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Abstract

This paper examines a dynamic, stochastic exchange economy with two agents and two

financial securities. Markets are incomplete and agents can have heterogeneous tastes and

idiosyncratic income. We determine the impact of short-sale constraints and portfolio penalties

on the equilibrium behavior of the model.
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1 Introduction

A paper by Heaton and Lucas (1996) is a prime example of a recently emerging literature which

tries to determine whether the joint hypothesis of agents’ heterogeneity and market incompleteness

can explain observed prices in security markets. The motivation for this literature is the failure

(Mehra and Prescott (1985)) of the representative consumer, consumption-based asset pricing model

in explaining asset market prices. With the development of the general equilibrium theory with

incomplete asset markets over the last two decades it is now well understood how to extend the

Lucas-model to incorporate heterogeneous agents and market incompleteness (see Duffie et al.

(1994), Magill and Quinzii (1996)). In addition to Heaton and Lucas (1996), Telmer (1993), Lucas

(1994), Constantinides and Duffie (1996), Krusell and Smith (1997) and den Haan (1997) have

examined various effects such as the impact of aggregate and idiosyncratic shocks, of borrowing

and short-sale constraints, and of transactions costs. Without any additional special assumptions in

these models there are no closed-form solutions for equilibrium prices, portfolios and consumption

plans. Therefore, computational methods are needed to determine equilibria (see Heaton and Lucas

(1996)).

Short-sale constraints are typically needed to ensure existence of equilibria by ruling out default

or Ponzi-schemes. Zhang (1997) emphasizes that such constraints are often specified arbitrarily

outside the economic model and gives endogenous borrowing constraints for a simple one-asset

model. However, as soon as we consider models with more than one asset also containing long-

lived assets no such endogenous wealth constraints can be obtained. Therefore, exogenously chosen

short-sale constraints of some form are crucial to obtain equilibrium existence. However, it remains

often unclear what impact these constraints have on the equilibrium. In this paper we analyze

the impact of exogenous short-sale constraints in the model of Heaton and Lucas (1996) on the

character of the equilibria using a new computational method by Judd et al. (1998).

Heaton and Lucas (1996) consider a model with two agents facing both aggregate and idiosyn-

cratic risks. The agents can smooth consumption by trading in two securities. However, the extent

of trade is limited by transaction costs and short-sale constraints on the securities. They calibrate

dividends, endowments, and individual incomes to roughly match annual US data. Assuming that

the exogenous shock together with agents’ current period portfolio holdings form a sufficient statis-

tic for the future evolution of the economy, Heaton and Lucas (1996) compute stationary equilibria

and report results from a variety of model simulations. They impose tight short-sale constraints

which ensure that the agents’ portfolio holdings vary in a relatively small and compact space. They

discretize this endogenous state space and develop a Gauss-Jacobi scheme which, in each state, finds

a pattern of trades which nearly clears the market. Because of the discrete state space (they allow

for only 30 different values for an agents’ holdings in each security) this approach possibly yields

large approximation errors. They report average (not maximum) errors in market clearance of

up to 0.84 percent. Since Heaton and Lucas have a discrete endogenous state space they cannot

easily improve their approximation. In particular, the discrete state space allows for only discrete

jumps of agents portfolio holdings from period to period. When interpreting the results of their

simulations, Heaton and Lucas (1996) claim that their short-sale constraints are rarely binding. In

other words, they claim that the constraints are a mere technical artifact without any economic

consequences.
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In this paper we show that this claim of Heaton and Lucas appears to depend on their compu-

tational procedure. Indeed, we show that the algorithm by Judd et al. (1998) which yields a much

better approximation results in an equilibrium in which the short-sale constraints are often binding.

Consequently, the exogenously chosen short-sale constraints could potentially have a severe impact

on the equilibrium and are not just a technicality without economic impact.

Surprisingly we find that at least with respect to asset prices the impact of various short-sale

constraints appears to be identical. The choice of different bounds seems to be irrelevant and does

not alter the behavior of the asset prices. Therefore, we also find that our results are similar to

those of Heaton and Lucas.

For our calculations we use the algorithm developed by Judd et al. (1998) for the computation

of equilibria in two-agent, two-asset models. Instead of discretizing the endogenous state space,

Judd et al. (1998) allow agents to trade in the entire portfolio space. In particular, agents can

trade in as small a quantity of an asset as they desire. The algorithm does not prohibit any kind

of trading behavior and thereby does not introduce hidden barriers into the economic model. The

algorithm computes polynomial approximations of the equilibrium functions on the entire state

space through interpolation. Maximum relative errors are in the order of 10−3 percent to 10−5

percent of marginal utilities, which we interpret as agents’ maximum Euler equation errors lying

in the range of one dollar per $100,000 to $10,000,000 of consumption.

Because of the smooth approximation of trading strategies, the method of Judd et al. (1998) can

be used to allow more frequent trading, an important improvement (with a discrete state space,

the model cannot be calibrated to high-frequency data because per period trading becomes too

small to be captured in a coarse grid). We illustrate this ability by computing the equilibrium for

an economy with a discount factor of 0.99 instead of 0.95. Moreover, the algorithm of Judd et al.

(1998) allows for heterogeneous levels of risk-aversion among agents and we illustrate their effect

on asset prices as well.

We give the following intuitive explanation for the Heaton-Lucas procedure resulting in rarely

binding short-sale constraints. Allowing only for fairly large discrete jumps of agents’ portfolio

holdings effectively introduces an implicit transaction cost. This transaction cost has a particular

severe impact on the agents behavior when they are fairly poor. That is, they hold large short-

positions in the assets and would like to trade only minimal amounts of the assets. This, however, is

prohibited by the discrete portfolio space in which agents have to trade according to the numerical

procedure. Therefore, the agents hardly trade at all anymore long before they hit the short-sale

constraints. This behavior then leads to the observations made by Heaton and Lucas (1996).

There are at least two lessons to be learned from our exercise. First, we have to be very much

aware of the fact that the type of numerical procedure we use might implicitly introduce additional

constraints to the economic model leading to results which mostly depend on the algorithm but do

not describe the economic model under consideration. For the specific model under consideration,

our simulation results show that smooth approximations to the equilibrium functions are needed in

order to discover important qualitative features of equilibrium. Second, for models with incomplete

markets and heterogeneous agents, the short-sale constraints will typically be binding and thus could

influence the equilibrium outcomes. This fact needs to be carefully considered when interpreting

the results.

The remainder of this paper is organized as follows. Section 2 we present the model under con-
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sideration. In Section 3 we use the model specifications of Heaton and Lucas (1996) and compute

the impact of short-sale constraints on asset prices. Section 4 presents a variation of the model

in which utility penalties for large short-positions lead to bounds on the portfolio space. In the

Appendix we give a brief description of the algorithm of Judd et al. (1998) and report both running

times and numerical errors for our computations.

2 The economic model

We consider an exchange economy where income and dividend shares as well as growth rates of

aggregate consumption follow a Markov-chain (see Lucas (1994) and Heaton and Lucas (1996) for

similar models).

The model of the economy E features an infinite horizon and discrete time. Time is indexed by

t ∈ IN0. A time-homogeneous Markov process of exogenous shocks (yt)t∈IN0
is valued in a discrete

set Y = {1, 2, . . . , S}. The underlying probability space is denoted by (Ω,F ,Q) and the transition

matrix by P. A tribe Ft ⊂ F generated by {y0, ..., yt} summarizes the information available at each

time t. Finally, the filtration Ft = {F0, . . . ,Ft} depicts how information is revealed through time t.

There are two types of infinitely lived agents indexed by h = 1, 2, and there is a single perishable

consumption good in each state. Agent h’s individual endowment in period t given income state

y ∈ Y is eht = eh(yt) ∈ IR++. Note that e
h
t depends only on yt. In order to transfer wealth across

time and states agents trade in securities. There is a (short-lived) riskless bond in each period t

with price qbt . The bond’s payoff dbt+1 in units of the good in each state of the next period t + 1

is specified below. Furthermore, in each period a long-lived asset in unit net supply, called stock,

paying a dividend ds : Y → IR+ is traded at an after-dividend price qst . We denote agent h’s

portfolio in period t by θht = (θhbt , θhst ) ∈ IR2 and his initial endowment of the stock by θhs
−1. The

initial endowment of the bond is always θhb
−1 = 0 for both agents h = 1, 2.

Each agent h has von Neumann-Morgenstern preferences which are defined by a strictly mono-

tone C2, concave utility function uh : IR++ → IR possessing the Inada property, that is, limx→0 u
′

h
(x) =

∞, and a discount factor βh ∈ (0, 1). For any t-adapted consumption sequence c = (c0, c1, c2, . . .)

the associated utility for agent h is therefore:

Uh(c) = E

{
∞∑
t=0

βt

huh(ct)

}
.

Note that the consumption sequence c is a stochastic process depending on the exogenous income

states (yt)t∈IN0
. The expectation in the utility function is taken with respect to the probability space

(Ω,F ,Q).

Endowment and dividend processes

The aggregate endowment of the economy in period t is denoted by et(yt) = e1
t
(yt) + e2

t
(yt) +

dst (yt). The economy is stationary in the growth rate of the aggregate endowment et. Specifically,

we define νt = et/et−1 as the growth rate of et. Moreover, let δt = dt/et be the dividend share

of the aggregate endowment. So, the sum of the individual endowments equals (1− δt)et. Of this
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endowment agent h receives a portion ηht , that is, his endowment in period t equals eht = ηht (1−δ)et,

where η1t + η2t = 1. The process of the growth rate νt, the dividend share δt, and the endowment

shares ηht , h = 1, 2, follows a time-homogeneous Markov chain depending on the exogenous shock

alone, that is, (νt, δt, η
1
t ) = (ν(yt), δ(yt), η

1(yt)).

The riskless payoff dbt+1 of the bond in each state at period t+1 equals the aggregate endowment

et of the previous period. This definition of the bond payoff is necessary to obtain a stationary

equilibrium while maintaining a compact portfolio space for the agents.

Transaction costs on the financial markets

At each date t an agent h pays transaction costs of ω(θht−1, θ
h
t ). We assume that ω has the

functional form

ω(θt−1, θt) = τ bqbt (θ
b

t )
2 + τsqst (θ

s

t − θst−1)
2,

where τ b, τs are constants. Since the bond is short-lived in our model, transaction costs are paid

on total bond holdings. The assumption of quadratic convex costs is needed to ensure that agents

face a differentiable and convex programming problem.

Short-sale constraints

In order to obtain an equilibrium one has to rule out the possibility of an indefinite postponement

of debt and introduce constraints on agents’ net wealth holdings. Furthermore, with long-lived

stocks and incomplete markets one faces the usual existence problem which is due to a discontinuity

in the demand function. Magill and Quinzii (1996) and Hernandez and Santos (1996) describe

possible debt constraints and give proofs of generic existence. For computational purposes it is

much more useful to obtain a bounded set of portfolios by imposing short-sale constraints on the

assets. This assumption, while often thought of being a pure technicality which does not influence

equilibrium outcomes, is not without problems. In Section 2.3 we provide a discussion of this

matter.

Short sales can be constrained through a priori specified fixed exogenous lower bounds on the

portfolio variables, that is,

θhbt ≥ −Bhb and θhst ≥ −Bhs,

where Bhb,Bhs ≥ 0. Note that we define the bounds on short sales as agent dependent since it is

certainly realistic to assume that an agent’s income influences how much he can borrow.

Heaton and Lucas (1996) define the bond to pay off one unit of the consumption good in each

state over all time periods. With such a definition the borrowing constraint on the bond must

grow with the aggregate endowment for an equilibrium to be stationary. Otherwise, the amount of

relative wealth that can be transfered across time would tend to zero as time progresses.

In contrast, we can define the short-sale constraints on both the stock and the bond to be time-

and state-independent. Since both the stock’s dividends and the bond payoffs grow along with the

aggregate endowment, the amount of wealth traded increases over time even when the number of

shares traded remains the same. While Heaton and Lucas (1996) have to treat the stock and the
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bond differently, our definitions allow symmetric conditions on both assets.

2.1 Competitive equilibrium

The notion of a competitive equilibrium for an economy E is now defined as follows:

Definition 1 A competitive equilibrium for an economy E is a collection of Ft-measurable portfolio

holdings {(θ1
t
, θ2

t
)} and asset prices {qt} satisfying the following conditions:

(1) θ1bt + θ2bt = 0 and θ1st + θ2st = 1 for all t.

(2) For each agent h :

(ch, θh) ∈ argmaxUh(c
h) s.t.

cht = eht + θhbt−1et−1 + θhst−1(q
s
t + dst )− θht qt − ω(θht−1, θ

h
t )

θhbt ≥ −Bhb, θhst ≥ −Bhs

Note that by Walras’ law condition (1) ensures that good markets clear, that is, aggregate

consumption equals aggregate endowments minus the resources ’burned’ for transactions.

For the marginal transaction costs we define the notation

ωs1 =
∂ω(θt−1, θt)

∂θs
t−1

ωs2 =
∂ω(θt−1, θt)

∂θst

ωb =
∂ω(θt−1, θt)

∂θbt

Denoting by μhb
t and μhs

t the Lagrange multipliers for the short-sale constraint on the bond and

stock, respectively, at time t we obtain the following first-order conditions for agent h:

(qbt + ωb)u
′

h(ct) = βhEt(etu
′

h(ct+1))) + μhb

t

μhb

t (θbt +Bhb) = 0

μhb

t ≥ 0

θbt +Bhb
≥ 0

(qst + ωs2)u
′

h(ct) = βhEt

{
(qst+1 + dst+1 − ωs1)u

′

h(ct+1)
}
+ μhs

t

μhs

t (θst +Bhs) = 0

μhs

t ≥ 0

θst +Bhs
≥ 0

The expectations Et in the first-order conditions are taken with respect to the one-period transition

probabilities from time t to time t+ 1 given a state yt and using the transition matrix P.

Under our assumptions on preferences the first-order conditions of both agents together with

the market-clearing conditions are necessary and sufficient for equilibrium.
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2.2 Recursive equilibria

In order to compute an equilibrium for an infinite horizon model it is necessary to focus on

equilibria which are dynamically simple. That is, it must be possible to describe the state of the

system by a small number of parameters which provide a sufficient statistic for the evolution of the

system. In contrast to the complete-markets model, the state space for our models will also include

endogenous variables since they obviously influence the evolution of security prices in equilibrium.

In particular, one expects the distribution of agents’ portfolio holdings to influence equilibrium

prices. We denote the set of agent 1’s possible equilibrium portfolio holdings by Θ ⊂ IR2.

The usual assumption in the applied literature (see for example Telmer (1993) or Heaton and

Lucas (1996)) is that the exogenous state and the agents’ portfolio holdings alone constitute a

sufficient state space for the evolution of the infinite horizon economy. Moreover, the existence of

continuous policy functions f and price functions g is postulated, which map last period’s portfolio

holdings and the current exogenous shock into the current period portfolio holdings and asset price,

respectively. For our model these assumption mean that Θ is the endogenous state space and that

there exists a continuous function f : Y × Θ → Θ which determines agent 1’s optimal portfolio

choice in the current period given an exogenous shock y ∈ Y and portfolio holding θ
−

∈ Θ. Similarly,

a continuous price function g : Y ×Θ→ IR2
++ maps the current period exogenous shock y ∈ Y and

agent 1’s portfolio holding θ
−

∈ Θ into the current period prices of the securities.

While the assumptions underlying a recursive equilibrium are intuitive, there are no known

conditions on the fundamentals of the economy which ensure existence of such an equilibrium.

Judd et al. (1997 and 1998) gives a detailed discussion of the problems underlying the existence

of recursive equilibria. We follow the standard assumption in the applied literature and assume

the existence of a recursive equilibrium. Similar to Judd et al. (1998) we find that in models with

short-sale constraints but without transaction costs, there is a one-to-one equilibrium relationship

between the agents’ wealth levels and their portfolio holdings. This allows us to plot equilibrium

outcomes as functions of only one variable making the corresponding graphs much clearer.

2.3 Exogenous bounds on the endogenous state space

To both prove the existence of a recursive equilibrium and approximate such an equilibrium it is

important to ensure that the set of portfolios that can be part of an optimal solution for the agents

is bounded. Duffie et al. (1994) discuss the role of compactness for existence1; for computations

boundedness is important because we compute equilibrium prices and portfolios as a function of

some state variables and we want to approximate this function with splines with a finite number of

nodes. Obviously, we cannot expect to approximate the equilibrium price and portfolio functions

well on the endogenous state space Θ if this set is unbounded.

From a theoretical point of view, it suffices for a proof of existence of a competitive equilibrium

to assume that agents face some debt constraint so that Ponzi-schemes are ruled out, see Magill

and Quinzii (1996) and Hernandez and Santos (1996). In the applied literature, however, typically

borrowing and short-sale constraints are used to rule out Ponzi-schemes and default. Zhang (1997)

1Note that Duffie et al. (1994) consider a different model since their economy is stationary in levels as opposed to

growth rates. However, it is fairly straightforward to generalize their proof to incorporate a growth economy where

all agents have homothetic preferences.
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provides a detailed analysis of the effect of different specifications of debt and short-sale constraints

for a model with a single asset and shows that the specifications affect the results considerably. In

particular, he is able to derive endogenous borrowing constraints for his simple model. However, for

the Heaton and Lucas model it is easy to see that a debt constraint cannot imply restrictions on the

norm of agents’ portfolios. Consider the easiest case where agents are not allowed to hold negative

wealth, that is, eht + θhst−1(q
s
t + dst ) + θhbt−1et−1 > 0. For each θhs ∈ IR it is possible to find a θhb such

that the debt constraint is satisfied. For this reason we have to introduce some portfolio restriction

in order to obtain a bounded region for which we need to evaluate the policy and price functions.

Short-sale constraints immediately result in a compact feasible portfolio set for the agents. We

emphasize that these constraints are more than just a technical or computational artifact helping

with the analysis. Indeed, as our simulations in Section 3 show, one of the short-sale constraints

is often binding. Henceforth, these constraints do influence the character of the economic equilib-

rium. Most likely, the character will be altered in comparison to the equilibrium of an economy

without any portfolio restriction. It is important to keep these facts in mind when analyzing the

computational results.

3 Incomplete markets and short-sale constraints

It is commonly thought that in a Markovian framework like ours the effects of market incom-

pleteness on prices and allocations are very small. In this section we briefly discuss this view in

order to illustrate our algorithm with some examples. While we do not intend to provide any

new insight to the question to what extent the joint hypothesis of market incompleteness and con-

sumer heterogeneity enriches the pricing implications of the model, we do point out the effects of

incomplete markets where they are relevant to the results.

First note that as in Judd et al. (1998) there exists a one-to-one equilibrium relationship in

models without transaction costs between the possible portfolio holdings agents might hold in

equilibrium and their respective wealth levels. Although transaction costs typically destroy this

relationship it continues to hold for many wealth levels, in particular when the transaction costs

are small. Therefore, defining w = e1 + θ1bdb + θ1s(qs + ds)) we can graph the current period

equilibrium prices and equilibrium portfolio holdings as a function of wealth w. After computing

the equilibrium prices and portfolios we simulated the economies for 10000 periods. The figures

we show in the discussions below depict scatter plots of simulated prices and portfolios against the

wealth levels of agent 1.

We assume that agents have constant relative risk aversion utility functions with a coefficient

of relative risk aversion γh and identical time-preference factors β. The initial stock positions are

always θ1
−1 = θ2

−1 = 0.5. We assume throughout that transaction costs are very low and given by

τ b = 0.00001, τs = 0.0001. In order to be able to display bond and stock holdings in the same figure

in a meaningful fashion we slightly alter the base levels of the endowments and dividends to be

e
−1 = 10 and the bond payoff to be et−1/e−1. As a result, a borrowing constraint of 6 percent of

aggregate endowment results in constraining the bond position of the agents to be not less than 0.6.

We start the economy in state y0 = 1. See Appendix C for a specification of the parameters for the

endowment and dividend processes and the transition matrix of the Markov process of exogenous

shocks.
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3.1 The effect of portfolio constraints

In this subsection we assume that γ1 = γ2 = 1.5 and that β = 0.95. We examine two different

specifications for short-sale constraints. In the first specification agents are not allowed to short the

stock and can at most promise to pay 6 percent of aggregate endowment in bonds. This specification

is almost identical to the least tight constraints imposed in Heaton and Lucas (1996). Figure 1a

depicts the equilibrium net portfolio holdings in state 1 as a function of agent 1’s total wealth2. It

is clear that the short-sale constraints do influence agents’ portfolio holdings. In fact, simulations

show that the constraint on bond holdings in binding for approximately two-thirds of the time. This

finding, which contradicts the claim in Heaton and Lucas that short-sale constraints rarely bind

(see the above discussion on differences of the computational strategies for an explanation of this

contradiction), seems to indicate that the choice of portfolio bounds is an important determinant of

equilibrium asset prices. Zhang (1997) shows that the expected return and volatility of a single asset

vary significantly as the short-sale constraints on this asset vary. However, as Zhang points out, the

real constraints faced by agents are the wealth constraints which are implied by the chosen short-

sale constraints for one-asset models. In a framework with more than one asset there are situations

where binding short-sale constraints on one asset do not imply that the agents are constrained in

their borrowing since they have the possibility of trading in the other asset.

We relax both the constraint on stock holdings and the constraint on bond holdings significantly.

Instead of assuming that agents can borrow 6 percent of average income we assume now that they

can borrow up to 8 percent and that in addition they can short 0.1 units of the stock. Figure 1c is

the analogue of Figure 1a for this case of less restrictive constraints. In this case simulations show

that the constraint is approximately binding 55 percent of the time.

2All functions shown look similar in all other states, we show the functions only conditional on state 1 to simplify

the figures. The curve that is flat for wealth levels between 5 and 10 having the value -0.06 represents the bond

holding of agent 1. Since agent 1 has an original position of θ
1

−1 = 0.5 a net portfolio position of -0.4 means that

he is holding a stock portfolio of 0.1. The evolution of the economy over time depends very much on the state in

which the economy starts at time t = 0. Therefore the portfolio curves in Figures 1a and 1c do not display symmetry

around some medium wealth level.
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Figure 1b depicts the equilibrium stock-price function in state 1 for the tight constraints, while

Figure 1d shows the same function for the relaxed constraints. Surprisingly the figures appear to

be quite similar. These figures show that a relaxation of short-sale constraints has no effect on

equilibrium prices. While short-sale constraints often do bind in this model, and while short-sale

constraints also affect the distribution of wealth, their effect on asset prices is negligible as long as

the choice of short-sale constraints does not imply binding wealth constraints.

Do note, however, the effect of income heterogeneity among the agents and incomplete security

markets. In a representative agent model, the equilibrium prices would depend on the exogenous

shock alone, the shape of the equilibrium stock price graphs implies that asset price volatility is

higher in the incomplete markets model than in a representative agent model with similar endow-

ment processes.

3.2 Heterogeneous preferences

We now assume that agents have heterogeneous preferences. We assume that agent 2 is more

risk averse than agent 1 and we set γ1 = 1 and γ2 = 2 for the agents’ coefficient of relative risk

aversion. We keep our specification of short-sale constraints at 8 percent of aggregate income for

the bond and −0.1 units for the stock. Figure 2a shows the analogue of Figures 1a and 1c. The

tiny transaction costs we impose, do have an effect in this case. There is no longer a one-to-one

relationship between portfolio holdings and wealth levels. But the functions of wealth are still a

convenient and clear representation of the equilibrium. The heterogeneity in risk aversion does

not seem to affect the shape of the portfolio graphs. However as Figure 2b shows, the less risk-

averse agent does end up holding most of the wealth in the economy. The figure is a histogram of

wealth levels which occurred on the equilibrium path during a simulation. Figure 2c and Figure 2d

show the equilibrium prices for bond and stock, respectively, as functions of the wealth of the less

risk-averse agent 1. The heterogeneity of the preferences changes the shape of the price function

significantly.
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3.3 The time-discount factor

The average interest rate produced by the specification of growth rates, dividends, and income

distribution is unrealistically high. Heaton and Lucas (1996) point out that this can be corrected by

assuming larger value for β, but do not do so in order to improve the performance of their algorithms.

It is well known, however, that the choice of β affects the equilibrium outcome beyond the level of

average stock and bond return (see for example Calvet (1998)). We compute the equilibrium for

β = 0.99 and γ1 = γ2 = 1.5. Figure 3b shows a simulation of the equilibrium interest rate for 200

periods. While the average interest rate is still slightly above the U.S. historical average there are

time periods where the interest rate is almost -2 percent (after 110 time periods).

As Figures 3c-d show, the equilibrium price graphs differ significantly from the ones with a

low beta. Besides the difference in absolute levels (which is to be expected and which is obviously

needed in order to drive the interest rate to a realistic level) one also notes that prices are much

more volatile in this case.
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4 Portfolio bounds through penalties

In this section we propose a different approach to obtain bounded portfolios. Agents are allowed

to hold portfolios of any size but get penalized for large portfolio holdings; the intuition behind such

a model assumption is that there are certain costs associated with large short positions which are

not explicitly modeled. To capture these effects we introduce penalties to agents’ utilities. When

these penalties get sufficiently large, agents have no interest to inflate their portfolios resulting

in bounded asset positions. The advantage of utility penalties on large short positions is that

this restrictions does not constitute an a priori exogenous constraint on short sales. Instead, the

penalties lead to endogenous avoidance of large short positions.

For this approach to bounded portfolios we compute first and second moments of security re-

turns and compare our results to the results obtained by Heaton and Lucas (1996).

4.1 Penalties on portfolios

We define this penalty on portfolios in such a fashion that small short positions are not punished.

Only if the short sales become sufficiently large a penalty is imposed. Moreover, we allow for a larger

short position in an asset to be unpenalized in the presence of a long position of sufficient size in the

other asset. Modeling the penalty in this fashion is motivated by the presence of collateral; agents

are typically allowed to take on large short positions if they are able to provide sufficient collateral

in form of another asset. A penalty constraint could have the following impact for example: if agent

h does not hold the stock at all, he can borrow up to −Bhb = −1 on the bond market without

being penalized; however, if he holds one unit of the stock, he can borrow up to −Bhb = −1.5 on

the bond market before the penalty sets in.

In order to define such a penalty constraint, we slightly tilt the rectangular region given through

short-sale constraints, so that we end up with a region as depicted in Figure 4. For our computa-

tional procedure we define sets Kh by four parameters αhb
1 , αhb

2 , αhs
1 and αhs

2 . We define Kh as the

set of θh satisfying three inequalities:

θhs ≥ αhb
1 /αhs

1 θhb +ψh
2

θhs ≥ −αhs
1 /αhb

1 θhb + αhs
1

θhs ≤ αhb
2 /αhs

2 θhb +ψh
1

where ψh
1 = (3(αhs

2 )2 + (αhb
2 )2)/(2αhs

2 ) and ψh
2 = 1.5αhs

1 + 0.5(αhb
1 )2/αhs

1 . Figure 4 shows the

resulting set K = K1 ∩K2 of possible portfolio holdings for agent 1 for αhb
1 = αhs

1 = −1 and for

αhb
2 = αhs

2 = 1. Note that both agents are only restricted with respect to taking short positions in

one or both assets. Therefore we impose only three constraints per agent. Nevertheless the set K

is a box since the lower constraints on agent 2 in equilibrium (by market clearing) result in upper

constraints for agent 1.
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Now we define for δ ∈ IR++ the set Khδ as the subset of Kh whose points are at least a distance

δ away from the boundary. Let φ denote the distance between a point θ /∈ Khδ and the boundary

of Khδ, then the penalty function we use for our model is of the form where

ρh(θ) =

{
κa(φ)4 for θ /∈ Khδ

0 otherwise

where κa, a ∈ {b, s}, is some positive constant. Note, there is no punishment for large long positions.

If κa is sufficiently large the penalty function almost acts like a hard short-sale constraint on the

corresponding asset a ∈ {b, s}. The portfolio penalties lead our agents to have utility functions

over consumption and portfolio holdings of the form

Vh(c, θ) = Uh(c)−E

{
∞∑
t=0

βtρh(θt)

}
.

The notion of a competitive equilibrium for an economy with portfolio penalties is now defined

analogously to Definition 1. Using the notation

ρhb =
∂ρh(θt)

∂θbt

ρhs =
∂ρh(θt)

∂θst

for the marginal utility penalty the first-order conditions for agent h are:

(qbt + ωb)u
′

h(ct)− ρhb = βhEt(etu
′

h(ct+1)))

(qst + ωs2)u
′

h(ct)− ρhs = βhEt

{
(qst+1 + dt+1 −ws1)u

′

h(ct+1)
}

Note that we no longer have to deal with inequality constraints in the first-order conditions thereby

simplifying the solution procedure for computing equilibria, see Judd et al. (1998).

4.2 Incomplete markets and transaction costs

In the framework of our model with portfolio penalties we evaluate the effects of transaction

costs using the parametric data of Heaton and Lucas (1996). The main difference between our

analysis and Heaton and Lucas’ work is that we disentangle the effects of transaction costs on

bonds and transaction costs on stocks and that we examine the effects of transaction costs on the

distribution of asset holdings. Heaton and Lucas argue that because “portfolio balance is a second-

order consideration relative to consumption smoothing” there have to be considerable transaction

costs in both markets.

To compute first and second moments of returns and trading volume we perform 100 simulations,

each for 1000 periods. We then take the average values as estimates for the moments. We first

examine the case where the agents are only allowed to sell short a small percentage of the stock

without holding bonds as collateral. We allow them to hold a short position in bonds alone which

amount to around ten percent of aggregate income. That is we set αhs
1 = −0.1 and αhb

1 = −0.1 · et
(and αh

2 appropriately).
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We consider 5 different specifications of transaction costs: (τ1
b
, τ1s ) = (0.0005, 0.01), (τ2

b
, τ2s ) =

(0.005, 0.05), (τ3
b
, τ3s ) = (0.01, 0.1) , (τ4

b
, τ4s ) = (0.1, 0.1), and (τ5

b
, τ5s ) = (0.5, 1.0). The effects of

these costs on returns are summarized in Table I. The effects on trading are summarized in Table

II. The table reports average volume of trading as a percentage of per capita income and its stan-

dard deviation as well as the fraction of transaction costs on total trading activity.
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TABLE I

Asset Returns

Av. Bond

Return

Av. Stock

Return

S.D. Bond

Return

S.D. Stock

Return

τ1 6.4 % 7.0 % 4.6 % 2.6 %

τ2 6.3 % 7.0 % 4.5 % 2.6 %

τ3 6.3 % 7.0 % 4.4 % 2.6 %

τ4 5.8 % 7.0 % 4.3 % 2.7 %

τ5 4.8 % 7.0 % 5.4 % 3.1 %

τ3
C2

6.7 % 7.0 % 2.0 % 2.6 %

τ4
C2

6.2 % 7.1 % 2.5 % 2.6 %

TABLE II

Trading Volume and Average Cost per Unit Volume

Av. Bond

Volume

Av. Stock

Volume

S.D. Bond

Volume

S.D. Stock

Volume

Av. Bond

Tr. Costs

Av. Stock

Tr. Costs

τ1 2.544 % 19.687 % 2.728 % 9.502 % 0.0068 % 0.0371 %

τ2 2.012 % 19.862 % 2.137 % 9.441 % 0.0536 % 0.1874 %

τ3 2.030 % 19.621 % 2.162 % 9.297 % 0.1082 % 0.371 %

τ4 0.459 % 20.566 % 0.518 % 10.197 % 0.239 % 0.387 %

τ5 0.557 % 16.971 % 0.593 % 8.348 % 1.4472 % 3.173 %

τ3
C2

2.152 % 19.932 % 2.257 % 9.042 % 0.115 % 0.382 %

τ4
C2

0.415 % 20.941 % 0.465 % 9.992 % 0.217 % 0.399 %
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We perform the same simulations for the case where the specifications of the short-sale con-

straints are more realistic. We assume αhs
1 = −0.5 and αhb

1 = −0.15 · et. With this specification

agent 1 is allowed to hold −0.17 · et bonds when holding 0.12 stocks or −1.0 stocks when holding

0.75 · et bonds. For this case we only consider the specifications τ3 and τ4, and they are reported

in Tables I and II under τ3
C2

and τ4
C2

.

4.3 A few observations

First, similar to the findings of Heaton and Lucas (1996), the equity premium is unrealistically

low for all realistic specifications of transaction costs. As Heaton and Lucas point out, although

markets are incomplete and it is costly to trade the existing securities, the agents are nevertheless

able to smooth out a substantial part of their idiosyncratic risks. Even for unreasonably high

transaction costs (τ4 and τ5) where this behavior becomes very costly, no realistic values of the

equity premium can be achieved. As we relax the penalty, that is, as we increase the set Kδ,

the equity premium decreases even further. This conforms with the intuition that more trading

opportunities allow more risk-sharing and hence increase consumption smoothing. In this case the

riskless rate is almost as high as the expected return on equity.

Second, the second moments of returns are unrealistic for all specifications of the transaction

costs. This is a well-known result for both the representative agent model and for the case with

incomplete markets. For a given specification of the model which produces realistic values of the

equity premium either the resulting volatility of bond returns is too high or the resulting stock return

volatility is too low compared with actually observed volatility in financial markets. Surprisingly

as we relax the penalty, the second moments become more realistic. With the second specification

of the penalty the volatility of both stock and bond returns decreases, however, the bond return is

now less volatile than the stock return.

Third, the trading volume is sensitive to transaction costs. In particular, one can observe that

for specifications of transaction costs which produce more realistic equity premia, the amount of

bonds held compared with the agents’ stock holdings is unrealistic. This is caused by the fact that

we modeled the bond as being short-term riskless borrowing and we did not allow for the possibility

to roll over the bond each period without transaction costs. Note that overall average transaction

expenditures tend to be quite small even for cases where portfolio holdings are unrealistic. This is

caused by the assumption of convex transaction costs.

It is difficult to assess how to extend the model to produce a realistic trading volume. Observed

trading volume (especially for shorter time periods than the ones considered here) might be caused

in large parts by the arrival of new information. It is not clear what percentage of observed trading

volume is caused by incomplete equitization of risk (i.e. the failure to trade claims on future income

streams) and what is caused by informational price moves. Furthermore, empirical studies often

examine daily trading volume as opposed to the yearly volume we model. Note however, that

our average trading volume differs substantially from than that reported in Heaton and Lucas

(1996). This is likely due to the fact that they use a discrete endogenous state space and therefore

essentially look at a different model. The discrete-state aspect of their analysis introduces another

transaction cost, one not motivated by economic considerations but rather introduced solely for
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reasons of computational tractability. The differences point out the value of using a continuous

state space approach.

In summary, convex transaction costs do not offer a realistic explanation for the observed high

US-equity premium. The only way they seem to affect the equity premium is through lower bond

returns. It is very unrealistic, however, to have a higher volatility in bond return than in stock

returns.
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Appendix

A A spline collocation algorithm

We give a brief description of the main elements of the algorithm of Judd et al. (1998) which

we used for the computations in this paper.

For each exogenous state the equilibrium functions f and g (see Section 2.2) are approximated

through piecewise cubic polynomials. These two-dimensional polynomials are represented through

B-splines in a tensor-product approach. For the determination of the coefficients of the spline func-

tions a collocation grid is chosen of as many points in the endogenous state space as there are un-

known coefficients. At each of these points and for every exogenous shock the equilibrium-describing

system of equations of the agents’ first-order conditions and the market-clearing conditions is solved

using a Gauss-Jacobi approach, that is, starting with some initial guess the approximate equilib-

rium functions are computed in an iterative process. In each iteration the equilibrium equations

are solved — via a homotopy or Newton method — at each collocation point and for all exogenous

shocks using the previous iterate as the policy functions governing the model’s behavior in the

subsequent period. The coefficients of the new iterate are determined through interpolation. The

algorithm finally terminates when a stopping criterion is reached, such as that the maximum dif-

ference of the approximate equilibrium functions over all states and collocation points falls below

some prespecified error tolerance.

Note that the algorithm computes smooth approximations to the equilibrium functions. There-

fore, in the subsequent simulations agents are allowed to trade arbitrary small amounts of the assets

and are not confined to a discrete grid of portfolio positions.

B Errors and running times

In order to evaluate the quality of our approximations to the true equilibrium transition func-

tions, we compute the residuals of the Euler equations. In order to obtain relative errors we divide

them by the price times the agent’s current period marginal utility. We evaluate these errors at 100

times 100 points in our state space and report the maximum error, the average errors usually lie

around one to two orders of magnitude below these maximum errors. This way of reporting errors

is similar to the errors reported in Heaton and Lucas (1996). For each agent’s Euler equation they

compute the price which makes it hold exactly and then take the difference of these prices. All

running times refer to our computations on a PentiumPC233.
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B.1 Errors and running times for Section 3

TABLE III

Running Times and Errors

β γ1 γ2 Maximum error in % Running time in hours.minutes

0.95 (tight) 1.5 1.5 2.11 · 10−6 8.36

0.95 (loose) 1.5 1.5 5.09 · 10−6 8.52

0.95 1 2 1.02 · 10−5 9.31

0.99 1.5 1.5 7.98 · 10−5 33.50

B.2 Errors and running times for Section 4

TABLE IV

Running Times and Errors

Maximum error in % Running time in hours.minutes

τ1 2.19 · 10−3 8.25

τ2 7.65 · 10−4 8.16

τ3 1.29 · 10−4 7.50

τ4 9.44 · 10−5 7.33

τ5 2.85 · 10−5 7.09

τ3
C2

5.02 · 10−4 3.02

τ4
C2

8.13 · 10−5 2.54
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C Parameters for the Heaton-Lucas model

Heaton and Lucas (1996) assume that aggregate growth rates follow an 8-state Markov chain

and calibrate their model using the PSID (Panel Study of Income Dynamics) and NIPA (National

Income and Product Accounts). We use their calibration for the ‘Cyclical Distribution Case.’

TABLE V

Markov Chain Model for Exogenous State Variables

State ν δ η1

1 0.9904 0.1403 0.3279

2 1.0470 0.1437 0.4405

3 0.9904 0.1562 0.3279

4 1.0470 0.1600 0.4405

5 0.9904 0.1403 0.6721

6 1.0470 0.1437 0.5595

7 0.9904 0.1562 0.6721

8 1.0470 0.1600 0.5595

TABLE VI

Transition Probability Matrix P

.4365 .2343 .0881 .0473 .1515 .0098 .0306 .0020

.2416 .3461 .0337 .0483 .1698 .1201 .0237 .0168

.0555 .0458 .3977 .3281 .0193 .0019 .1381 .0137

.0360 .0792 .1783 .3924 .0253 .0275 .1253 .1362

.1515 .0098 .0306 .0020 .4365 .2343 .0881 .0473

.1698 .1201 .0237 .0168 .2416 .3461 .0337 .0483

.0193 .0019 .1381 .0137 .0555 .0458 .3977 .3281

.0253 .0275 .1253 .1362 .0360 .0792 .1783 .3924
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FIGURE 1c – Portfolio holdings.

0 5 10 15 20 25 30 35 40 45
25

26

27

28

29

30

31

32

Wealth

S
to

ck
pr

ic
e

FIGURE 1d – Stock price.

24



5 10 15 20 25 30 35 40 45
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Wealth

N
et

 p
or

tfo
lio

s

FIGURE 2a – Portfolio holdings of agent 1.
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FIGURE 2c – Bond price.
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FIGURE 3a – Portfolio holdings.
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