubé, Fox and Su (2009) study properties of NFXP in the context of demand estimation. However, the
results and proof can be applied directly to the single-agent dynamic models considered here.
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We now compare the numerical implementation of the NFXP and MPEC approach.

First, if the solution time for solving the fixed-point equation is large relative to the time for

evaluating the likelihood function, then the MPEC approach results in a faster algorithm.

For each θ that is considered in NFXP, there are two steps: solving the dynamic program-

ming problem with high accuracy and evaluating the likelihood function. Value function

iteration will evaluate the Bellman equation many times in NFXP each time a dynamic

program is solved. Furthermore, this is repeated for nearby values of θ if finite-difference

methods are used to compute the derivatives. In contrast, for each θ considered in MPEC,

the Bellman equation is evaluated once, not solved. Essentially, MPEC does not solve the

Bellman equations exactly until the last few iterations.

4.4 A Monte Carlo Study

We consider a specific example of Rust’s bus engine replacement model. We follow the

specifications used to report the estimates in Table X in Rust (1987, p. 1022). In particular,

we choose the fixed point dimension to be 175 (i.e., discretizing the mileage state space

into 175 grid points) and assume the maintenance cost function is linear, that is, c(x, θ1) =

0.001θ11x. The Markov transition probabilities in the mileage state are defined as θ3j =

Pr{xt+1 = xt+ j|xt, it = 0}, for j = 0, 1, . . . , 4. Hence, θ3j is the probability that the mileage

state will move up j grid points in the next period. The unknown structural parameters to

be estimated are replacement cost RC, cost function parameter θ11, and mileage transition

probabilities θ3 = (θ3j)
4
j=0. We do not estimate the discount factor β. Instead, we run five

scenarios with β ranging from 0.975 to 0.995 in an interval of 0.005.13

We use the parameter values reported for bus groups 1, 2, and 3 in Table X in Rust

(1987) as the true values in the data generating process:

RC0 = 11.7257,

θ0
11 = 2.4569,

θ0
3 = (0.0937, 0.4475, 0.4459, 0.0127, 0.0002).

We simulate time series data for T = 120 time periods (10 years of monthly data points) and

M = 50 buses. To simulate data for each of the five scenarios and the corresponding β, we fix

the structural parameters at θ0 = (RC0, θ0
11, θ

0
3) and solve the integrated Bellman equation

13Rust (1997) chooses β = 0.9999.
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(15) for EV 0. We then use θ0 and EV 0 to compute the conditional choice probabilities

P (d|x, θ) and to simulate mileage transitions and decisions for 250 data sets for each β in

our Monte Carlo study.

We have conducted three implementations of algorithms. The first implementation is to

code the MPEC estimator in AMPL, an algebraic modeling language; see Fourer, Gay, and

Kernighan (2003).14 The advantages of using AMPL are twofold: (i) it will compute the

exact first-order and second-order analytic derivatives using automatic differentiation, and

(ii) it will analyzes the sparsity pattern of constraint Jacobian and Hessian and provide that

information to the solvers. We denote this implementation as MPEC/AMPL.15

We also code both MPEC and NFXP in Matlab and provide hand-coded first-order

derivatives of objective function and constraint and the sparsity pattern of constraint Jaco-

bian. We denote these two implementations as MPEC/Matlab and NFXP/Matlab, respec-

tively. In our implementation of the NFXP, we use only contraction mapping iterations to

solve the Bellman equation (15) with a inner-loop tolerance level 1.e− 10.16 Rust (1997) es-

timates the transition probabilities θ3 from the mileage transition data in the first stage and

then estimates the remaining parameters (RC, θ11) in the second stage. In our implementa-

tion of NFXP, we estimate the parameters (RC, θ11, θ3) jointly by solving the full likelihood

functions (18). For all three implementations, we solve the estimation problem using the

optimization solver, Knitro, a state-of-the-art optimization program; see Byrd, Nocedal, and

Waltz (2006). For each of the 1,250 replications (250 replications for each of the five β’s) ,

we use five different starting values to do a better job at finding a global solution. To make

a fair comparison, all three implementations use the same starting values in parameters.

We report the Monte Carlo results in Table 1. These three implementations produce

almost identical means and standard deviations of estimates in the five scenarios when we

vary the discount factor β. We believe the differences are due to different local maximizers

found in these three implementations. The estimation results show that the ML estimator

works extremely well on this model, in particular on recovering the transition probabilities.

For β = 0.99 and 0.995, all mean parameter estimates, except for θ30, are within two standard

14We can not implement NFXP in AMPL because it does not allow nested function calls.
15For this example, the number of non-zeros in Jacobian is 2255 (≈ (7 + 5 + 1) ∗ 175))and the number of

non-zeros in Hessian is 1584 (≈ (2 ∗ (1 + 1) + 5) ∗ 182)).
16NFXP will need more computational time if one uses tighter inner loop tolerance level such as 1.e−13, or

follows Rust’s suggestion on switching to Newton’s method after the contraction mapping iteration converges;
see Footnote 7. Since we provide hand-coded first-order derivatives in our implementation, NFXP using
contraction mapping iteration only in the inner loop and with inner loop tolerance 1.e− 10 is quite robust.
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errors of the true values.

We report the numerical performance of these three implementations in Table 2. We

can see that the MPEC/Matlab implementation is most robust in terms of number of runs

converged. In terms of timing, MPEC/AMPL is the fastest, needing around only 0.15

seconds for each run and considerably fewer iterations and function evaluations than do

MPEC/Matlab and NFXP/Matlab. The reason is that AMPL supplies both first-order and

second-order derivatives to the solver Knitro while the other two implementations supply

only first-order derivatives to the Knitro solver. This observation confirms that a solver

runs most efficiently and needs fewer iterations and function evaluations when supplying

both first-order and second-order derivatives. If we remove the effect of supply second-order

derivatives and compare the performance of MPEC/Matlab and NFXP/Matlab, MPEC still

dominates NFXP in all categories. As one can see, the number of major iterations and

function evaluations for NFXP and MPEC do not increase when we increase the discount

factor from 0.975 to 0.995; however, the computing time for NFXP increases steadily while

the computing time for MPEC/Matlab (or MPEC/AMPL) stays the same for different β’s.

The reason for the increase in computing time for NFXP is that when the discount factor

β increases, the number of contraction mapping iterations needed in solving the inner loop

Bellman equations also increases.

4.5 Boostrap Inference

Instead of using the asymptotic properties of an estimator presented in Section 3.2 to con-

struct confidence inference, one can use the bootstrap to construct confidence interval or

test hypothesis. Furthermore, it has been shown that the bootstrap inference is often more

accurate than the inference based on asymptotic theory when the sample size is small; see

Horowitz (2001) and MacKinnon (2002). However, the feasibility of conducting bootstrap

inference relies on having a computationally efficient method to perform parameter estima-

tion of the underlying structural model since the bootstrap requires estimating parameters

for each of the simulated samples. As we illustrate above, the MPEC approach provides a

computational efficient method to estimate dynamic discrete-choice models and make the

bootstrap inference possible. Indeed, the data sampling procedure that we describe in the

Monte Carlo study in Section 4.4 is a parametric bootstrap procedure to generate simu-

lated samples and the Monte Carlo study demonstrate the uses of parametric bootstrap to

compute standard errors on structural parameters.
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Table 1: Monte Carlo Results Varying the Discount Factor β
β Implementation Parameters MSE

RC θ11 θ30 θ31 θ32 θ33

True values 11.726 2.457 0.0937 0.4475 0.4459 0.0127

0.975 MPEC/AMPL Mean 12.212 2.607 0.0943 0.4473 0.4454 0.0127 3.111

Std. dev. (1.613) (0.500) (0.0036) (0.0057) (0.0060) (0.0015) –

MPEC/Matlab Mean 12.212 2.607 0.0943 0.4473 0.4454 0.0127 3.111

Std. dev. (1.613) (0.500) (0.0036) (0.0057) (0.0060) (0.0015) –

NFXP/Matlab Mean 12.213 2.606 0.0943 0.4473 0.4445 0.0127 3.123

Std. dev. (1.617) (0.500) (0.0036) (0.0057) (0.0060) (0.0015) –

0.980 MPEC/AMPL Mean 12.134 2.578 0.0943 0.4473 0.4455 0.0127 2.857

Std. dev. (1.570) (0.458) (0.0037) (0.0057) (0.0060) (0.0015) –

MPEC/Matlab Mean 12.134 2.578 0.0943 0.4473 0.4455 0.0127 2.857

Std. dev. (1.570) (0.458) (0.0037) (0.0057) (0.0060) (0.0015) –

NFXP/Matlab Mean 12.139 2.579 0.0943 0.4473 0.4455 0.0127 2.866

Std. dev. (1.571) (0.459) (0.0037) (0.0057) (0.0060) (0.0015) –

0.985 MPEC/AMPL Mean 12.013 2.541 0.0943 0.4473 0.4455 0.0127 2.140

Std. dev. (1.371) (0.413) (0.0037) (0.0057) (0.0060) (0.0015) –

MPEC/Matlab Mean 12.013 2.541 0.0943 0.4473 0.4455 0.0127 2.140

Std. dev. (1.371) (0.413) (0.0037) (0.0057) (0.0060) (0.0015) –

NFXP/Matlab Mean 12.021 2.544 0.0943 0.4473 0.4455 0.0127 2.136

Std. dev. (1.368) (0.411) (0.0037) (0.0057) (0.0060) (0.0015) –

0.990 MPEC/AMPL Mean 11.830 2.486 0.0943 0.4473 0.4455 0.0127 1.880

Std. dev. (1.305) (0.407) (0.0036) (0.0057) (0.0060) (0.0015) –

MPEC/Matlab Mean 11.830 2.486 0.0943 0.4473 0.4455 0.0127 1.880

Std. dev. (1.305) (0.407) (0.0036) (0.0057) (0.0060) (0.0015) –

NFXP/Matlab Mean 11.830 2.486 0.0943 0.4473 0.4455 0.0127 1.880

Std. dev. (1.305) (0.407) (0.0036) (0.0057) (0.0060) (0.0015) –

0.995 MPEC/AMPL Mean 11.819 2.492 0.0942 0.4473 0.4455 0.0127 1.892

Std. dev. (1.308) (0.414) (0.0036) (0.0057) (0.0060) (0.0015) –

MPEC/Matlab Mean 11.819 2.492 0.0942 0.4473 0.4455 0.0127 1.892

Std. dev. (1.308) (0.414) (0.0036) (0.0057) (0.0060) (0.0015) –

NFXP/Matlab Mean 11.819 2.492 0.0942 0.4473 0.4455 0.0127 1.892

Std. dev. (1.308) (0.414) (0.0036) (0.0057) (0.0060) (0.0015) –

There are 250 replications for each experiment. Each replication uses five starting points to do a better job

at finding a global maximum. MSE is calculated by summing over all structural parameters.
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Table 2: Numerical Performance of Estimators in Monte Carlo Experiments
β Implementation Runs Converged CPU Time # of Major # of Func. # of Contraction

(out of 1250 runs) (in sec.) Iter. Eval. Mapping Iter.

0.975 MPEC/AMPL 1240 0.13 12.8 17.6 –

MPEC/Matlab 1247 7.9 53.0 62.0 –

NFXP 998 24.6 55.9 189.4 1.348e+ 5

0.980 MPEC/AMPL 1236 0.15 14.5 21.8 –

MPEC/Matlab 1241 8.1 57.4 70.6 –

NFXP 1000 27.9 55.0 183.8 1.625e+ 5

0.985 MPEC/AMPL 1235 0.13 13.2 19.7 –

MPEC/Matlab 1250 7.5 55.0 62.3 –

NFXP 952 42.2 61.7 227.3 2.658e+ 5

0.990 MPEC/AMPL 1161 0.19 18.3 42.2 –

MPEC/Matlab 1248 7.5 56.5 65.8 –

NFXP 935 70.1 66.9 253.8 4.524e+ 5

0.995 MPEC/AMPL 965 0.14 13.4 21.3 –

MPEC/Matlab 1246 7.9 59.6 70.7 –

NFXP 950 111.6 58.8 214.7 7.485e+ 5

For each experiment, we solve the model once for the expected value function by fixing structural parameters

at true values and then simulate and re-estimate the model 250 times. Each of the 250 replications uses

five starting points to do a better job at finding a global maximum. CPU time, number of major iterations,

number of function evaluations and number of contraction mapping iterations are the averages for each run.

5 Estimation of Games of Incomplete Information

Unlike the single-agent dynamic discrete-choice models considered in Section 4, in which

a unique fixed point for the integrated Bellman equation there always exists, games can

admit multiple equilibria. This distinct feature requires applying NFXP to estimating games

computationally difficult because one needs to find all the equilibria for any given structural

parameters in the inner loop of NFXP. Furthermore, the resulting likelihood function can

be discontinuous, which makes the outer loop optimization problem extremely difficult.17

In this section, we use an example of a discrete-choice game of incomplete information

to demonstrate multiple equilibria, the discontinuity in the likelihood function when using

NFXP, and the use of MPEC approach for estimating games. We also conduct Monte Carlo

experiments to compare the finite sample properties of MPEC and those of two-step pseudo

maximum likelihood (2S-PML), two-step least squares (2S-LS), and nested pseudo-likelihood.

17If one can prove a priori that the likelihood function is continuous in structural parameters, then NFXP
is a valid approach for estimating games.
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5.1 A Discrete-Choice Game of Incomplete Information

The description of the example presented here closely follows the derivation in Rust (2008).18

For simplicity, we first describe the model for only one market and then generalize the model

to accommodate data observed from multiple differentiated markets.

5.1.1 Model with One Market

Consider a two-player discrete-choice game with both observed and unobserved heterogeneity.

Let the players be labeled a and b, and let da and db denote the choice of player a and b,

respectively. For simplicity, we assume that each player has two possible choices; see, for

example, entry and exit games in Berry (1992), Seim (2006), and Ciliberto and Tamer (2009).

We define

da =

{
1 if player a is active

0 if player a is not active;

db is defined similarly.

The ex post utility functions for players a and b are

ua(da, db, xa, εa) = θada,dbxa + εa(da),

ub(da, db, xb, εb) = θbda,dbxb + εb(db),

where a scalar xa is the observed type for player a and a (2 × 1) vector εa is player a’s

unobserved type. The parameter (to be estimated) θada,db measures the effect of the observed

type xa on player a’s utility. Note that player a’s utility is a function of joint decision of

both player players, (da, db), and this is captured by the parameter θada,db . The observed type

xb, unobserved type εb, and parameter θbda,db are similarly defined for player b.

We assume that the observed types (xa, xb) are common knowledge among players and

that unobserved types (εa, εb) are private information. Furthermore, we assume that player

a knows the distribution of εb, and similarly player b knows the distribution of εa. We also

assume that εa and εb are independent. Let θa = {θada,db} and θb = {θbda,db} denote the

parameters to be estimated for player a and player b, respectively. We assume θa and θb are

common knowledge among players.

18We are grateful to John Rust for providing us his lecture notes with a detailed derivation and discussion
of this example.
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Because of the presence of private information εa, player a’s decision will be probabilistic

from player b’s point of view. Let pa denote player b’s belief of the probability that player a

will be active. Similarly, pb represents player a’s belief of the probability that player b will

be active. Given player b’s belief pa, the expected utility of player b for taking an action db

is given by

Ub(db, xb, εb) = paub(1, db, xb, εb) + (1− pa)ub(0, db, xb, εb)

= paθ
b
1,db
xb + (1− pa)θb0,db + εb(db).

It follows that player b will be active (db = 1) if and only if

Ub(1, xb, εb(1)) > Ub(0, xb, εb(0)).

We assume that each component in the error terms εa and εb has an extreme value

distribution. Given player b’s belief pa, the probability that player b will be active is given

by the standard binomial logit formula

pb = Prob{db = 1}

= Prob {εb|Ub(db = 1, xb, εb(1)) > Ub(db = 0, xb, εb(0))}

=
1

1 + exp{(xb(θb0,0 − θb0,1) + paxb(θb0,1 − θb0,0 + θb1,0 − θb1,1))}

≡ Ψb(pa, pb, xb; θ
b).

(22)

This formula can be thought of as a best response function for player b given b’s belief pa.

Similarly, the best response for player a, given a’s belief pb, is

pa =
1

1 + exp{(xa(θa0,0 − θa1,0) + pbxa(θa0,1 − θa0,0 + θa1,0 − θa1,1))}
≡ Ψa(pa, pb, xa; θ

a).

(23)

A Bayesian Nash equilibrium is a pair of beliefs (p∗a, p
∗
b) that are mutual best responses:

p∗a = Ψa(p
∗
a, p
∗
b , xa; θ

a)

p∗b = Ψb(p
∗
a, p
∗
b , xb; θ

b).
(24)

The structural parameters to be estimated in this model are (θa, θb) = ({θada,db}, {θ
b
da,db
}).

However, we cannot identify all of them. Rust (2008) shows that we can identify only four
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parameters:

αa = θa0,0 − θa1,0, αb = θb0,0 − θb0,1,

βa = θa0,1 − θa1,1, βb = θb1,0 − θb1,1.

We further impose the symmetry assumptions on the players; that is, θa = θb and hence,

αa = αb = α and βa = βb = β. Substituting α and β into the best response functions (22)

and (23), we have

pa =
1

1 + exp{(xaα + pbxa(β − α)}
,

pb =
1

1 + exp{(xbα + paxb(β − α)}
.

(25)

To simplify the notation, let θ = (α, β), x = (xa, xb), p = (pa, pb) and Ψ = (Ψa,Ψb). We

rewrite the Bayesian Nash equilibrium equations (24) as

p = Ψ(p, x;θ). (26)

For given parameter values (α, β) and observed types (xa, xb), there are two equations

and two unknowns, (pa, pb) in (25). However, there could exist multiple Bayesian Nash

equilibria satisfying the equations (25). The example below illustrates such a case.

Example 1. We select parameter values θ0 = (α0, β0) = (−5, 11) and players’ observed

types x = (xa, xb) = (0.52, 0.22). Substituting these values into (25), we solve the following

two equations for Bayesian Nash equilibria p∗:

pa =
1

1 + exp(−4.48 + 8.32pb)
,

pb =
1

1 + exp(−1.10 + 3.52pa)
.

(27)

We use the state-of-the-art constrained optimization solver, Knitro, to solve this system

of two equations and two unknowns. Since there could be multiple solutions, we use 100

different starting points in an attempt to find all equilibria. It turns out that there are three

Bayesian Nash equilibria that solve the two equations above:

Equilibrium 1: (pa, pb) = (0.030100, 0.729886),

Equilibrium 2: (pa, pb) = (0.616162, 0.255615),

Equilibrium 3: (pa, pb) = (0.773758, 0.164705).
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Furthermore, one can verify that Equilibrium 2 is not stable under best-reply (BR) iteration,

which means that the BR iteration will not be able to find Equilibrium 2 even if the starting

point for BR is very close to the solution.19

5.1.2 Model with Multiple Markets

We generalize the model described above to accommodate multiple differentiated markets

in the observed data. Assume that there are M markets and that players’ decisions in

one market do not depend on their decisions in other markets. However, the unknown

parameters to be estimated θ = (α, β) stay the same across all markets. In our setting,

the characteristics that differentiate markets are the players’ observed types. Hence, two

different players’ observed types (xa, xb) 6= (x̂a, x̂b) give rise to two different markets. We

denote the players’ observed types in market m as xm = (xma , x
m
b ), for m = 1, . . . ,M .

For each market, there is a set of Bayesian Nash equilibrium equations, parameterized by

the observed types in that market, that define the corresponding Bayesian Nash equilibrium.

Denoted as pm, the Bayesian Nash equilibrium for market m satisfies the following equation:

pm = Ψ(pm, xm;θ), for m = 1, . . . ,M. (28)

Let P = (pm)Mm=1 be the collection of equilibrium probabilities for all markets . We denote

x = (xm)Mm=1 the collection of the players’ observed types for all markets. With a slight

abuse of notation, we simplify the Bayesian Nash equilibrium equations for all markets (28)

as

P = Ψ(P,x;θ). (29)

From (28), it is clear that markets with different observed types might have different

Bayesian Nash equilibria. Furthermore, the number of equilibria can be different for markets

with different observed types, as we illustrate in the following example.

Example 2. We select the same parameter values θ0 = (α0, β0) = (−5, 11) as in Example 1.

We consider a case with 256 markets. We discretize the interval [0.12, 0.87] into 16 equally

spaced grid points. These 16 different values give 16 observed types for each player; jointly,

19Note that best-reply stable equilibrium is not among the common notions of stable equilibria, such
as strategic stability in Kohlberg and Mertens (1986), and Mertens (1989, 1991), or evolutionarily stable
strategy (ESS), studied in the game theory literature. See also Chapter 11 in Fudenberg and Tirole (1996).
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there are 16*16 = 256 pairs of (xma , x
m
b ),m = 1, . . . , 256. Each of these pairs defines a market.

For each market m, we solve the corresponding Bayesian Nash equilibrium equations in (28)

with 100 different starting values to find all Bayesian Nash equilibria pm∗ = (pm∗a , pm∗b ) for

that market.

We do not report all equilibrium solutions. Instead, we report the number of equilibria

in each market in Figure 2. As one can see, there are three equilibria in most markets. For

markets with low xa and/or xb, the equilibrium is unique. However, the number of equilibria

can be different even for markets with similar characteristics. For example, there are three

equilibria for the market with observed types (0.17, 0.87), but there is only one equilibrium

for the market with the observed types (0.12, 0.87).
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Figure 2: Number of equilibria in different markets
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5.2 Estimation

In this section, we describe data generating process and discuss various estimators for esti-

mating this discrete-choice game of incomplete information.

5.2.1 Data Generating Process

In the data, the researcher observes the players observed types xm = (xma , x
m
b ) and the

players’ decisions dmt = (dmta , dmtb )Tt=1 over T periods for the game played independently in

that market. Let Xm denote the data observed in market m:

Xm = {xm = (xma , x
m
b ), dmt = (dmta , dmtb ), for t = 1, . . . , T}.

Data observed for all M markets over T periods are the collection of Xm for all m:

X = {Xm, for m = 1, . . . ,M}. (30)

Following a common assumption in the literature (Aguirregabiria and Mira 2007, Bajari,

Benkard, and Levin 2007, and Pesendorfer and Schmidt-Dengler 2008), we assume that for

each market, only one equilibrium is played in the data. Since equilibrium solutions are

different in different markets, as we see in Example 2, in the data we allow different equilibria

being played in different markets.

Assumption 2: For each market, only one equilibrium is played in the data. However,

equilibria played across different markets are different.

5.2.2 Maximum Likelihood Estimation with NFXP

Given Assumption 2, the log-likelihood of observing data Xm in market m is

Li(X
m,pm(θ);θ)

=
T∑
t=1

(
dmta ∗ log(pa(x

m
a , x

m
b ,θ)) + (1− dmta ) ∗ log(1− pa(xma , xmb ;θ))

)
+

T∑
t=1

(
dmtb ∗ log(pb(x

m
a , x

m
b ,θ)) + (1− dmtb ) ∗ log(1− pb(xma , xmb ;θ))

)
,

(31)
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where pm(θ) = (pa(x
m
a , x

m
b ,θ),pb(x

m
a , x

m
b ,θ)) denote a Bayesian Nash equilibrium given θ

and (xma , x
m
b ). Let P (θ) = (p(θ)m)Mm=1 and let Σ(θ) be the set of all Bayesian Nash equilibria.

The log likelihood of observing the full data X for all markets is

L(θ,P (θ)) =
M∑
m=1

Li(X
m,pm(θ);θ). (32)

Since there can be multiple equilibria, the maximum likelihood estimator is defined as

θMLE = argmax
θ

1

M

{
max

P (θ)∈Σ(θ)
L(θ,P (θ))

}
(33)

The procedure for applying NFXP to find θMLE is described as follows. In the outer loop,

one searches over the structural parameter space θ to maximize the log likelihood function

(32). In the outer loop, for a given θ, one needs to find all the Bayesian Nash equilibria

(BNE), evaluate the likelihood value at each such BNE and pick the BNE that gives the

highest likelihood value. The algorithm then returns to the outer loop and repeats until it

converges or fails.

Two main computational difficulties when applying NFXP to solve the ML estimator

(33) are that (i) one needs to find all the equilibria for any given structural parameters θ, and

(ii) the number of equilibria can be different from different values of structural parameters

θ, which gives rise to the the discontinuity in the likelihood function. In the example below,

we illustrate a case of discontinuous likelihood function using NFXP.

Example 3. Consider the setting in Example 1, in which there are three Bayesian Nash

equilibria. First, we assume that both players use Equilibrium 1 to play the game 1,000

times and hence randomly generate 1,000 pairs of actions (dta1, d
t
b1)1000

t=1 independently based

on Equilibrium 1. Denote this dataset as X1. Repeat the same procedure. Equilibrium 2 and

Equilibrium 3 are played 1,000 times to generate dataset X2 and X3, respectively. We plot

the log-likelihood functions in the parameter θ = (α, β) space for each of the three datasets

in Figure 3. As one can see, the log-likelihood function for X1 is continuous in (α, β), while

the log-likelihood function for X2 and X3 are discontinuous. Recall that Equilibrium 2 is

unstable under best-reply iteration, whereas Equilibrium 3 is stable under best-reply. This

example shows that the discontinuity in likelihood function does not depend on best-reply

stability of an equilibrium.
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Figure 3: Log-likelihood function of NFXP when Equilibrium 1 (top figure), Equilibrium 2
(middle figure), and Equilibrium 3 (bottom figure) are played, respectively, in the data. The
blue dot indicates the maximizer in the likelihood function.
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5.2.3 Maximum Likelihood Estimation with MPEC

We now describe the MPEC approach for estimating games of incomplete information. The

main advantage of using the MPEC approach in this setting is that the objective function

and the constraints are smooth in our formulation, which gives rise to a smooth constrained

optimization problem. As a result, one can use a state-of-the-art constrained optimization

solver to solve the estimation problem.

Recall that pm = (pma , p
m
b ) ∈ R2 denotes any equilibrium probabilities in market m and

that P = (pm)m=1M . Given the observed data Xm, we define the augmented log-likelihood

for observing Xm in market m as

Li(Xm, pm,θ) =
T∑
t=1

(
dmta ∗ log(pma ) + (1− dmta ) ∗ log(1− pma )

)
+

T∑
t=1

(
dmtb ∗ log(pmb ) + (1− dmtb ) ∗ log(1− pmb )

)
.

(34)

The augmented log-likelihood of observing the full data X for all markets is

L(θ, P ) =
M∑
m=1

Li(Xm, pm,θ). (35)

The decision variables in our formulation are θ and P . Notice from (34) that the struc-

tural parameters θ does not enter the augmented function (35). Furthermore, the augmented

likelihood function is a smooth function of equilibrium probabilities P and is well defined

even when some component pm in P is not a Bayesian Nash equilibrium.

To ensure that for all markets, the equilibrium probabilities pm are Bayesian Nash equi-

libria, we impose the Bayesian Nash equilibrium equations (28) as constraints. The equilib-

rium probabilities pm must be between 0 and 1. As a result, the constrained optimization

formulation for the MPEC approach is given as follows:

max
(θ,P )

1

M
L(θ, P )

subject to P = Ψ(P,x,θ).

(36)
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Similar to equivalence result stated in Proposition 2, one can show the equivalence of

the MLE formulated in (33) and (36). We state this results below.

Proposition 3. Let θ̄ be the solution of the maximum likelihood estimator defined in (33).

Denote P̄ (θ) = argmax
P (θ)Σ(θ)

L(θ,P (θ)). Let (θ∗, P ∗) a solution of the constrained optimization

problem (36). The following results hold:

(i) L(θ̄, P̄ (θ̄)) = L(θ∗, P ∗).

(ii) If the model is uniquely identified, then θ̄ = θ∗.

5.2.4 Two-Step Estimators

Pioneered by Hotz and Miller (1993) for estimating single-agent dynamic discrete-choice

models, two-step estimators have become extremely popular among applied researchers and

practitioners. One attraction of two-step estimators is that they are thought of as computa-

tionally light, compared with Rust’s NFXP method or the MPEC approach. In this section,

we describe two-step pseudo likelihood (2S-PML) estimator and two-step least squares esti-

mator (2S-LS) for estimating the discrete-choice games described Section 5.1.

For any given vector of probabilities P̂ = (p̂m)Mm=1, the pseudo likelihood of observing

data Xm in market m is defined as

LPML
i (Xm, p̂m;θ)

=
T∑
t=1

(
dmta ∗ log(Ψa(p̂

m, xm, θ)) + (1− dmta ) ∗ log(1−Ψa(p̂
m, xm, θ))

)
+

T∑
t=1

(
dmtb ∗ log(Ψb(p̂

m, xm, θ)) + 1− dmtb ) ∗ log(1−Ψb(p̂
m, xm, θ))

)
,

The pseudo likelihood of observing the full data X for all markets is

LPML(θ, P̂ ) =
M∑
m=1

Li(X
m, p̂m;θ). (37)

Notice that in defining the pseudo likelihood function (37), the vector of probabilities
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P̂ does not need to be a Bayesian-Nash equilibrium. The pesudo likelihood function is well

defined for any P̂ .

The two-step pseudo maximum likelihood (2S-PML) estimator is as follows:

Step 1: Find P̂0, a consistent estimate of the true choice probabilities P 0.

Step 2: Fixed P̂0. Solve the pseudo maximum likelihood estimator:

θ2S−PML = argmax
θ

1

M
LPML(θ, P̂0).

(38)

One can also use a two-step least squares (2S-LS) estimator (see Pesendorfer and Schimdt-

Dengler (2008)). Instead of maximizing the pseudo likelihood function, one chooses struc-

tural parameters θ to minimize the l−2 norm of the errors in the Bayesian Nash equilibrium

equations in 2S-LS:20

Step 1: Find P̂0, a consistent estimate of the true choice probabilities P 0.

Step 2: Fixed P̂0. Solve the least square problem:

θ2S−LS = argmin
θ
‖P̂0 −Ψ(P̂0,x,θ)‖2

2.

(39)

Notice that in the two-step estimators, the Bayesian Nash equilibrium equations are not

enforced in the second step and hence may not be satisfied at a solution. Furthermore,

the optimization problem in the second step in unconstrained and only involves structural

parameters. Because two-step estimators do not solve the Bayesian Nash equilibrium equa-

tions, they are considered computationally light. However, the trade-off is that they can

be severely biased in finite-sample performance. Also, two-step estimators are asymptoti-

cally inefficient. We refer the readers to Aguirregabiria and Mira (2002, 2007) for further

discussion.

5.2.5 Nested Pseudo Likelihood Estimator

Recognizing the limitations of two-step estimators, Aguirregabiria and Mira (2002, 2007) pro-

pose the nested pseudo likelihood (NPL) estimator for estimating dynamic discrete-choice

20Pesendorfer and Schimdt-Dengler (2008) proposes an asymptotic least-squares estimator and derive the
asymptotically optimal weight matrix. Here, we do not derive the optimal weight matrix and use the identity
matrix as the weight matrix in this example.
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models and dynamic discrete games. NPL is a recursive procedure over two-step PML.

The purpose of recursively iterating over 2S-PML is to enforce the Bayesian Nash equilib-

rium equations to be satisfied, and consequently reduce the finite-sample biases of two-step

estimators. An outline of iterative procedure for the NPL estimator is given below.

Outline of Nested Pseudo Likelihood (NPL) Algorithm:

Initialization: Find an initial guess of choice probabilities P̂0. Set K = 0.

repeat
Increase K ← K + 1.

Fixed P̂K−1. Solve the pseudo maximum likelihood estimator for θ̂K :

θ̂K = argmax
θ

1

M
LPML(θ, P̂K−1).

Given θ̂K , obtain P̂K by one best-reply iteration on the Bayesian Nash equilibrium
equation (29):

P̂K = Ψ(P̂K−1,x, θ̂K).
until Converge

Let θNPL = θ̂K and PNPL = P̂K .

When NPL converges, the Bayesian Nash equilibrium equations are satisfied at the NPL

solution (θNPL, PNPL). However, there are serious drawbacks with NPL. First, there is no

guarantee that NPL will converge, in particular for estimating games. Second, since NPL

relies on best-reply iteration, it only finds equilibria that are best-reply stable. If the data

were generated by equilibria that are not stable under best-reply iteration, NPL may fail to

converge or converge to incorrect parameter values. See Pesendorfer and Schmidt-Dengler

(2010) for such an example.

One can show that under certain regularity conditions, the maximum likelihood estimator

for discrete-choice games of incomplete information is consistent, asymptotically normal and

efficient. Aguirregabiria and Mira (2007) show that asymptotically NPL is more efficient

than the two-step PML estimator. Hence, we conclude that maximum likelihood estimator

with MPEC is more efficient than NPL and two-step PML.
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5.3 Monte Carlo

We conduct several Monte Carlo experiments to study finite-sample performance of four

estimators: two-step pseudo maximum likelihood (2S-PML), two-step least squares (2S-LS),

nested pseudo likelihood (NPL), and our maximum likelihood/MPEC estimator. We use

Example 2 as the econometric model in our Monte Carlo experiments. Recall that the

true values of parameters are θ0 = (α0, β0) = (−5, 11) and there are M = 256 differentiated

markets. We use different types of equilibria to generate the players’ decisions in each market.

Note that we still maintain the assumption that in each market, only one equilibrium is played

in the data; however the equilibrium played in different can be different.

We describe the properties of equilibrium used in generating data in each of the three

experiments below.

Experiment 1: Only the best-reply stable equilibrium with lowest probabilities of being

active for player a is played in each market for markets with multiple equilibria.21

Experiment 2: Only one of the best-reply stable equilibria is played in each market for

markets with multiple equilibria.

Experiment 3: Only one equilibrium is played in each market. The equilibria chosen

to be played can be stable or nonstable under best-reply iteration.

For Experiments 1 and 2, we generate the players’ actions using a best-reply stable equilib-

rium in each market. For Experiment 3, we randomly pick an equilibrium in each market

to simulate players’ decisions; these equilibria may or may not be stable under best-reply

iteration.

For each experiment, we simulate the static game for T = 250 periods and hence generate

250 pairs of actions, pm = (pmta , pmtb )250
t=1 in each market m, m = 1, . . . , 256. We conduct 100

replications in each experiment to obtain a distribution of parameter estimates.

Since the players’ decisions are observed in every market in the static game model,

we use a frequency estimator to estimate the first-step choice probabilities for two-step

estimators. The estimated choice probabilities p̂m = (p̂ma , p̂
m
b ) for each market m by the

21Rust (2008) uses the equilibrium that results in the highest probability of confession for player a in the
Monte Carlo study.
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frequency estimator is given as

p̂ma =
1

T

T∑
t=1

pmta , p̂mb =
1

T

T∑
t=1

pmtb , for m = 1, . . . , 256.

We also use the same estimated choice probabilities from the frequency estimator to initiate

the NPL procedure. We set the maximum number of NPL iterations to be 500. If the

number of NPL iterations reaches 500, we declare that NPL fails to converge in that run.

For MPEC, with 256 markets and two choice probabilities (pma , p
m
b ) in each market,

there are 2 + 2 ∗ 256 = 514 decision variables and 512 equality constraints (2 Bayesian Nash

equilibrium equations for each market) in the constrained optimization formulation. For

each replication in the Monte Carlo experiments, we use 100 different starting points for θ

but fix the starting values for P at the estimated choice probabilities p̂ = (p̂m)256
m=1 from the

frequency estimator, in an attempt to find a global solution of the ML estimator.

Our Monte Carlo experiments are conducted in a Matlab environment. However, the

optimization problem in each estimator is coded in AMPL and solved by Knitro. The reason

that we choose AMPL as the programing platform for solving optimization problems in

each estimator is that AMPL uses automatic differentiation to efficiently compute exact

first-order and second-order derivatives and pass the derivative information together with

sparsity structure of constrained Jacobian and Hessian to solvers. Modern optimization

solvers usually perform the best with exact first-order and second-order derivatives. By using

AMPL with its capability in automatic differentiation, we hope to give fair comparison of

the performance of each estimator.

Monte Carlo results are given in Tables 3 – 5. We report the mean, standard deviation,

and root mean squared error (RMSE) based on the empirical distribution of parameter es-

timates. We also report the average CPU time per run for each estimator and average NPL

iterations in each run for the NPL estimator. For Experiments 1 and 2, in which the players’

actions are simulated by using best-reply stable equilibria, all four estimators recover the

true parameter values well. The standard deviation of MPEC is the smallest among all

four estimators. In terms of computational time, not surprisingly, two-step estimators are

faster than MPEC as two-step estimators do not need to solve for an equilibrium by solving

the Bayesian Nash equilibrium equations. Both MPEC and NPL requires the equilibrium

constraints to be satisfied and hence will need more computational time than two-step esti-

mators. As we can see from Tables 3 and 4, MPEC needs only about 1 second of computing
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time per run. Surprisingly, NPL, on average, needs around 130 NPL iterations (i.e., iterating

over two-step estimators for 130 times) and 40 seconds to converge per run. Hence, MPEC

is about 40 times faster than NPL in computing time in these two Monte Carlo experiments.

In numerical computation, evaluating a function and its derivatives is computation-

ally expensive. To reduce the computational burden, one also needs to reduce the number

of function evaluations performed in the estimation algorithm. The fact that NPL needs

around 130 NPL iterations (over the two-step PML) to converge illustrates that NPL is not

computationally efficient.

The results for Experiment 3 are intriguing. Recall that in this experiment, we do not

specify what type of equilibrium, best-reply stable or best-reply unstable, is to be played

in the data. Among the four estimators, MPEC is the only method that recovers the true

parameter values. Even though data are generated from some equilibria that are not best-

reply stable, the mean estimates of MPEC are accurate: within one standard error of the true

values (−5, 11). This result is not surprisingly since algorithms in constrained optimization

solver do not rely on best-reply iteration and hence the nature of the equilibria played in the

data has no impact on the estimation results for MPEC. Both two-step ML and two-step

LS perform much worse than MPEC. The biases in parameter estimates are indeed large.

Both 2S-PML and 2S-LS will reject the truth (α0, β0) = (−5, 11). This result demonstrates

that while two-step estimators are computationally light, they sacrifice the accuracy in pa-

rameter estimates. Researchers who choose to use two-step estimators should be aware of

this trade-off between computing time and the quality of parameter estimates. Although

NPL aims to decrease the biases in estimates, in Experiment 3 NPL fails to converge in

all 100 replications.22 This reason is that NPL implicitly requires that equilibria are stable

under best-reply iteration. This is a very restricted assumption because there may not exist

best-reply stable equilibria in a game. For example, Ferris, Judd, and Schmedders (2010)

construct a simple Cournot game with a unique equilibrium. However, that equilibrium is

not stable under best-reply. Even if best-reply equilibria exist, with multiple equilibria one

does not know a priori which type, stable or unstable under best-reply, of equilibrium will be

chosen by the players. There is no theoretical or empirical justification that only best-reply

stable equilibria are adopted by firms or strategic agents in practical applications.

22In another experiment, NPL converges to θNPL = (−1.1, 3.3). Pesendorfer and Schmidt-Dengler (2010)
had another example that shows that NPL converges to wrong estimates.
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Table 3: Experiment 1: Best-Reply Stable Equilibrium with Lowest Probabilities of Confess
for Player a in Each Market

Estimator Estimates RMSE CPU Time Avg. NPL
α β (sec) Iter.

Truth −5 11 – – –

MPEC −4.999 10.995 0.069 0.94 –
(0.031) (0.062)

2-Step PML −4.994 11.002 0.099 0.36 –
(0.037) (0.092)

2-Step LS −5.004 11.027 0.159 0.07 –
(0.042) (0.151)

NPL −5.001 10.999 0.072 40.26 125
(0.031) (0.065)

For each experiment, we solve the model once for the Bayesian Nash equilibria by fixing structural parameters

at true values and then simulate and re-estimate the model 100 times. For MPEC, we use 100 starting points

to do a better job at finding a global maximum for each of the 100 replications. Standard deviations are

reported in parentheses. CPU time and average number of NPL iterations are the averages for each run.

Table 4: Experiment 2: Best-Reply Stable Equilibrium in Each Market

Estimator Estimates RMSE CPU Time Avg. NPL
α β (sec) Iter.

Truth −5 11 – – –

MPEC −5.002 10.994 0.062 1.06 –
(0.024) (0.057)

2-Step PML −4.997 11.001 0.108 0.36 –
(0.033) (0.103)

2-Step LS −5.007 11.027 0.175 0.06 –
(0.040) (0.169)

NPL −5.003 10.966 0.230 41.97 132
(0.028) (0.227)

For each experiment, we solve the model once for the Bayesian Nash equilibria by fixing structural parameters

at true values and then simulate and re-estimate the model 100 times. For MPEC, we use 100 starting points

to do a better job at finding a global maximum for each of the 100 replications. Standard deviations are

reported in parentheses. CPU time and average number of NPL iterations are the averages for each run.
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Table 5: Experiment 3: Randomly Chosen Equilibrium in Each Market

Estimator Estimates RMSE CPU Time Avg. NPL
α β (sec) Iter.

Truth −5 11 – – –

MPEC −4.999 10.999 0.063 1.02 –
(0.029) (0.057)

2-Step PML −4.906 10.828 0.231 0.37 –
(0.044) (0.115)

2-Step LS −4.767 10.625 0.472 0.06 –
(0.052) (0.160)

NPL Not Converged Not Converged N/A 152.30 500
N/A N/A

For each experiment, we solve the model once for the Bayesian Nash equilibria by fixing structural parameters

at true values and then simulate and re-estimate the model 100 times. For MPEC, we use 100 starting points

to do a better job at finding a global maximum for each of the 100 replications. Standard deviations are

reported in parentheses. CPU time and average number of NPL iterations are the averages for each run.

6 Conclusion

We illustrate that constrained optimization approaches can be applied directly to maximum

likelihood estimation and possibly other problems, such as methods of moments and calibra-

tion. Our numerical results on single-agent dynamic discrete-choice models show that our

approach is faster than NFXP. Our Monte Carlo results on estimating games of incomplete

information show that finite-sample performance of our method are superior to those of two-

step estimators, in particular when data are generated from equilibria that are not best-reply

stable. In such cases, two-step estimators are severely biased. NPL either fails to converge

or converge to incorrect parameter estimates. Overall, we find that NPL requires many

outer iterations to converge (when it converges) and hence is not a computationally efficient

procedure. Our findings are valuable because researchers should be aware of the trade-off

between the computing time or computational convenience and the quality of parameter

estimates. Our method can be easily implemented by using state-of-the-art constrained op-

timization solvers. We believe that constrained optimization approaches will be useful for

estimating structural models in various contexts and applications. For future research, we

plan to investigate the performance of MPEC approach on dynamic games and the use of

the MPEC approach for estimating dynamic discrete-choice models with unobserved hetero-

geneity studied in Aguirregabiria and Mira (2007), Bajari, Benkard, and J. Levin (2007),

and Arcidiacono and Miller (2010).
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Appendix A: Proofs

Proof of Proposition 1. The results follow directly from Theorem 2 in Aitchison and

Silvey (1958) or discussion in Section 4.7 in Silvey (1975, p. 79–81.).

Proof of Proposition 2. The proof for (i) follows directly from the definition of L(θ) and

L(θ, EV ) in (18) and (20), respectively.

For (ii), by definition, L(θ̂) ≥ L(θ), for all θ and EV such that EV = T (EV ; θ).

Since (θ∗, EV ∗) is a solution of the constrained optimization problem and hence satisfies

the integrated Bellman equation as a constraint, we have L(θ̂) ≥ L(θ∗) = L(θ∗, EV ∗).

Conversely, L(θ∗, EV ∗) ≥ L(θ, EV ) for all θ and EV such that EV = T (EV ; θ). Since

ÊV = T (ÊV ; θ̂), we have L(θ∗, EV ∗) ≥ L(θ̂, ÊV ) = L(θ̂).

For (iii), if the model is uniquely identified, θ̂ is unique, and hence θ̂ = θ∗.

Proof of Proposition 3. For (i), since (θ∗, P ∗) satisfies the Bayesian Nash equilibrium

equation, we have P ∗ ∈ Σ(θ∗) and hence,

L(θ̄, P̄ (θ̄)) ≥ L(θ∗, P ∗) = L(θ∗, P ∗).

Conversely, since P̄ (θ) ∈ Σ(θ̄), the pair (θ̄, P̄ (θ)) satisfies the Bayesian Nash equilibrium

equation and hence is a feasible solution for the constrained optimization problem (36).

Hence,

L(θ∗, P ∗) ≥ L(θ̄, P̄ (θ)) = L(θ̄, P̄ (θ̄)).

For (ii), if the model is uniquely identified, θ̄ is unique, and hence θ̄ = θ∗.

Appendix B: Automatic Differentiation

We illustrate the basic idea of automatic differentiation with a function familiar to economists.

Griewank and Walther (2008) provide an comprehensive introduction on this subject.

Suppose that we want to compute both the value of f(x, y, z) = (xα + yα + zα)γ and

its gradient 5f = (fx, fy, fz). One way is to just analytically derive the derivatives and
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evaluate them separately. This is typically called symbolic differentiation. In this case we

would evaluate the three functions γαxα−1(xα + yα + zα)γ−1, γαyα−1(xα + yα + zα)γ−1, and

γαzα−1(xα+yα+zα)γ−1, each of which is more costly to compute than the original function.

The Hessian becomes much worse. For example, the cross-partial fxy(x, y, z) is

α2γ(γ − 1)xα−1yα−1(xα + yα + zα)γ−2,

which is even more complicated than gradient elements. Furthermore, the Hessian contains

nine elements of such second-order derivatives. Practitioners typically resort to finite differ-

ences to compute derivatives. The time required for finite difference methods for a Hessian

is proportional to the size of the Hessian matrix, n2, making it inefficient to compute the

Hessian if n is large. Furthermore, finite difference methods produce numerical errors. As

a result, optimization or nonlinear equation solvers may produce inaccurate solutions or fail

to converge when inaccurate derivatives are used in the iteration process.

If we instead compute the analytic gradient and Hessians efficiently, the computational

cost will be much lower. The key insight is that by using the chain rule of differentiation,

the analytic computation of gradients and Hessians can take advantage of algebraic relations

among individual terms. We use the gradient 5f as an example to illustrate the basic

ideas. First, we compute the original function, f(x, y, z) = (xα + yα + zα)γ. Note that this

computation produces values for the individual terms xα, yα, zα, xα + yα + zα, as well as

(xα + yα + zα)γ. As we compute f(x, y, z), we store these values for later use. With these

values in hand, the computation of fx = (xα + yα + zα)γ−1γαxα−1 needs only two divisions

and three multiplications. The reason is that xα, xα+yα+zα, and (xα+yα+zα)γ are known

from the f(x, y, z) computation, and fx = (xα + yα + zα)γ/(xα + yα + zα) ∗ γ ∗α ∗ xα/x just

involves three extra multiplications and two extra divisions. Note also how we have used

division to compute the necessary exponentiations. In general, if one knows f , f ′, and fa,

then (fa)′ = a ∗ fa ∗ f ′/f . This has the extra advantage of using division to compute an

exponentiation, a replacement producing considerable time savings on many computers.

When we move to the other derivatives, we are able to realize even more economies of

scale. Since (xα + yα + zα)γ−1γα is a common factor among the partial derivatives, we need

only one more multiplication and one more division to compute fy, and similarly for fz.

Hence 5f can be computed at a marginal cost of four divisions and five multiplications.

In contrast, the finite-difference method uses 12 exponentiations, 3 divisions, and 9 addi-

tion/subtractions. The savings increase as we move to higher dimensions, since the marginal
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cost of computing a derivative is one multiplication and one division. The following is the

pseudocode that efficiently computes f and 5f .

xα = xα; yα = yα; zα = zα

s = xα + yα + zα

f = sγ

t = γ α f / s

fx = t xα/x; fy = t yα/y; fz = t zα/z;

This is one example of how careful attention to the form of a function can improve the

efficiency of derivative computation. Another example is the exploitation of separability

in any f(x, y, z) of the form f1(x) + f2(y) + f3(z). The savings are even greater when we

consider computing the Hessian, which can make use of the computations already performed

for the gradient as well as the many algebraic relations among the second derivatives. It is

also clear that the savings relative to finite-difference methods increase as we examine larger

problems.

The ideas behind efficiently computing derivatives can be extended for arbitrary func-

tions. The key insight is that by using the chain rule of differentiation, we can build a

sequence of simple operations that take advantage of algebraic relations among individual

terms to arrive at efficient ways to compute derivatives. The study of methods to exploit

these relations and create efficient differentiation code is called automatic differentiation.

Arguing against using symbolic and automatic differentiation are the considerable costs

of doing the algebra. Many functions are difficult to differentiate. Finite-difference methods

avoid any errors that may arise from human differentiation of the objective. Even if one

could reliably compute derivatives, much of the savings of automatic differentiation comes

from recognizing common terms across derivatives, another process that challenges human

algebraic abilities. Fortunately we can now eliminate much of the human error. Derivative

computations can be done by symbolic software; in fact much of that software was created to

do just this sort of computation. Some symbolic software, such as Maple and Macsyma, can

form Fortran and C code that computes the function, its gradient, and Hessian and, further-

more, recognizes common terms. Thus, it is easy to exploit the economies of computation

which are available through the analytical computation of gradients and Hessians.
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The extensive literature on automatic differentiation formalizes these ideas and their

application to real problems. While these methods are potentially very useful, we will not

develop them in this paper. These ideas have been systematized in the automatic differen-

tiation literature, which is reviewed in Griewank and Walther (2008) and incorporated into

many software packages and optimization modeling language, such as AMPL.

Appendix C: Code

The AMPL and Matlab code used to generate data and to implement the MPEC approach

in the Monte Carlo studies will be available at:

http://faculty.chicagobooth.edu/che-lin.su/research/code.html
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