
JOURNAL OF ECONOMIC THEORY 58, 41@452 (1992) 

Projection Methods for 
Solving Aggregate Growth Models* 

KENNETH L. JUDD 

Hoover Insfitution, Stanford University. 
Stanford, California 94305 and 

National Bureau of Economic Research, 1055 Massachusetts Avenue, 
Cambridge, Massachusetts 02138 

Received May 16, 1991; revised June 19, 1992 

We describe a general numerical approach. the projection method, to solve 
operator equations which arise in economic models. Principles from numerical 
analysis are then used to develop efficient implementations of the projection method 
for solving aggregate growth models. Since any numerical approach will involve 
error, we derive error measures which are related to optimization errors by agents 
and argue that the numerical approximations can be viewed as equilibria with 
boundedly rational agents. The results are programs which run hundreds of times 
faster than competing methods in the literature while achieving high accuracy. 
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1. TNTR~DUCTI~N 

Economists are increasingly turning to numerical techniques for 
analyzing dynamic economic models, While numerical techniques have 
been used in dynamic economic analysis since Gustafson [14], the set of 
problems analyzed with numerical methods has expanded, and more effort 
has been expended on developing and evaluating algorithms (see, for 
example, Taylor and Uhlig [32]). While progress has been substantial, the 
numerical techniques have tended to be, or at least have appeared to be, 
problem specific. Also, economists have often ignored standard numerical 
methods in favor of idiosyncratic and ad hoc methods. 

This paper presents a general approach to the numerical solution of 
dynamic economic problems with a focus on its application to simple 

* This paper originally circulated as “Minimum Weighted Residual Methods for Solving 
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participants at Northwestern University, Stanford University, the Santa Fe Institute, the 
comments and suggestions of two anonymous referees, and the research assistance of 
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aggregate growth problems. More specifically, we will discuss a class of 
techniques, called projection methods, which have been developed in the 
mathematical literature on numerical solutions to partial differential equa- 
tions, and appear to be generally applicable to economic problems. ’ Many 
continuous-time economic problems can be formulated as partial differen- 
tial equations, implying that projection methods would be applicable. For 
some economic applications, a discrete-time formulation may be preferred. 
We will show that the basic ideas of projection techniques can be adapted 
for discrete-time applications. 

The greatest value of the projection approach is its robustness and 
flexibility. We will describe the general projection approach for solving 
problems and show that most of the techniques currently used by 
economists are also projection methods when viewed from the general 
perspective. With this common framework, we can discuss and compare 
many numerical methods. In particular, numerical analytic ideas will show 
why some methods outperform others and how to devise efficient 
algorithms. 

The basic idea of projection techniques is to first express equilibrium as 
a zero of an operator, Jf: B, -+ B,, where B, and B, are function spaces. 
That operator can be an ordinary differential equation, as in optimal 
control problems, a partial differential equation, as in continuous-time 
dynamic programming, or a more general functional equation, as in Euler 
equations expressing necessary conditions for recursive equilibria (as for- 
mulated in Prescott and Mehra [26]). Of course, space and time limitations 
make it impossible for computers to store and evaluate all the possible 
elements of B,. To make the problem tractable, projection methods focus 
on a finite-dimensional subspace of candidates in B, which can be easily 
represented on a computer and is likely to contain elements “close” to the 
true solution. It may be difficult for the computer to compute Jf, in which 
case we find a computable operator, A, which is “similar” to JV. Within 
the space of candidate solutions, we then find an element which is “almost” 
a zero of J?. 

While the basic idea is natural, there are many details. The key details 
are specifying the subspace within which we look for an approximate solu- 
tion and its computer representation, defining what “close” and “almost” 
mean, and finding the approximate solution. By studying these details, 
we will see how to implement these ideas efficiently to solve numerically 
interesting dynamic nonlinear economic problems. 

’ Earlier versions of this paper used the term “minimum weighted residual” instead of 
“projection.” The change was made since “projection” is one of the terms used in the mathe- 
matical literature to describe these methods (see, for example, Golub and Ortega [ 13]), 
projection operations are basic in econometrics, and “projection” is easier to pronounce 
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This paper has two purposes. First, it lays out the general projection 
approach to solving dynamic economic problems. Second, we demonstrate 
the power, practicality, accuracy, and efficiency of particular implementa- 
tions of the projection method for solving stylized discrete-time growth 
models. This is a useful focus since optimal growth problems are impor- 
tant, and several other authors have discussed the speed of their proposed 
solution methods for this problem in Taylor and Uhlig [32] and the 
accompanying papers. We will see that most of those methods fall within 
the general projection approach. Within this common framework we are 
able to discuss the relative merits of various implementations of the common 
underlying ideas. In particular, the algorithms developed in this paper run 
hundreds of times faster than the methods discussed in Taylor and Uhlig 
[32], a fact which can be explained by applying general numerical analytic 
principles within this projection framework. 

Space limitations require a narrow focus, but from these examples it is 
clear that this method can be applied to a diverse collection of dynamic 
economic problems. Judd [18] shows how to use these methods to solve 
dynamic programming problems, general dynamic equilibrium with distor- 
tions, game-theoretic dynamic models in both discrete and continuous 
time, and even partially revealing rational expectations equilibria of asset 
markets with asymmetric information. 

No reader will be surprised that there are techniques which will solve 
these problems. A few seconds of thought combined with brute force and 
a supercomputer will solve any problem discussed here or in Judd [ 181. 
The challenge, of course, is to find techniques which can run quickly on 
computers currently available. There are two basic reasons why we want 
fast algorithms. First, we want algorithms which can be used for 
econometric estimation of the underlying nonlinear models. * For example, 
using the programs described below one could easily compute maximum 
likelihood estimates of simple macroeconomic models. Second, the only 
way to convincingly demonstrate comparative dynamic 3 or comparative 
static propositions would be to calculate hundreds or thousands of 
examples. Third, more eflicient methods will be able to analyze more 
complex economic models. 

The examples discussed below needed little computer power. To 
emphasize this, I have limited myself to using relatively slow equipment. In 
examples below, I give running times on a Compaq 386/20, running under 
DOS 3.1 and using a Weitek math coprocessor. The key fact is that these 

‘Rust [28] discusses the use of numerical solutions within maximum likelihood 
procedures. 

3 Danthine and Donaldson [lo] is an early good example of the value of numerical 
techniques for studying comparative dynamics in growth model. 
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problems can be solved on computers sitting on the desks of many 
economists and available to most graduate students. Furthermore, I use 
standard, freely available software. All the programs were written in 
FORTRAN, but could be implemented in any programming language, 
such as BASIC or GAUSS4 

Section 2 describes the application of the projection method to a simple 
differential equation. This is done to illustrate how the approach and focus 
of projection methods differ from more conventional methods for solving 
operator equations. Section 3 then describes the projection method for 
operator equations on general function spaces. Section 4 uses basic numeri- 
cal analysis techniques to apply the projection method to a simple deter- 
ministic optimal growth problem, and Section 5 accomplishes this for a 
stochastic optimal growth problem. Section 6 compares the algorithms in 
Section 5 to others which have been proposed, pointing out that all 
methods can be viewed as applications of the projection method, and that 
the s!ow speed of previous methods can be traced to inefficient choices. 
Section 7 discusses the convergence problem and Section 8 concludes. 

This paper is not intended to be an exhaustive review of numerical and 
approximation techniques. 5 There are many other approaches which are 
also of potential values, including regular and singular perturbation techni- 
ques and finite difference schemes, each of which has its own particular 
strengths (see Judd [ 161). One reason for examining projection techniques 
is that they are similar to standard econometric techniques; hence they will 
appear familiar to economists. Ultimately, one expects that the full range 
of approximation and numerical techniques will be valuable to economists 
with the best algorithms combining techniques. 

2. A SIMPLE EXAMPLE 

Before describing projection techniques in full generality, it is useful to 
examine how they would be used in a simple example. Seeing these 
techniques used in a familiar context help us understand the basic ideas 
behind projection techniques. 

Suppose we want to solve the differential equation 

Y’ = g(.K rL (2.1) 

4 Upon request, I will provide the FORTRAN code by E-mail. My E-mail address is 
Judd @ Hoover.bitnet. 

5 I have tried to make this paper self-contained and accessible to readers not familiar with 
numerical analysis. I doubt that I have been totally successful. For more detailed discussion 
of the techniques I use, I refer the reader to numerical analysis books such as Atkinson [ 11, 
Golub and Ortega [13], and Judd [16]. 
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together with the initial condition 

Y(O) = 1 (2.2) 

for t E [0, r]. The most popular approaches for this problem are finite 
difference methods, such as the Euler and Runge-Kutta schemes, which 
convert differential equations into difference equations. 6 In this paper, 
however, we are interested in projection techniques and will illustrate them 
by applying the basic idea to this simple ordinary differential equation. 

The first step is to change the way we view (2.1). We begin by defining 
the operator 

LY = Y’ - g(y, t). (2.3) 

L maps C’[O, r] onto C’[O, T]. The differential equation (2.1), (2.2) can 
be reformulated as finding a zero of an operator, 

which satisfies (2.2). 

Ly=O, (2.4) 

The next step is to find a way to represent potential solutions on the 
computer. A natural set of possible solutions is (y E C1 [0, T] ) y(O) = 1 }, 
but it cannot be represented on a computer. By the Stone-Weierstrass 
theorem, any C ’ [0, r] function can be expressed as the uniform limit of a 
sequence of polynomials. However, since our computer can only handle 
finite objects, projection methods find some finitely representable 
approximation, such as 

j(t; a) E 1 + i aiti, 
i= 1 

which “fits” (2.4) with “small” error. Note that the initial condition has 
been taken care of since $(O; a) = 1 for any choice of a. We have now 
reduced the infinite-dimensional problem to a finite-dimensional one since 
the problem now is to find a “good” a E R”. ’ 

6 For example, the Euler scheme lixes a step size df and solves the difference equation 
~(t + At) = y(t) + g(y. f) Af; y(O) = 1 initiates the difference scheme which then continues for 
n steps, where n is the least integer such that n Ax > T. 

‘Whereas tinite-difference methods focus on computing values of a solution at specified 
values of t, projection methods focus on computing coefficients of a decomposition of a 
solution. If I may borrow jargon from the time series literature, one can roughly think of 
finite-difference methods as state-space methods and projection methods as spectral methods. 
Indeed, an important class of projection methods are called spectral methods. 
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We next operationalize the idea of a good “lit.” We define the residual 
function. 

R(t;a)rLj(t;a)= i iu,P-g l+ 5 a,t’,t . 
i=1 ( i=l > 

If the parameters a made c(t; a) a solution of (2.1), then a would make the 
residual function zero for all t E [0, T]. Projection methods choose a so 
as to make R(t;a), when viewed as a function of t, as close to the zero 
function as possible. 

The least-squares approach defines the fit to be the L2 norm of the 
residual function, and chooses a so as to minimize the “sum of squared 
residuals”; that is, we solve 

I 
T 

min R( t; a)’ dt. 
a 0 

The least-squares method is a direct implementation of the idea to make 
the error of the approximation small. In general, one could develop 
alternative implementations by using different measures of the “loss” due to 
a nonzero R. 

Most projection techniques find a good-fitting approximation in a less 
direct fashion. These techniques begin with a simple observation: since the 
true solution would have a zero residual error function, the product of the 
residual function with any other function would be zero. Therefore, one 
way to find the n arguments of a is to fix n functions, p,(t), i= 1, . . . . it, and 
choose a so that 

s dpi(t) R(t;a)dt=O, i=l n. 3 . ..> 

There are obviously many ways to implement this idea with different 
specifications of the p,(t). For example, the method of moments implemen- 
tation uses p,(t) = tie ‘. 

A somewhat different method is collocation. It finds an approximation 
which satisfies the differential equation at some chosen points. Specifically, 
we first choose a fixed set of n points { ti}l= 1 in [0, T], and then we choose 
a so that 

R(t,; a) = 0, i = 1, . . . . n, 

which is a system of nonlinear equations in a if g is nonlinear. 
In the interest of space, we do not report on the quality of the solutions 

here; see Judd [ 161 for a more complete discussion of an explicit example. 
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This simple example illustrates the basic approach of projection procedures 
applied to a familiar problem. First we express the problem as the zero of 
some operator. We then express the candidate approximations as finite 
sums of simple functions. The coefficients of these finite sums are then fixed 
by imposing conditions which would be satisfied by the exact solution. The 
projection method directly reduces this simple problem to a set of equa- 
tions for a, a simple numerical problem. With this example in mind, we will 
now discuss the general projection method of solution and examine the 
variety of numerical procedures which it may involve. 

3. GENERAL ALGORITHM 

We now give some idea of the usefulness of the projection method by 
describing it in a more general context. One begins with an operator equa- 
tion representation of the problem; that is, one reduces the economic 
problem to finding an operator JV and a function f such that equilibrium 
is represented by the solution to 

N-(f) = 0, 

where f: D c RN + R”, -N: B, + B,, and the Bi are function spaces. In our 
simple example above, D = [0, T], f: D -+ R’, ,Y(f) = (d/dt)(f(t)) - 
g(f(t), f), B, = C’[O, T], and B, = C’[O, T]. A wide variety of economic 
problems can be so represented. For example, in optimal growth problems 
the domain D contains N state variables, the unknown function f is a 
vector of decision rules, and the operator ,/1/‘ is a vector of M Euler 
conditions. Typically, JV” is a composition of algebraic operations, differen- 
tial and integral operators, and functional compositions, and is frequently 
nonlinear. 

We shall show how to implement the canonical projection technique in 
a step-by-step fashion. We first give an overview of the approach, then 
highlight the critical issues for each step and discuss how the steps interact. 

The first step is to decide how to represent approximate solutions. One 
general way is to assume that our approximation, j is built up as a linear 
combination of simple functions. 8 We will also need a concept of when two 
functions are close. Therefore, the first step is to choose a basis and an 
appropriate concept of distance: 

s Nonlinear combinations are also possible, but most current methods stay with linear 
combinations since linear approximation theory is a much more developed theory than non- 
linear approximation theory. 
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Step 1. Choose bases, Qj = {(~{},a;_ 1, and inner products, ( .,. )j, over 
Bj, j= 1, 2. 

The basis over B, should be flexible, capable of yielding a good 
approximation for the solution, and the inner products should induce 
useful norms on the spaces. Next, we decide how many basis elements to 
use and how to implement JV: 

Step 2. Choose a degree of approximation n for f, a computable 
approximation Jv? of JV, and a collection of n functions from B,, 
pi: D + R”, i= 1, . . . . n. 

The approximate solution will be p= Cr= 1 aidi( The convention is 
that the Qi increase in “complexity” and “nonlinearity” as i increases and 
that the first n elements are used. The best choice of n cannot be deter- 
mined a priori. Generally, the only “correct” choice is n = co. Larger n 
should yield better approximations, but one is most interested in the 
smallest n which yields an acceptable approximation. One initially begins 
with small n and increases n until some diagnostic indicates that little is 
gained by continuing. Similar issues arise in choosing J?. Sometimes, as in 
Section 2, we can take A = JV. The pi will be the projection directions 
used to determine a. 

Step 1 lays down the topological structure of our approximation and 
Step 2 fixes the degrees of freedom of the approximation. Once we have 
made these basic decisions, we begin our search for an approximate solu- 
tion to the problem. Since the true solution f satisfies M(f) = 0, we will 
choose as our approximation somef which makes J(j?) “nearly” equal to 
the zero function. Since j\ is parameterized by a, the problem reduces to 
finding an a which makes J(f) nearly zero. This search for a is the focus 
of Steps 3-5. 

Step 3. For a guess a, compute the approximation, 1~ C:= I a,cp;(x), 
and the residual function. 

R(.u; a) = (J(f))(x). 

The first guess of a should reflect some initial knowledge about the 
solution. After the initial guess, further guesses are generated in Steps 4 
and 5, where we see how we use the inner product, ( .,. )2, to define what 
“near” means. 

Step 4. For each guess of a, compute the n projections, Pi( .) - 
(R(.;a), P~(.))~, i== 1, . . . . n. 

Step 5. By iterating over Steps 3 and 4, find a which sets the n 
projections equal to zero. 
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This general algorithm breaks the numerical problem into several dis- 
tinct steps. It points out the many distinct techniques of numerical analysis 
which are important. First, in Steps 1 and 2 we choose the fmite-dimen- 
sional space wherein we look for approximate solutions, hoping that within 
this set there is something “close” to the real solution. These steps require 
us to think seriously about approximation theory methods. Second, Step 4 
will involve numerical integration if we cannot explicitly compute the 
integrals which define the projections. Third, Step 5 is a distinct numerical 
problem, involving the solution of a nonlinear set of simultaneous 
equations or the solution of a minimization problem. We shall now 
consider each of these numerical problems in isolation. 

3.1. Choice of Basis and Inner Product 

There are many criteria which the basis and inner product should satisfy. 
The full basis @i for the space of candidate solutions should be “rich”; in 
particular, it should be complete in B,. We will generally use inner 
products of the form 

(f(x), g(x)> =jDf(4 g(x) w(x)dx 

for some weighting function w(x) z 0. 
Computational considerations also play a role in choosing a basis. The 

‘pi should be simple to compute. They should be similar in size to avoid 
scaling problems9 While asymptotic results such as the Stone-Weierstrass 
theorem may lull one into accepting polynomial approximations, practical 
success requires a basis where only a few elements will do the job. This 
requires that the basis elements should “look something like” the solution. 
In particular, our discussion below shows that we should use smooth 
functions to approximate smooth functions. On the other hand, properties 
like monotonicity are not convenient since they are not preserved by linear 
combinations. 

If few terms are to suffice, the individual terms should also be “different.” 
In Section 3.4 we will see that orthogonality with respect to the inner 
product ( .,. ), is one sense in which they should differ. Nonorthogonal 
bases will reduce numerical accuracy just as collinear regressors enlarge 
confidence intervals in regression. 

Examples of possible bases are numerous. First, one may consider the 
ordinary polynomials, { 1, x, .x2, x3, . ..}. If B, is the set of bounded 
measurable functions on a compact set then the Stone-Weierstrass theorem 

9 Scaling problems are those problems which arise when numbers of vastly different 
magnitudes interact. For example, 10” + 10-l’ = 10” on most machines. 
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assures us of their completeness in the L’ norm. However, they may not be 
a good choice since they are very similar. For example, they are all 
monotonically increasing and positive on R+ and they will not be 
orthogonal in any natural inner product on R+. They will also vary a great 
deal in size, leading to scaling problems. This does not mean that we can- 
not use ordinary polynomials, just that it is preferable to use orthogonal 
collections. A generally useful choice is the Chebyshev polynomial family. lo 

Chebyshev Polynomials 

Because of their usefulness, we will review the key properties of 
Chebyshev polynomials. They are defined over [ - 1, l] by the formula 
T,(x) =cos(n arc cos x). They are generated by the recursion scheme 
T,,+ r(x) = 2xT,,(x) - T,_ ,(x), which is initialized by T,(x) = 1 and 
T,(x) =x. The restriction to [ - 1, l] is inessential since one can define 
Chebyshev polynomials over any bounded interval by a linear transforma- 
tion. One hint of their special properties is given by the identity 
T,,(cos 0) = cos n0 which in itself is an orthogonal sequence on [0,27c]. 
This identity ties Chebyshev polynomials to Fourier analysis (see Rivlin 
~271.) 

The Chebyshev polynomials obey the continuous orthogonality 
relationship 

I 
1 

Ti(x) Ti(x)(l -x2)-%x=0, if j. 
-1 

Hence, Chebyshev polynomials are orthogonal on [ - 1, l] with respect to 
the inner product defined by the weighting function (1 -x2))‘/*, which 
leads us to use this inner product when we use a Chebyshev polynomial 
basis. The ability of Chebyshev polynomials to approximate smooth 
functions is summarized in the following theorem (see Rivlin [27] for 
proofs): 

CHEBYSHEV APPROXIMATION THEOREM. Assume f~ Cr[ - 1, 1 1. Let 

C,(x)+,+ i cjTj(x), 
j= 1 

lo Nonpolynomial alternatives include various sequences of trigonometric and exponential 
functions. The choice depends on the range, D, computational demands, and the expected 
shape of a solution. In physics, trigonometric bases such as { 1, sin x, sin 2x, sin 3x, . ..} are 
often used since solutions are often periodic, allowing for Fourier series techniques. In 
economic problems, however, solutions are generally not periodic, and periodic approxima- 
tions to nonperiodic functions require many terms, a fact implied by the Gibbs phenomenon. 
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where 

,2 ' fCx) Tj(x)d-x 

J 
.s, Jm ’ 

Then there is a b such that, for all n 2 2, 

Hence C, + f uniformly as n -+ 00. Furthermore, there is a constant c such 
that 

I cjl d c/j', j> 1. 

This theorem will help us assess the quality of our approximations since 
both the error and the coefficients eventually drop off rapidly for smooth 
functions. Also important for our purposes is the discrete orthogonality 
relationship 

/cl T,(z;) T,(z;) =O, i# j, 

where we define the zj’, I = 1, . . . . n, to be the zeroes of T,,, given by 

z;~cos((2~;n~‘“), I=1 ,...,n. 

This discrete relationship leads us to consider discrete approximation 
methods. Suppose f(x) is a continuous function and 

c~E~,~~,~(z;, T,(zy), j=O 1, . . . . n- 1. 

Then the function 

Z;-,(x)= -;c,+~&,Tk(x) 
k=l 

agrees with f(x) on the z;, thereby being a polynomial of degree n - 1 
which interpolates f(x) at the z;. In this way, we can approximate a 
function by interpolation at the points zy. We call Zip i the degree n - 1 
Chebyshev interpolant off: 

One can interpolate at any collection of n + 1 points. There are, however, 
strong reasons to choose I{. Suppose that we want to find an n th degree 
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polynomial approximation, p,(x), which keeps the maximum error, 
llf-PAI,, small. The following theorem (see Rivlin [27]) indicates the 
advantages of I{. 

CHEBYSHEV INTERPOLATION THEOREM. SupposefcCk[a,bJ Then there 
is some dk such that for all n 

llf-Z9,< ilog(n+l)+2 
( > 

$lif(killm 

Furthermore, interpolation at Chebyshev zeroes is optimal. 

This theorem says that the Chebyshev interpolant converges to f rapidly 
as we use more Chebyshev zeroes. Convergence may seem to be an 
unremarkable property, but interpolation at uniformly spaced points does 
not necessarily converge as we use more points. Given these properties, 
Chebyshev methods are valuable whenever the approximated function is 
smooth. 

Other Bases 

Depending on the nature of the bases, projection methods are separated 
into finite element and spectral methods; both types have been used in 
economic applications. Spectral techniques use basis functions which are 
almost everywhere nonzero on D, such as Chebyshev polynomials. These 
basis functions are also C”, imposing (possibly undesirable) smoothness 
conditions on the approximate solutions. 

On the other hand, finite-element techniques use basis functions which 
have small support; that is, each is zero except over a small portion of D 
and, at each point of D, all but a few of the basis elements are zero. For 
example, step function approximations on [a, b] are generated by a basis 
of step functions, {cp,: i= 1, . . . . n}, where h = (a - b)/n and 

i 

0, a<x<a+ (i- 1)h 

cp,(x)= 1, a+(i-l)h<x<a+ih 

0, a+ih<x<b. 

Piecewise linear approximations are generated by a basis of tent functions, 
that is, functions of the form, for i = 0, . . . . n, 

0, a<xda+ (i- 1) h 

cpi(X) = 
(x-(a+(i-l)h))/h, a+(i-l)h<xda+ih 
I-(x-((a+(i-l)h))/h, a+ih<x<a+(i+l)h 
0, a+(i+l)hdx<b. 

642/58/2-21 
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These are called tent functions since q,(x) is zero to the right of 
a + (i- 1) h, rises linearly to a peak at a + ih, and then falls back to zero 
at a + (i + 1 )h, and remains zero. More generally, one can compute 
piecewise degree k polynomial approximations which split [a, h] into 
subintervals’and equal a degree k polynomial on each subinterval. Hermite 
and spline interpolation methods (see Prenter [25]) are examples of 
piecewise cubic approximation methods. 

Chebyshev interpolation is asymptotically superior to piecewise linear 
and piecewise constant approximations for f~ C3[a, b]. By Taylor’s 
theorem, on the interval [x, x + h] the L” error of any constant 
approximation tofis at bestf’(x) h/2 + cO(h’), and the L” error of a linear 
approximation is at best f”(x) h’/16 + O(h3). Therefore, the error of any 
piecewise constant approximation of f over [a, b] to be M, h/2 + o(h), 
where M, - max,, co b, f’(x), and the error of any piecewise linear 
approximation is M,h2/16 + o(h2), where M2 = max,, Co,b,f”(~). Since h is 
inversely proportional to the number of basis elements needed to represent 
a piecewise constant or linear approximation, if we use n basis elements the 
error for a step function approximation can be M,/(2n), and the error for 
a piecewise linear approximation can be M2/( 16~‘). Both are asymptoti- 
cally inferior to Chebyshev interpolation error of Zi, which is of order 
np3 In n. For f~ Ck[a, b] and k > 3, the performance gap widens rapidly. 
Note that in this discussion, we are comparing worst-case error bounds, 
the typical approach taken in numerical analysis. 

While these asymptotic results are strong, real-life computing also needs 
to watch the proportionality constants. In the Chebyshev interpolation 
theorem, the error bound on Z[ for f~ C3 is proportional to Ilf”‘II 33, 
whereas the piecewise linear approximation error is proportional to Ilf” II m. 
While the asymptotic error is n- 3 Inn, for small n the piecewise linear 
approximation is superior if IIf”’ /I oc, is much larger than Ilf” II oo. Geometri- 
cally, this says that if the curvature off changes rapidly, a piecewise linear 
approximation will initially do better than Chebyshev interpolation. 

These considerations motivate the following rule: if high-order 
derivatives are not large andf is smooth, use Chebyshev polynomial basis; 
otherwise, use piecewise polynomial bases. In this paper, the examples are 
known to have very smooth solutions and we use a spectral approach with 
a Chebyshev polynomial basis. 

Multidimensional Bases 

Most interesting problems in economics involve more than one state 
variable-physical and human capital, capital stocks of competitors, wealth 
distribution, etc. Tensor product methods build multidimensional basis 
functions up from simple one-dimensional basis functions. If {q,(x)} r , is 
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a basis for functions of one real variable, then the set of pairwise products, 
{cPitx) 4ojtY))z=l9 is the tensor product basis for functions of two 
variables. To handle n-dimensional problems in general, one can take all 
the n-wise products and create the n-fold tensor product of a one-dimen- 
sional basis. One advantage of the tensor product approach is that if the 
one-dimensional basis is orthogonal in a norm, the tensor product is 
orthogonal in the product norm. The disadvantage is that the number of 
elements increases exponentially in the dimension. 

There are many ways to form multidimensional bases and avoid the 
“curse of dimensionality.” See Judd [ 161 for a discussion of hybrid pertur- 
bation-Galerkin methods and other alternatives and their applications to 
economics problems. We will explore complete polynomial bases, which 
grow only polynomially as the dimension increases. To motivate the 
complete polynomials, we recall Taylor’s theorem for many dimensions: 

TAYLOR'S THEOREM. Suppose f: R” + R’, and is Ck+ ‘. Then for x0 E R”, 

f(~)=f(xo)+i~~~(xo~(xi~x~~ 
I 

+;.i i azf (x”)(xi-xxp)(xj-x;) 

r=l j-1 axidxj 

Note the terms used in the kth degree Taylor series expansion. For k = 1, 
Taylor’s theorem uses the linear functions Pi = { 1, xi, x2, . . . . x,}. For 
k = 2, Taylor’s theorem uses 

Y*=LtY,lJ {xf )...) x;,x,x*,xIx3, . ..) x,-,x,}. 

.9* contains some product terms, but not all; for example, x1x2x3 is not in 
P2. In general, the kth degree expansion uses functions in 

The set Pk is the complete set of polynomials of total degree k. 
Complete sets of polynomials are often superior to tensor products for 

multivariate approximation. The n-fold tensor product of { 1, x, . . . . x”} 
contains (k + 1)” elements, far more than pk. For example, Pz contains 
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1 + n + n(n + 1)/2 elements compared to 3” for the tensor product. Taylor’s 
theorem tells us that many of the tensor product elements add little, saying 
that the elements of Yk will yield a kth-order approximation near x0, and 
but that the n-fold tensor product of { 1, x, . . . . x”} can do no better than 
&h-order convergence since it does not contain all degree k + 1 terms. This 
suggests that the complete polynomials will give us nearly as good an 
approximation as the tensor product with far fewer elements. 

3.2. Choice and Evaluation of Projection Conditions 

Projection techniques include a variety of special methods. Generally we 
use ( .,. )* to measure the “size” of the residual function, R. The general 
strategy is to find an a which makes R small. There are several ways to 
proceed. 

First, we have the least-squares approach which chooses a so as to 
minimize the “weighted sum of squared residuals”: 

min (R(x; a), R(x; a))*. 
a 

This replaces an infinite-dimensional operator equation with a nonlinear 
minimization problem in R”. The standard difhculties may arise; for exam- 
ple, there may be local minima which are not global minima. However, 
there is no reason for these problems to arise more often here than in any 
other context, such as maximum likelihood estimation, where extremal 
problems are solved numerically. ‘I 

While the least-squares method is a direct approach to making the error 
of the approximation small, most projection techniques find approxima- 
tions by fixing n projections and making the projection of the residual func- 
tion in each of those n directions zero. Formally, these methods find a such 
that (R, pi)* = 0 for some specified collection of functions, pi. Different 
choices of the pi defines different implementations of the projection method. 

The least-squares and projection implementations of projection ideas are 
similar since one way to solve a least-squares problem is to solve the non- 
linear set of projection conditions generated by its first-order conditions, 
(R, LJR/aaj)z = 0. Seeing the least-squares method expressed as a system of 
projection equations gives us some indication why other methods may be 
better. The projection directions in the least-squares case, the gradients of 
the residual function, could be highly correlated, thereby increasing the 
numerical difftculty of determining a. Furthermore, the projection direc- 
tions depend on the guess for a. In other methods, we have tight control 

‘I While I have not made a complete study, I have had little success in using the least- 
squares method to solve simple optimal growth models. Convergence appears to be very slow. 
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over the projection directions, an important consideration in nonlinear 
problems. Also, in economic problems we may have a preference for 
approximations which have zero projections in certain directions, such as 
the average error in an Euler equation. Most techniques will naturally 
include that condition, whereas it may be absent in a least-squares 
approach. 

One such technique is the Galerkin method. In the Galerkin method 
we use the first n elements of the basis for the projection directions. I2 
Therefore, a is chosen to solve the equations: 

p,(a) s (R(X; a), cPitx)> =O, i=l n. 3 . . . . 

Note that here we have reduced the problem of solving a functional equa- 
tion to solving a set of nonlinear equations. In some cases the Galerkin 
projection equations are the first-order conditions to some minimization 
problem, in which case the Galerkin method is also called the 
Rayleigh-Ritz method. This is not as likely to happen in economics 
problems because of their inherent nonlinearities. 

There are obviously many ways to implement the projection idea. Some 
of the other common ones are method of moments, subdomain, and 
collocation. If D c R’, then the method of moments chooses the first n 
polynomials for the projection directions; i.e., we find a which solves the 
system 

P,(a)5 (R(x;a),x’-‘),=O, i = 1, . . . . n. 

If D is of higher dimension, we project R against multivariate monomials. 
In the subdomain method, the idea is to find an approximation which is 
good on average on a collection of subsets which cover the whole domain. 
More specifically, we choose a so that 

P,(a)=(R(x;a),Z,,)=O, i = 1, . . . . n, 

where {Di}l= 1 is a sequence of intervals covering D, and ID, is the 
indicator function for Di. A collocation method takes n points from D, 
{xi>:= 1, and chooses a to solve 

R(x,; a) = 0, i=l n. 3 ..-, 

This is a special case of the projection approach since R(x,; a) equals 
the projection of R(x; a) against the Dirac delta function as xi, 
(R(x; a), W-xJh. 

” Formally, this requires that B, and B, have the same basis and inner product, a weak 
condition. 
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Orthogonal collocation chooses the collocation points in a special way. 
The chosen xi are the zeroes of the nth basis element, where the basis 
elements are orthogonal with respect to the inner product. The Chebyshev 
interpolation theorem suggests its power. Suppose we have found an a such 
that R(zr; a) = 0, i= 1, . . . . n, where the zr are the n zeroes of T,,. As long 
as R(x; a) is smooth in x, the Chebyshev interpolation theorem says that 
these zero conditions force R(x; a) to be close to zero for all x and that 
these are the best possible points to use if we are to force R(x; a) to be 
close to zero. Even after absorbing these considerations, it is not certain 
that even orthogonal collocation is a reliable method. Its performance 
turns out to be surprisingly good. 

Choosing the projection conditions is a critical decision since the major 
computational task is the computation of those projections. The colloca- 
tion method is fastest in this regard since it only uses the value of R at n 
points. More generally, the projections will involve integration. In some 
cases one may be able to explicitly perform the integration. This is 
generally possible for linear problems and possible for special nonlinear 
problems. However, our experience is that this will generally be impossible 
for nonlinear economic problems. We instead need to use numerical 
quadrature techniques to compute the integrals associated with evaluating 
( .,. )2. A typical quadrature formula approximates sif(x) g(x) dx with a 
finite sum Cy= i wJ(xJ, where the xi are the quadrature nodes and the MJ~ 
are the weights. Since these formulas also evaluate R at just a finite number 
of points, quadrature-based projection techniques are essentially weighted 
collocation methods. The advantage of quadrature formulas over 
collocation is that information at more points is used to compute the 
approximation, hopefully yielding a more accurate approximation of the 
projections. 

3.3. Finding the Solution 

Step 5, which determines a by solving the projection conditions com- 
puted in Step 4, uses either a minimization algorithm (in the least-squares 
approach) or a nonlinear algebraic equation solver to solve the system 
P(a) = 0. I have found Newton’s method to be adequate for all examples 
below. Newton’s method is the iteration scheme 

ak+l =ak- 
-I 

p(ak) 

which converges quadratically for good initial guesses. I used the 
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FORTRAN program HYBRD l3 from the MINPACK collection. Newton’s 
method is tine for these problems if the number of unknowns is small. For 
large problems, one must switch to other methods, such as conjugate 
gradient or homotopy methods, to avoid the high cost of inverting 
Jacobians. The examples below are also well behaved; for highly nonlinear 
problems, one would switch to homotopy methods. 

A good initial guess is important, particularly when one uses Newton 
methods. Sometimes, there are special cases with a known solution, which 
in turn will be a good guess for the problem we want to solve. In general, 
one uses problem-specific ways to generate good initial guesses. However, 
if one has no idea about what would be a good initial guess, then one 
could use the least-squares approach to generate one. 

3.4. Coordination among Steps I-5: The Importance of Conditioning 

We now see what is needed for efficiency. We need basis functions which 
are easy to evaluate since they will be frequently evaluated. The integration 
in Step 4 must be accurate but fast. This can be helped by using quadrature 
formulas which work well with the basis. Finally, the nonlinear equation 
solver in Step 5 needs to be efficient and should be able to use all the infor- 
mation arising from Step 4 calculations. Step 5 will typically use gradient 
information about the integrals of Step 4. It is therefore important to do 
those gradient calculations quickly, doing them analytically when possible. 

A particularly important interaction is that between the formulation of 
&“, the choice of a basis and inner product, and the technique for solving 
the projection conditions. Newton-style methods for solving the system 
P(a) = 0 will invert its Jacobian, P,(a). This inversion makes the method 
sensitive to conditioning problems. The spectral condition number, defined 
to be the ratio of the largest and smallest (in magnitude) eigenvalues of a 
matrix, is a commonly used index of being nearly singular and indicates 
how sensitive matrix inversion is to error. If a Jacobian is nearly singular 
near the solution, the accuracy of the inversion will be poor due to round- 
off error and convergence will be slow. In particular, a condition number 
of 10k tells you that an error of E in specifying an inversion can yield an 
error of up to 10ks in the computed inverse; in particular, you can lose up 
to k significant digits when you solve for a in a Newton step. 

We now see why an orthogonal basis is going to be important. If a basis 
is nearly collinear, then the rows of P,,(a) will likely be nearly collinear, 
P.(a) will likely have a large condition number, and large errors will likely 
arise in computing its inverse. Bases with just the first six odinary polyno- 

I’ HYBRD does not recompute the Jacobian on each iteration, instead trying an updating 
procedure. This greatly speeds up the calculations relative to a pure Newton method. 
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mials can easily generate Jacobians with condition numbers on the order 
of lOlo, in which case one has possibly lost almost all the significant digits 
on, say, a 13-digit machine, that is, a machine where the machine round-off 
error E is 10 ~ r3. By choosing a basis which is orthogonal with respect to 
the inner product used in defining Z’(a), one reduces the chances of poor 
conditioning in the Jacobian of P. 

The form chosen for ,N will also have a dramatic influence on condi- 
tioning, accuracy, and speed. If Af is linear then P(a) =0 is a linear 
equation in a, and Newton’s method converges in just one step. In our 
economic problems, there are typically several economically equivalent 
operators which represent equilibrium, typically differing by nonlinear 
transformations. The more linear we can make J1/‘, the better Newton’s 
method will perform. Below we will use this “linearization” idea to find a 
good form for our problems. 

Most methods used in numerical analysis of economic models fall within 
the general description above. We will see this below when we compare 
how various methods attack growth problems. The key fact is that the 
methods differ in their choices of basis, fitting criterion, and quadrature 
techniques. With the general method laid out, we will now report on a 
particularly important application to show its usefulness. 

4. DISCRETE-TIME DETERMINISTIC OPTIMAL GROWTH 

In the rest of this paper we examine optimal growth problems in discrete 
time and show how projection techniques can be adapted to calculate solu- 
tions. This will be valuable for four reasons. First, discrete time is com- 
monly used in dynamic economic analysis. Second, in the deterministic case 
we will be able to do a thorough job in checking our solutions since other 
reliable, but slow, algorithms are available to deliver tight bounds on the 
true solution. Third, the stochastic case is one which has been studied by 
many others with various numerical techniques. In fact, one point we make 
below is that most of these procedures are really projection methods. By 
recognizing the common projection approach underlying these procedures, 
we can better understand their differences, particularly in accuracy and 
speed. We conjecture that the comparative performances of these various 
implementations of projection ideas in the discrete-time stochastic optimal 
growth problem is indicative of their relative value in other future 
problems. 

Fourth, the application of projection methods to this class of mathe- 
matical problems is unusual. Projection methods are used extensively for 
solving ordinary and partial differential equations in the physical sciences; 
therefore, their value in solving continuous-time economic models is 
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assured. However, the functional equations describing discrete-time 
optimal growth problems do not tit either class. Therefore, it is of substan- 
tial technical interest to show that projection methods do a good job in 
solving the kind of discrete-time functional equations which commonly 
arise in economic analysis. 

4.1 Problem Formulation 

We first examine a deterministic growth problem. We want to choose 
consumption, cI, to maximize 

,go B’u(c,) (4.1) 

and where capital obeys the law of motion 

k r+l =fWt)-ct. (4.2) 

As shown in Bizer and Judd [4], to calculate the optimal consumption 
policy, h(k), it is enough to focus on the Euler equation, 

0 = u’(W))- Bu’Wtkl - Wff) f’U(k) - W)) = bW)Nk). (4.3) 

We now describe the details of a projection approach to the problem. The 
domain D of our approximation will be [k,, k,]. Since the special proper- 
ties of Chebyshev polynomials apply to their restriction to [ - 1, 11, we 
need to apply the linear transformation 2(k - k,)/(kM - k,) - 1 to k to 
permit us to form Chebyshev polynomials on D. k, and k, are chosen so 
that the solution will have k confined to [k,, k,,,]. In particular, [k,, kM] 
must contain the steady state, a point which we can determine before 
calculations begin. Therefore, our approximation to h is parametrically 
given by 

h(k; a)= i aitii(k), 
i=l 

where ~i(k)=Tj-,(2((k-k,)/(k,-k,))-1) and n is the number of 
terms used. 

In this problem, .M is a simple operator using only arithmetic operations 
and composition. Therefore, we can take J = N. Since h is continuous, we 
define M to have domain and range in C’[k,, k,]; the only limitation on 
the domain is that U’ and f’ are defined in (4.3) at all kE D. Hence, 
B, = B, = Cock,, kM], the continuity of N in the L” norm following 
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from the U, f, and fi being C’ in all their arguments. Given the Euler 
equation, (4.3), the residual function becomes 

R(k; a) = u’(h(k; a)) - ju’(h(f(k) - h(k; a); a)) f’(f(k) - h(k; a)) = J”(i). 

To compute a, we can do one of several things. First, we consider 
orthogonal collocation. We choose n values of k, denoted by k,, i = 1, . . . . n. 
We then choose a so that R(k,; a) = 0 for each i. Orthogonal collocation 
chooses the k, to be the n zeroes of $,+ ,, which are themselves linear 
transforms of the Chebyshev zeroes, z:, defined above. 

We will also implement the Galerkin method. Since we use Chebyshev 
polynomials as a basis, we will use the inner product 

(W), g(k)) = j”” h(k) 0) w(k) & 
kn 

where 

With this choice of inner product, the basis is orthogonal. The Galerkin 
method computes the n projections 

P,(a) = Sk” R(k; a) tji(k) w(k) dk, 
km 

i=l n, 3 . . . . 

and chooses a so that P(a) = 0. Here the difficulty is that each P,(a) is an 
integral which needs to be computed numerically. The form of w(k) implies 
the use of Gauss-Chebyshev quadrature. That is, we approximate P,(a) = 0 
conditions with 

f R(kj; a) t,Gi(kj) = 0 
. j= 1 

for some m > n, with the k, being the m zeroes of $, + r. 

Results 

We solved this model for the CRRA14 utility functions, u(c) = 
cl + ‘/( 1 + y), and the CobbDouglas production function, f(k) = Ak*. The 

“Actually, we deviated a little bit from CRRA. CRRA functions are not defined for 
negative c, but the Newton solver may examine values of a which imply negative c for some 
k. To deal with this, we pick a small c,, and for c < c, we replace the CRRA utility function 
with a quadratic utility function which agrees with the CRRA utility function and its first two 
derivatives at c,. The resulting utility function is C*, concave, and detined for all c. As long 
as c, is less than any equilibrium realization of c, this change has no effect on the solution. 
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constant A was chosen so that the steady state is k = 1. We always chose 
M = 0.25. For several values of y we solved the collocation system 

O=R(k,;a), i=l , ‘.., 4 

to arrive at our approximate solution &(k) = C;= i a,$,(k). Galerkin 
procedures resulted in only trivial differences. 

The Newton algorithm yielded solutions very quickly (a few seconds at 
most). For the initial guess, I used the consumption function which is 
linear in capital, goes through the steady state, and consumes zero at zero 
capital stock. This is a natural initial guess since it implies stable growth 
converging to the steady state. The Newton solver always converged with 
this initial guess. However, if one assumed a constant consumption 
function going through the deterministic steady state, the Newton solver 
often diverged. This is not too surprising since the unstable manifold is also 
a solution to the Euler equations. 

4.2 Accuracy Check 

When we have calculated our estimate of a, we would like to check if this 
procedure yields reliable approximations. The first check to make is to see 
if the coefficients look like they should according to the Chebyshev 
approximation theorem. Table I displays the result for y = -0.9, 
n = 2, 5, 9, 15, km = 0.333, and k, = 1.667. The coefficients behave as we 
expect. First, the computed ak do decline rapidly in k. Second, they are 
insensitive to the choice of n. While these facts do not prove that the 
approximation is good, we would be uncomfortable if the high-order 
coefficients were not small or if the coefficient estimates were not stable, 
as we increase n. 

Our second check, not usually available, is to compare the answer with 
another method known to be extremely accurate. If the capital stock could 
be only a finite number of values (i.e., “lumpy”) then dynamic program- 
ming can solve for the equilibrium exactly. To this end, I computed the 
solution to our problem, assuming that k must be some multiple of 
0.000001, where 1.0 is the steady state. I solved for the policy function over 
the range [0.5, 1.33, a total of 800,000 capital stocks. The main difficulty 
in this calculation is the need for space to store the policy function. Because 
this is a one-dimensional deterministic problem, time is no problem for this 
calculation, taking only a few minutes l5 on a VAX 8650, which is roughly 
three times as fast as a Compaq 386/20. 

is I did not do value function iteration, a method which would have taken much longer. 
Instead I used the fact that we know the policy function at the steady state and that both the 
consumption and savings functions are monotonic to directly compute the policy function in 
one pass, beginning with the steady state. 
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TABLE I 

Chebyshev Coefficients 

k n=2 n=5 n=9 II=15 

1’ 0.0589755899” 0.0600095844 0.0600137797 0.0600137922 
2 0.0281934398 0.0284278730 0.0284329464 0.0284329804 
3 -0.0114191783 -0.0113529374 -0.0113529464 
4 0.0007725731 0.0006990930 O.WO6988353 
5 -0.0001616767 -0.0001633928 -0.0001634209 
6 0.0000427201 0.0000430853 
7 -0.0000123570 -0.oooO122160 
8 0.0000042498 O.OOOOO36367 
9 -0.OOOOO11464 -0.OOOOO11212 

10 o.ooOOOO3557 
11 -0.OOOOOO1147 
12 o.OOOOOO0370 
13 -0.OOOOOOO129 
14 0.0000000052 
15 -0.0000000015 

u Each entry is the coefficient of the kth Chebyshev polynomial (over the interval CO.333, 
1.6671) in the n-term approximation of the consumption policy function in (4.3) for the case 
discussed in Section 4.2. 

We obtain some idea of the accuracy of the projection technique 
by comparing it with the presumably very accurate solution from the 
discretized problem. The results are shown in Table II. The first column 
(labelled y) indicates y, the second column (CAP) gives a range of values 
for k, the third column (PROD) gives output, Ak”, and the fourth column 
gives the consumption choice as a function of capital computed by the 
discrete state space method. The remaining columns give the difference 
(the notation a( -n) means alO-“) between the discrete solution and the 
projection solution for n = 10,7, $3, where n is the number of Chebyshev 
polynomials included in the approximation. Note that the approximation 
of the aggregate consumption function for n = 10 disagrees with the discrete 
state space result by no more than one part in 10,000, an acceptable error 
for most purposes. These numerical experiments indicate that the 
projection method works well for the deterministic discrete-time optimal 
growth model, demonstrating its usefulness even for the nonstandard 
functional equations which arise often in such models. 

Our analysis has focussed only on the Euler equation, ignoring the trans- 
versality condition at infinity. There are a continuum of solutions, but only 
one satisfies transversality. Therefore, any accuracy check should also 
check transversality. In this model, transversality is equivalent to stability; 



PROJECTION METHODS 433 

TABLE II 

Policy Function Errors 

Y CAP 

-0.500 0.50 
0.70 
0.80 
0.90 
1.00 
1.10 
1.30 

PROD CONS 

0.1253211 0.0911211 
0.14001954 0.1185654 
0.1465765 0.1318765 
0.1524457 0.1449757 
0.1578947 0.1578947 
0.1629916 0.1706616 
0.1723252 0.195815 

n=lO n=7 n=4 n=2 

1( -7)” 1(-7) -2( -7) -2(-5) 
-3(-7) -2(-7) -l(-6) l(-4) 

0 0 -3(-6) l(-4) 
l(-7) 1(-7) -3( -6) l(-4) 

0 0 -1(-6) 9(-5) 
-l(-7) -1(-7) 8(-7) 6(-5) 

2(-7) 2(-7) 2(-6) -5(-5) 

-3.000 0.50 0.1253211 0.1147611 3(-7) 3(-7) I(-6) 
0.70 0.1401954 0.1335954 -3(-7) -3( -7) -l(-6) 
0.80 0.1465765 0.1421165 -2(-7) -l(-7) -5(-6) 

0.90 0.1524457 0.1501957 4(-7) 4(-6) -5(-6) 
1.00 0.1578947 0.1578947 0 -l(-6) -3(-6) 
1.10 0.1629916 0.1652816 -2( -7) -2(-7) W6) 
1.30 0.1723252 0.1792852 2(-7) 2(-7) 4(-6) 

- 10.000 0.50 0.1253211 0.1214511 -2( -7) -2(-7) -2(-6) -2( -4) 
0.70 0.1401954 0.1377454 -5(-7) -5(-7) 2(-7) l(-4) 
0.80 0.1465765 0.1449165 0 1(-7) -3(-6) 2(-4) 
0.90 0.1524457 0.1516057 3(-7) 2(-7) -4(-6) 2(-4) 
1.00 0.1578947 0.1578947 0 -l(-7) -2(-6) 1(-4) 
1.10 0.1629916 0.1638516 -2(-7) -2(-7) 2(-6) 7(-5) 
1.30 0.1723252 0.1749552 -l(-7) -1(-7) 2(-6) -1(-4) 

-l(-4) 

1(-4) 
2(-4) 
2(-5) 
2(-5) 
9(-5) 

-l(-4) 

a Each entry equals the nth degree approximation to the consumption policy function 
minus the 800,000 point discretization of (4.3). The notation x(-n) denotes x lo-“. 

hence we need only check that the law of motion implied by h is stable, as 
indeed it always turned out to be. Our choice of initial guess was critical 
since other guesses instead led to solutions with overaccumulation. In this 
deterministic problem one can avoid all of these problems by replacing one 
of the projection conditions with a condition forcing h to go through the 
deterministic steady state, a point which we can compute directly. In 
general, one needs some kind of “boundary” condition to eliminate 
extraneous solutions when solving operator equations. Exactly why that is 
not necessary for this problem is somewhat unclear, but almost surely 
linked to the fact that the steady state is a saddlepoint in the phase 
diagram. 

5. DISCRETE-TIME STOCHASTIC OPTIMAL GROWTH 

We next turn to a stochastic optimal growth model. This example will 
show us how to handle multidimensional problems and the conditional 
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expectations which arise in stochastic dynamic problems. It will also force 
us to develop an alternative method to accuracy checking. In fact, we will 
develop an accuracy measure which measures both the size of the residual 
function and the extent to which agents are irrational if they follow the 
computed approximation, thereby relating numerical error to bounded 
rationality ideas. 

We consider the problem 

maxE{~oP’u(~,l} (5.1) 

k t+,=eJ-(k,)-c,, (5.2) 

where 0, is a stationary AR( 1) multiplicative productivity parameter. We 
assume that the productivity shock follows In BI + , = p In 8, + E, + i and that 
the E I N N(0, a’) are independent. In this problem, both the beginning-of- 
period capital stock and the current value of 8 are needed for a sufficient 
description of the state. Hence, the Euler equation I6 is 

0 = u’(h(k, 0)) - PE(u’(h(ef(k) - h(k, e), 8)) i$-‘(ef(k) - h(k, e)) 1 e). ,(5.3) 

We could use (5.3) as our residual function. However, it could be highly 
nonlinear, particularly for highly concave utility functions. Our algorithm 
might do better if we make it more like a linear problem. To that end, we 
“linearize” (5.3) by rewriting it as 

0 = h(k, e) - (u’) - ’ (/?E(u’(h(ef(k) 

- h(k, e), 8)) @-yef(k) - h(k, e)) I e 1) = N(A). (5.4) 

Note that the RHS of (5.4) has two terms, one linear in h(k, e), and the 
other is similar to a CRTS function of the next period’s potential consump- 
tion values. Note also that the (a’) -’ operation in (5.4) will unwrap some 
of the nonlinearity arising from the U’ operation inside the expectation, 
hopefully leaving us with a more linear problem. 

I6 While we have concentrated on optimal growth problems, nowhere is the optimality of 
equilibria used. Euler equation methods have been extensively used in the numerical literature. 
Gustafson [14], Miranda and Helmburger [24], and Wright and Williams [33-353 use Euler 
equation methods to model various governmental interventions and distortions. Bizer and 
Judd [4] show that the equilibrium of a taxed economy can also be described by an Euler 
equation similar to (5.3). Klenow [19] applies projection methods to models with elastic 
labor supply and externalities, and Judd [16, 183 solves problems with incomplete asset 
markets and asymmetric information. 
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5.1. Galerkin and Orthogonal Collocation Methods 

The procedure is similar to the deterministic case, but there are some 
extra twists due to the stochastic shocks. First, our approximation of the 
policy function is now given by the double sum 

&k, 8; a) = f T a,@,(k, 8), 
i-1 j=l 

where tiii(k, 0) - Ti-,(2((k - k,)/(k, - km)) - 1) Tj-1(2((0 - em)/ 
(0, - 0,)) - 1). This tensor-product approach to two-dimensional 
approximation is reasonable here because the dimension is low and the 
tensor-product approach allows for a straightforward extension of the 
one-dimensional techniques to higher dimensions. Also note that we have 
added four parameters to our problem: kw , k,, 8,, and 8,. k, and k, 
are chosen so that k is usually confined to [k,, k,], and similarly for 8, 
and 8,. Since 8 is exogenous, this can be easily accomplished. If we 
truncate E so that EE [a,, ~~1, we can take In 8, = a,(1 -p)-’ and 
ln8,=sw(l-P))1. Appropriate choices for k, and k, are more 
problematic and really cannot be made until after some experimentation 
finds a capture region. It is hoped that our solution is a good approxima- 
tion on the rectangle [k,, k,] x Co,,,, e,]. 

Since tomorrow’s log productivity level, In 8, conditional on today’s log 
productivity level, In 8, is distributed as p In 8 + aZ for Z N N(0, a*), (5.4) 
becomes 

O=h(k,B;a)-(u’)-l pja (5.5) 
-cc 

where 

z(k, 8, a, Z) E u@(f(k) 0 - fi(k, 8; a), POP; a)) 

x e0Wf’(8f(k) - i;(k, 8; a)) c’/*. 

In this problem Jt’ involves an integral which cannot generally be 
evaluated explicitly. In forming the residual function, we need to use an 
approximation & of N. The approximation will be to approximate the 
integral in (5.5), with a finite sum, 

I 
00 -G/2 

Z(k, 0, a, Z) e 
G 

dz i z Z(k, 8, a, ,,h z,) wj,  
-02 j=1 
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where w,, zj are Gauss-Hermite quadrature weights and points.” This 
numerical quadrature procedure approximates JV” with 2. Since economic 
problems often involve such conditional expectations, numerical quadra- 
ture will often be necessary to evaluate these integrals, forcing us to replace 
JV” with 1. 

With J in hand, we now define the residual function to be 

R(k, 8; a) = I;(k, 8; a) - (~4’)~’ 
( 

B f Z(k, 13, a, z.,) wj 
> 

= .M(i;). 
j=l 

With this residual function, we can proceed as we did in the deterministic 
problem. The collocation method starts with choosing nk capital stocks, 
{k)?l1, and no productivity levels, (e,),“” i, and then finding a so that 
R(ki, ej; a) = 0 for all i = 1, . . . . nk and j= 1, . . . . n,. The Galerkin approach 
forms the nkno projections 

Pv(a) = jky jox R(k, 8; a) tjq(k, 0) de dk 
km em 

and chooses a so that Pu(a) = 0 for all i and j. Again, P,,(a) needs to be 
computed numerically. Since the tJg are Chebyshev polynomials, we use 
Gauss-Chebyshev quadrature points, which are the zeroes of Chebyshev 
polynomials, over k - 0 space. If we use mk values of k and me values of 
0 to compute the projections, we solve the system 

Pij(a) = T f R(ki, eji; a) Il/,(k,k, 0,J =O, 
/k = I lo = I 

(5.6) 

where 

k, = k, + ;(k,,, - k,)(zy + l), lk = 1, . . . . mk, 

e4 = 8, + +(eM - e,)(z; + l), lo = 1, . . . . me, 

1 = 1, . . . . n. 

We have the nonlinear equation in the unknown coefficients, a, which will 
determine our approximation, i(k, 0). 

While we focus on a problem with no growth, the method can be used 
to solve models which can be expressed in stationary “detrended” variables. 
For example, suppose output is y = O’--rka, where In 0, + i = p In 0, + E, + , . 

“The values of the quadrature weights and points are available in published tables, as in 
Judd [16]. Using general-purpose quadrature routines in IMSL or NAG would result in 
much slower performance. 
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If p > 1, we have trend productivity growth and both 8 and k will grow. If 
u’(c) = cy, then the consumption ratio is stationary and consumption can 
be expressed as c = eh(k/O), where h satisfies 

and k+ = k + t!leakz - Oh(k/Q). This equation is of the same form as (5.3) 
above. Note that growth rate p can be folded into the discount factor j?, 
implying that the problem with growth rate p and discount rate j3 is 
equivalent to the problem with growth rate zero and discount rate 
/?E{ (8/QY 10) = /I&- ‘E(8). Through such detrending procedures, one can 
compute policy functions for economies with growth (see Klenow [ 191 for 
an example). 

5.2. Accuracy Checks-A Bounded Rationality Measure 

Once we have a candidate solution, we want to check its quality. l8 A 
direct procedure is to check how much, if at all, ,@(A) differs from the zero 
function. First, we should understand what a deviation from zero means in 
economic terms. Consider (5.4). It is a difference between consumption at 
a capital stock k and productivity level 8 and what that consumption 
would be if an optimizing agent knew that tomorrow he will use the 
consumption rule i and that personal and aggregate wealth will both 
be Of(k) - h(k, 0). Therefore, our residual equation applied to the 
approximate solution is the one-period optimization error in consumption 
terms. The function E(k, 0) = R(k, 8; a)/&k, 8; a) yields a dimension-free 
quantity expressing that optimization error as a fraction of current 
consumption. 

This approach to accuracy checking expresses the resulting errors in 
economic terms, essentially in terms of how irrational agents would be in 
using the approximate rule. If one found that this relative optimization 
error were about 0.1, then we would know that the approximation implies 
that agents make 10% errors in their period-to-period consumption deci- 
sions, a magnitude which few economists would find acceptable. However, 

‘s Some might wonder just how accurate we need an approximation to be. In fact, Danthine 
et al. [9] have argued that the linear approximation computed by Magi11 [21] and 
McGratton [23], among others, is adequate for macroeconomic purposes. However, their 
tests concerned only a few economic variables such as consumption and output. In light of the 
results in Magi1 [21] (and, more generally, in Bensoussan [3] and Judd [17]), this is not 
surprising. The adequacy of the linear approximation is much less likely once one turns to 
other economic variables, such as risk premia, term structure of interest rates, and their 
correlations since these variables involve higher-order properties of tastes and technology, as 
documented in Judd [16]. Therefore, we attempt to find approximations which are as 
accurate as possible. given the limitations on computer time and space. 

642/58/Z-22 
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if this index were 0.000001, then the approximation implies that agents 
made only a $1.00 mistake for every $ l,OOO,OOO they spent. Few 
economists would seriously argue that real-world agents do better than 
this. While such an approximation, A, may not be the mathematically exact 
equilibrium decision rule, it is hard to argue that it is unacceptable as a 
description of human behavior. In fact, many would argue that it is as 
compelling a description of behavior as the mathematical zero of the 
operator Jlr. 

The philosophy behind this accuracy check is that we should find an E 
such that our approximation is an s-equilibrium. The advantage of this 
approach is that our approximation to an exact equilibrium becomes 
reinterpreted as an approximate equilibrium. The disadvantage of focusing 
on E-equilibrium is the likely existence of an open set of such equilibria. 
However, as long as the problem is well conditioned, something which can 
be numerically checked, that set is likely to be small, and even negligible, 
for many purposes. 

5.3. Results for Galerkin and Orthogonal Collocation Methods 

With our approximation method specified and accuracy checks deter- 
mined, we can now see just how fast we can compute our approximations 
and how accurate they are. To do so we make taste and technology 
specifications which bracket a wide range of empirically plausible values. 
Table III summarizes typical cases. We again assumed U(C) = cY + ‘/(y + 1 ), 
and f(k) = Ak’, where A is chosen so that the deterministic steady state is 
k = 1. Throughout Table III, CI = 0.25, k, = 0.3, and k, = 2.0. I also chose 
m, = 8, the eight-point, fifteenth-order accurate, Gauss-Hermite quadrature 
rule, to compute the conditional expectation. Table III lets d and p vary; 
for each choice, 0,,,, is set equal to the long-run value of 8 which would 
occur if E, = 3a for all t, and 8, = l/0,. It is extremely unlikely for 8 to 
spend much, if any, time outside of [e,, t?,]. 

For the initial guess, I again used the consumption function, which is 
linear in capital, goes through the deterministic steady state, and consumes 
zero at capital stock. The Newton solver always converged with this initial 
guess. 

Table III is composed of six blocks of error entries, each block 
corresponding to a particular choice of the four-tuple (n,, n,, mk, me). For 
example, the block headed by the four-tuple (2,2, 2,2) is the case where 
the approximate policy function is a, + a,k + a,0 + a,k0; (2, 2, 2, 2) also 
indicates that we choose a so that the Euler equation fits exactly at 
the four zeroes of 1+9~,~, indicating an orthogonal collocation procedure; 
(10,6, mk, me) corresponds to allowing k terms up to k9, 0 terms up to @, 
and all possible pairwise products of those k and 0 terms. 
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TABLE III 

Euler Equation Errors 

439 

Y P CT II Eli OT. II Eli I lIE,ll cc IIEII x II Eli , lIE,II m 

(nk. b, mk, mn): (2, 2. 2, 2) 

-15.00 0.80 
-15.00 0.80 
-15.00 0.30 
-15.00 0.30 

-0.10 0.80 
-0.10 0.80 
-0.10 0.30 
-0.10 0.30 

-15.00 0.80 
- 15.00 0.80 
- 15.00 0.30 
- 15.00 0.30 

-0.10 0.80 
-0.10 0.80 
-0.10 0.30 
-0.10 0.30 

- 15.00 0.80 
-15.00 0.80 
-15.00 0.30 
-15.00 0.30 

-0.10 0.80 
-0.10 0.80 
-0.10 0.30 
-0.10 0.30 

0.01 
0.04 
0.01 
0.04 
0.01 
0.04 
0.01 
0.04 

0.01 
0.04 
0.01 
0.04 
0.01 
0.04 
0.01 
0.04 

0.01 
0.04 
0.01 
0.04 
0.01 
0.04 
0.01 
0.04 

-2.13 -2.80 -2.58 - 3.00 - 3.83 -3.70 
-1.89 -2.54 -2.28 - 2.44 -2.87 -2.59 
-2.20 -2.82 - 2.63 - 3.05 - 3.86 -3.82 
-2.13 - 2.80 -2.58 - 2.97 - 3.83 -3.70 
-0.01 - 1.22 - 1.34 - 1.68 - 2.65 -2.70 

0.01 - 1.19 - 1.20 - 1.48 -2.22 - 1.89 
0.04 - 1.22 -1.36 - 1.67 -2.65 -2.74 
0.18 -1.22 - 1.35 - 1.63 -2.65 - 2.74 

(7, 5, 7, 5) (7. 5.20. 12) 

-4.28 -5.19 - 5.00 - 4.43 -5.18 -4.91 
-3.36 -4.00 -3.70 -3.30 - 3.95 -3.67 
-4.37 - 5.23 -5.10 -4.55 - 5.22 -4.99 
-4.24 -5.19 -4.96 -4.38 -5.18 -4.87 
- 3.40 -4.37 -4.35 -3.47 -4.39 -4.32 
-2.50 - 3.22 -2.93 - 2.60 -3.17 -2.91 
- 3.44 -4.36 -4.36 -3.51 -4.39 -4.33 
- 3.43 -4.37 -4.36 - 3.49 -4.39 -4.33 

(10, 6, 10, 6) (10, 6,25, 15) 

- 5.48 -6.43 -6.19 -5.61 -6.42 -6.11 
-3.81 -4.38 -4.11 - 3.88 -4.37 -4.11 
-5.66 - 6.49 -6.31 -5.80 - 6.49 - 6.24 
- 5.45 - 6.43 -6.15 -5.57 - 6.42 -6.08 
- 5.09 -6.12 - 5.94 -5.17 -6.15 -5.94 
- 2.99 -3.68 -3.37 -3.09 -3.64 -3.38 
- 5.22 -6.12 -6.04 - 5.28 -6.14 - 6.02 
-5.17 -6.12 -6.01 - 5.23 -6.14 - 5.99 

14, 3.4, 3) 

To test for the quality of the candidate solution, we evaluate (5.5)19 at 
a large number of (k, 0) combinations which themselves were not used in 
finding a solution. We defined the relative error at (k, 0) to be 
E(k, 0) E R(k, 8; a)/&k, 0; a). The entries are the base 10 logarithm of 
various norms of E( .). Columns 4, 5, 7, and 8 report log,, IIEjl o. and 

I9 The accuracy tests used the same eight-point Gauss-Hermite quadrature rule to evaluate 
the conditional expectations as used to compute a. A more severe accuracy test would be to 
use a higher-order quadrature rule, but on the occasions when that was done, there were no 
differences. 
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log,, llE[l i All of these norms were calculated by using 8000 grid points in 
[k,, kM] x [e,, @,I, 100 in [km, k,], and 80 in [e,,,, e,]. Base 10 logs 
of these norms are natural measures for our exercise; log,, lIEI ~ is the 
maximum error we found and log,, IlEll, represents the average error. For 
example, an entry of - 3 under the log,, l\Ell%, column says that a person 
with $ 1000 of consumption makes at most a one-dollar error in current 
consumption in each period relative to the next period’s consumption. 
Since solution paths concentrate near the center of D, we are particularly 
concerned about accuracy there. We define E, to be E restricted to the 
inner rectangle [kh, kh] x [ok, oh], where J” = i(y + 1 ), y = k,,,, k,,, Q,,,, 
8,. Columns 6 and 9 reports log ,0 I/ E,ll ,~ 

There are several points to note. First, note that the errors are rather 
small. Even for the (2,2,2,2) case, the errors are roughly one dollar per 
hundred, as long as the utility function is as concave as log c. Second, as 
we allow the approximation to use more terms, the errors fall until, in the 
(10, 6, 10, 6) case, we often find optimization errors of less than one dollar 
per million. Third, the various norms of the residual function have very 
similar values, indicating that the errors are uniformly small. In particular, 
the similarity in values for the norms of E and E, indicates that the 
solution is almost as good at the edges of the state space as in the middle. 

Fourth, these methods are fast. The solutions in the (2, 2,2,2) case were 
solved in 0.2 to 0.4 s and, in the (4, 3,4, 3) case, in 1.1 to 2 s. The slow 
parameterization throughout the table was y = - 15.0, p =0.8, and 
CJ = 0.04, which took 3 s for the (4, 3,4, 3) case. The speed advantage of 
orthogonal collocation is demonstrated by the fact that the (7, 5, 7, 5) cases 
generally took 8 to 18 s, whereas the (7, 5,20, 12) Galerkin cases took 
three times as long, which is expected since the projections were integrals 
using 240 points instead of 35. An intriguing exception was the slow 
parameterization which took nearly 2 min for collocation but only 1 $ min 
for the Galerkin. Apparently the extra information used by the Galerkin 
procedure helped the nonlinear equation solver to avoid bad directions; 
(10, 6, 10, 6) cases generally took 27 to 72 s, with the bad parameterization 
taking 100 s. The corresponding (10,6,20, 15) cases took roughly four 
times as long. 

Fifth, note that the orthogonal collocation method does remarkably 
well, given the small amount of computation. This is indicated by the small 
optimization errors and the fact that the Galerkin procedures which use 
many more points achieved only slightly greater accuracy. In general, the 
collocation schemes yielded the most accuracy per unit of time. 

Sixth, the dependence of speed and accuracy on parameters was clear. 
The algorithm was faster for less concave utility functions, less persistent 
productivity shocks, and smaller productivity shocks. The slowest 
parameterization, y = - 15.0, p = 0.8, and (5 = 0.04, presents dilXculties for 
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the algorithm since the policy function involves little saving on average and 
the range of 0 and k is large. Since there is little central tendency in the true 
solution, the algorithm will have a tendency to examine candidates which 
are qualitatively very bad, such as policy rules which violate transversality 
and give little help towards finding a good approximation. 

Accuracy was greatest for highly concave utility and for small produc- 
tivity shocks with low persistence. The dependence on concavity is intuitive 
since highly concave utility implies that consumption is nearly equal to 
permanent income, whereas nearly linear utility implies a highly nonlinear 
consumption rule with very little consumption except near the deterministic 
steady state capital stock. With larger and more persistent shocks, the 
range of 8, [f?,, Q,], grows, forcing the approximation to cover a larger 
area and making accuracy more difficult for a fixed number of degrees of 
freedom. 

While the number of cases reported in Table III are small note that they 
cover a wider range of parameter values. I have also performed these same 
calculations for y = - 10.0, -7.0, -5.0, -4.0, -2.0, -0.9, and -0.5, 
G = 0.02 and 0.03, and p = 0.6, 0.5, and 0.4, and several other choices of 
tnk? % mk? ms). Since the patterns described above held over the whole 
collection of calculations, it suffices to report the cases in Table III. 

Another way to check for accuracy is to see how the computed solution 
changes when we use higher-order and different quadrature schemes. 
Again, I found trivial sensitivity to these changes. For example, using 
mz = 4 instead of 8 resulted in very few differences (Table III was 
unchanged) and cut the running time by almost half. 

As with the deterministic case, we have ignored transversality considera- 
tions in our solution method. Again we should check that the solutions are 
stable, as they always were. In the stochastic case, we have no clear 
alternative which will assure convergence to a stable solution since we do 
not know a priori any point on the policy function. While solving operator 
equations without imposing boundary conditions is not proper procedure, 
it appears to be possible for these problems. 

5.4. Alternative Bases and Fitting Criterion 

Tables IV and V discuss the results when we attempt alternative 
implementations of the projection ideas. Each choice made above was 
motivated by some optimality or conditioning consideration. We will now 
see how important they were. Table IV reexamines some of the cases in 
Table III, using theoretically inferior methods. The pair of columns under 
G gives the log,, IlEil, error measure and running times when I used the 
procedure above. The pair of columns under P refers to log,, ]lEll, and 
running times when I used ordinary polynomials instead of Chebyshev 
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TABLE IV 

Alternative Implementations 

Y P d G” Ph U’ UPd 

-15.0 0.8 0.04 -3.18 I:15 -2.13 :40 -3.06 1:05 
0.3 0.01 -4.35 :ll -4.35 152 -4.07 :08 

-0.9 0.8 0.04 -3.43 :05 -3.43 :19 -3.42 :08 
0.3 0.01 -4.03 :07 -4.03 :30 -3.76 :07 

-0.1 0.8 0.04 -2.50 :07 -2.50 :41 -2.52 :06 
0.3 0.01 -3.42 :08 -3.42 1:30 -3.18 :07 

- 15.0 0.08 0.04 
0.3 0.01 

-0.9 0.8 0.04 
0.3 0.01 

-0.1 0.8 0.04 
ci.3 0.01 

n,=7, n,=5, m,=l, ??I,=5 

nk = 10, n,,=6, mk= 25, m,,= 15 

-3.87 4:20 -3.90 24~44 -3.90 3:41 
-5.68 2:19 -5.14 11:31 -5.49 2114 
-4.00 1:31 -4.00 5:17 -4.01 1:31 
-5.40 1:23 -4.63 7:13 -5.25 1:20 
-3.09 1:31 -3.09 9:16 -3.10 1:32 
-5.27 1132 -4.02 1125 -5.09 1:27 

-2.19 144 
-4.07 1:41 
-3.42 139 
-3.76 1:lO 
-2.52 142 
-3.18 ~24 

-3.36 42~15 
-5.30 8:06 
-4.01 5:02 
-5.13 6:Ol 
-3.07 12:Ol 
-3.27 8:32 

” Chebyshev polynomial basis, Chebyshev zeroes used in evaluating tit 
h Ordinary polynomial basis, Chebyshev zeroes used in evaluating tit. 
’ Chebyshev polynomial basis, uniform grid points. 
d Ordinary polynomial basis uniform grid points. 

polynomials, but still fit the residual conditions at the Chebyshev zeroes. 
The results under G and P should be identical if we had infinite precision 
arithmetic and Newton’s method always converged. In several cases, the 
results were the same, but the P times were far slower. P was faster in one 
case, but yielded an approximation with substantially larger error. The 
problem was that the Newton solver could not make any progress so it 
stopped early. The slower time and premature stopping are both reflections 
of the conditioning problems associated with ordinary polynomials. 

The columns under U give the accuracy and running time when I used 
Chebyshev polynomials but used a uniform grid to compute the projec- 
tions. Here G should do better since interpolation at a uniform grid is 
usually inferior to interpolation at Chebyshev zeroes. Accuracy is generally 
the same or worse, and running times are the same or slower. UP refers to 
using ordinary polynomials and uniform grid points. Here we have a 
substantial degradation in speed and/or accuracy. 

As predicted by theory, the condition numbers of the Jacobian were 
strongly related to these performance indices. The cases in Table III always 
had Jacobians with condition numbers under lo3 and usually of the order 
10. The P cases in Table IV had condition numbers several orders of 
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magnitude greater, sometimes as great as lo*‘. The U cases had condition 
numbers between lo2 and 104, and the UP cases had condition numbers as 
large as those in the P cases. Our experiments also indicated that the 
condition number of the Jacobian at our initial guess was of the same order 
of magnitude as the condition number at the solution. This suggests a 
useful procedure. If the Jacobian’s condition number is large at the initial 
guess then one should change the basis, fitting conditions, or something 
(see Section 5.6 below) to reduce the initial conditioning of the problem, 
whereas a low initial condition number is good evidence that the problem 
will be well behaved. 

5.5. Complete Polynomial versus Tensor Product Bases 

Table V demonstrates the value of using a complete polynomial basis. 
Again we report log,, llEll m and, below it, the running time for a few cases. 
The parameter n is one more than the maximum exponent. For example, 
the n = 3 case under “Tensor Product” refers to using the tensor product of 
quadratic polynomials in k and 8, where under “Complete Polynomials” it 
refers to using the basis { 1, k, 8, k2, k%, %*>. We see that the complete 
polynomial basis generally yields a lower quality fit; the exception occurs 
because the Newton solver had difficulty converging for the tensor product 
basis but not for the complete polynomial basis. However, the slightly 
lower accuracy for fixed n was achieved in much less time. Since the real 
objective is to find a method which achieves maximal accuracy for fixed 
time, we see from Table V that the complete polynomial basis generally 

TABLE V 

Tensor Product vs. Complete Polynomials” 

Y P 0 

-15.0 0.8 0.04 

-0.9 0.3 0.10 

-0.1 0.3 0.01 

Tensor product Complete polynomials” 

?I=3 n=6 n=lO n=3 n=6 n=lO 

-2.34” -3.26 -3.48 -1.89 -3.10 -4.06 
:Ol’ :13 14:21 :03 X01 1:09 

-2.19 -3.60 -5.21 -2.14 -3.55 -5.22 
:Ol :08 1:21 :Ol :05 132 

-1.00 -2.84 -5.21 -0.99 -2.83 -5.i7 
:Ol :08 1:24 :Ol :05 :35 

“The tensor product cases in this table used orthogonal collocation with 
nk = n, = ntk = ms = n to identify the n2 free parameters. The complete polynomial cases used 
Galerkin projections to identify the 1 + n + n(n + 1)/2 free parameters. 

* ho IlEll m’ 
’ Computation time expressed in minutes: seconds. 
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gives the most accuracy per unit time. Since this is so clear for a two- 
dimensional problem, one expects that there will be enormous gains from 
using complete bases when we move to higher dimensions. 

5.6. The Value of “Linearization” 

The final item to note is the importance of rewriting (5.3) as (5.4), and 
using (5.4) as our defining operator, ,+“. When I used (5.3) instead, the 
results were substantially inferior in terms of speed and accuracy, par- 
ticularly when y was large in magnitude. This is not surprising since I used 
a Newton solver for solving (5.5) and the Jacobian of (5.5) was better con- 
ditioned when R is taken from (5.4) than when it is taken from (5.3). While 
this may appear magical, the key fact is that (5.4) has two pieces, one 
linear in the unknown Chebyshev coefficients and the other “more linear” 
than (5.3). Again, the initial condition number was very good at predicting 
performance. 

6. COMPARISONS WITH ALTERNATIVE METHODS 

Numerical solutions of the stochastic growth model have been examined, 
particularly by Taylor and Uhlig [32] and their collaborators. This allows 
us to compare the methods used above with those alternatives. The 
important fact to keep in mind is that there is no one best method. The 
advantage of the projection method framework is that one can easily 
generate several different implementations, resulting in a menu of 
alternatives wherein we can make trade-offs among speed, accuracy, and 
reliability. In the discussion of the various alternatives explored in the 
literature, I will focus on those aspects which are most likely to help decide 
which method is best for other problems. 

Most approximation techniques used in economics fit into the projection 
framework. Gustafson [14] used piecewise linear functions and tit them at 
a fixed set of points, basically a collocation method with a finite-element 
basis. This was also used in Bizer and Judd [4] to solve for dynamic 
general equilibrium with taxes and risk. They prove existence of equi- 
librium by monotone operator methods arising from the Euler equation. 
The existence proof was constructive and strongly suggests convergence of 
the numerical algorithm. Wright and Williams [35] have used ordinary 
polynomials. 

These authors used “time iteration” based on the Euler equation; that is, 
they computed the time t solution from a time t + 1 solution and iterated 
“backwards” through time. The disadvantage with that approach is the 
slow convergence common to algorithms which are (essentially) motivated 



PROJECTION METHODS 445 

by dynamic programming. The differences in running time were substantial. 
Typical cases in Bizer and Judd [4] took a few minutes for the deter- 
ministic case, and several minutes for a stochastic case which allowed only 
two values for the productivity shock. The advantage of time iteration lies 
in its use of the operator’s monotonicity properties, resulting in greater 
reliability compared to Newton’s method. Furthermore, one never needs to 
worry about boundary conditions since the initial guess is essentially an 
initial condition in the implicit evolution equation, and, in these models, 
discounting makes the limiting solution invariant to the initial condition. 

Coleman [S] also used time iteration, along with a tensor product of 
tent functions to approximate h(log k, log 0); that is, he divided (log k, 
log 0) space into equi-sized rectangles and assumed that the policy function 
is a linear combination of 1, log k, log 8, and (log k)(log 0). *’ Such low- 
order approximations necessitate many grid points; Coleman [S] used a 
grid of 50 capital stocks and 20 productivity levels for a total of 1000 free 
parameters. Such a large number of free parameters results in a time- 
consuming computation; Coleman [IS] reports using nearly 3 min on a 
38 MIPS machine, corresponding to at least an hour on a 20 MHz 80386 
personal computer. 

Christian0 [ 71, Baxter et al. [2], and Tauchen [ 311 solve a related 
model, where the capital stock is forced to remain on a finite grid of 
possible values. Generally, methods which discretize the state space are 
projection techniques which use step function bases, which, as we saw 
above, are inefficient ways to approximate a smooth investment policy 
function. The advantage of discretization is that the resulting model may be 
solved exactly by finite-state dynamic programming methods. However, 
reducing a continuous-state problem to a finite-state problem still involves 
an approximation error. Since it takes far more step functions than tent 
or Chebyshev functions to approximate most smooth functions, the 
discretized state space method, even when it can be used,*’ is likely to 
be slow. 

Tauchen [31] discretized (k, fl) space by choosing 90 capital stocks so 
that log k is uniformly spaced, and 20 8 values to fit a 20-point Gauss- 
Hermite quadrature rule, for a total of 1800 points, and then treated the 
problem as a dynamic programming problem on this discrete space, While 
similar to the procedure above, note the difference in how the 8 values were 

lo While this is a standard finite element scheme, it is an unusual choice of basis functions 
for this problem since all such functions are “saddles”; that is, they are convex (in logs) along 
one diagonal and concave in the other. A more standard finite element scheme for two- 
dimensional problems is to use piecewise planar functions over triangles (see Burnett 161). 

‘r Judd 1161 contains an example of a partially revealing rational expectations problem 
which cannot be solved by discretizing the state space, but which can be approximated by 
more general projection methods. 
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chosen. In (5.6), there are two places where we chose values for 8. We first 
chose points at which R(k, 9; a) is evaluated. These choices were governed 
by the norm in use and, in our case, were the Gauss-Chebyshev 
quadrature points. Then, given such a 0, we evaluated the conditional 
expectation in (5.4), which requires Gauss-Hermite choices for 8. The fact 
that the two integrals should use different quadrature rules yields a mixed 
set of 8 values which are eventually used, but a set which is motivated by 
standard quadrature considerations. The other crucial difference between 
our procedure and Tauchen [31] is that we do not reduce the problem 
to a finite-state problem, instead using h(k, 0) at other values of k and 8. 
It should be noted, however, that Tauchen’s excellent [30] numerical 
study of Lucas [38] used standard linear integral equation methods, which 
happen to be equivalent to a projection collocation technique. Therefore, 
the method we used above is the generalization of Tauchen [30] to 
optimal growth problems. 

Our method differs from Sims [29] in that he changes the distribution 
of the errors so that the policy function is a particular functional form. 

While the use of polynomial approximation is not new, other implemen- 
tations have ignored orthogonality considerations. Some authors, such as 
Wright and Williams [35], experienced no conditioning problems with 
ordinary polynomials; this is not surprising since they used low degree 
polynomials, in which case the Jacobian almost surely has a low condition 
number. Our discussion of Table V shows how important orthogonality 
can be. 

den Haan and Marcet [ 151 recognized that their basis is not orthogonal, 
but made inferences opposite from those made above. They approximated 
In h(k, 0) with polynomials in In k and In 8. When they examine the quad- 
ratic tensor product approximation, they note that “the terms (log k,- ,) 
(log 0,) and (log k,- 1)2 are almost perfectly collinear with the others... 
This is, in fact, a fortunate situation. It just means that these terms are 
redundant, and they can be dropped... without losing any predictive 
power.” This paper comes to quite a different conclusion. Their logic led 
them to conclude that a four-term representation was as good as possible, 
whereas we showed that the accuracy can be improved by many orders of 
magnitude by going to more flexible representations. 

This points out the difference between econometrics and numerical 
analysis. An econometrician has no control over his data, and if he has 
highly collinear data, then dropping some variables will not reduce predic- 
tive power. However, in numerical analysis, we have control over our data 
since we can choose where we check the equation. Numerical analysis is 
more akin to experimental design than regression. This fact is of critical 
difference. For example, if high-order basis elements are collinear with 
other elements, then they should be replaced with orthogonal high-order 
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elements, not, as suggested by econometric methodology, eliminated. This 
observation also applies to simulation, a procedure of important use in 
econometrics. Algorithms which heavily use simulation, such as extended 
path and parameterized expectations (Marcet [22]), are not likely to do as 
well in solving numerical problems since they surrender control over the 
selection of data to a random number generator. This is supported by 
the comparisons between our results and those reported in Taylor and 
Uhlig [ 321. 

den Haan and Marcet [lS] also differs from the procedures above in 
that they computed a via functional iteration; that is, they define the 
solution as a fixed point of some function, g(a) = a, and compute the 
fixed point as a limit of the sequence a k + 1 = g(ak). This is another choice 
for implementing Step 5. As is typical for functional iteration, they use 
extrapolation to stabilize the sequence; that is, they compute 

for some I E (0, 1). Even after finding a 1 which yields convergence, 
functional iteration procedures are at best linear in convergence. 

Another important difference in den Haan and Marcet [lS] lies in the 
residual computation. They simulate a dynamic path which results from a 
candidate approximation, calculating Euler equation errors along the 
simulated path, and use them to construct a norm for the error. This 
simulation approach has many undesirable properties relative to standard 
quadrature methods. First, to compensate for the low accuracy of Monte 
Carlo methods, long simulations must be run. den Haan and Marcet [ 151 
report taking about 3 min on a Compaq 386/25 to solve for a solution with 
three free parameters. 

Second, the points at which the errors are calculated depend on the 
guess for a. This endogeneity combined with the simulation aspects means 
that parameterized expectations evaluates the residual only at states which 
are frequently visited. This makes it inappropriate for many problems. For 
example, parametrized expectations cannot be applied to dynamic games 
since off-equilibrium path behavior is critical in the definition of subgame 
perfect equilibria. Also, parameterized expectations cannot be reliably used 
to compute changes in, say, tax policy, since the initial condition after a 
policy change is likely to be infrequently visited under the new policy, but 
must be accurately computed if one is to correctly compute the present 
value of the policy change. In contrast, the projection methods discussed 
above can be applied to computing tax policy changes (as in Bizer and 
Judd [4]) and to subgame-perfect equilibria of dynamic games (see 
Judd [ 181). 

The accuracy check used in Taylor and Uhlig [32] and developed in 
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den Haan and Marcet [ 151 differs from ours. The den Haan-Marcet proce- 
dure takes a candidate approximation, computes a simulated time series of 
consumption, capital, output date, and Euler equation errors, and then 
regresses the Euler equation errors on lagged variables. That regression 
should yield only zero coefficients if one had the true solution. They used 
the estimated coefficients to compute measures of inaccuracy. While this 
procedure is intuitive, its power is unclear. Klenow [ 19) has found that the 
den Haan-Marcet procedure failed to reject candidate solutions which had 
l-2% consumption errors. He found that the den Haan-Marcet test was 
fooled by consumption errors which were large but had no discernible 
pattern. Our direct accuracy-checking procedure uncovers these 
optimization errors. 

Table VI presents the comparable results for the cases examined in 
Taylor and Uhlig [32]. Each row specifies a choice of (n,, n,, mk, m,) and 
the entries indicate how the error measures and computational time varied 
over the cases in Taylor and Uhlig [32]. The main difference is that k, 
and k, are fixed at 0.333 and 1.667, and 0, and eM at 0.4 and 1.6, inde- 

TABLE VI 

TaylorrUhhg Cases” 

Error rangeh Time range’ 

B n’k % nk 4i Min Max Min Max 

0.98 2 2 2 2 -2.96 -2.01 :00.15 .33 
4 3 4 3 -3.86 - 3.09 :00.70 :03.00 
I 5 7 5 -5.01 -4.14 : 0.48 :lO 
7 5 20 12 ~ 5.05 -4.08 123 1:05 

10 6 10 6 -5.60 -4.65 :19 1:04 
10 6 25 15 - 5.58 -4.80 I:06 3126 
10 IO 10 10 - 6.64 -4.72 1:06 4:Ol 

0.95 2 2 2 2 -2.52 -1.68 :00.15 :00.33 
4 3 4 3 -3.59 -2.80 :00.68 :01.31 
7 5 1 5 -4.91 -3.44 :05.1 :42 
7 5 20 12 ~ 4.89 -3.38 :23 I:53 

10 6 10 6 - 5.48 -4.00 :19 1:31 
10 6 25 15 - 5.53 -4.35 1:05 3:31 
10 10 10 10 - 6.65 -4.35 1:08 5~24 

a The calculations assumed the parameter values c( = 0.25, and p = 0.95 and computed the 
policy function over [k,, khl] x [e,,, f3,], where k, = 0.33, k, = 1.67, 0, = 0.4, and f3,,, = 1.6. 

‘The error range is the range of values for all the error measures in Table III over all the 
cases in Taylor and Uhlig. 

‘ The time range is expressed in minutes: seconds on a COMPAQ 386/20 with a Weitek 
coprocessor. 
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pendent of (T and p. Given the large and persistent shocks in these cases, 
these ranges for the state variables are considerably smaller than those 
which would be chosen by the procedures used in Table III. Also, Table VI 
covers cases which are substantially different than those in Table III. 
Despite this, the performance is unchanged. The comparisons between 
Table VI here and Table 15 in Taylor and Uhlig [ 321 are immediate. Our 
four-parameter approximation was always 200-500 times faster than the 
three-parameter approximation procedure in den Haan and Marcet [ 151 
and yielded an approximation with global Euler errors of around 1%. The 
higher order approximation methods of Tauchen [31], Coleman [S], 
Christian0 [7], and Baxter [2] attempt to be much more flexible, but were 
also orders of magnitude slower than the high-order approximations 
computed here. 

The reasons for these speed differences are clear: the projection method 
here uses smooth functions to approximate the smooth solution, evaluates 
the critical Euler equation at optimally chosen points, and uses Newton’s 
method, a quadratically convergent procedure, to solve for the unknown 
coefficients. While it is of little importance whether it takes several minutes 
or a few seconds to solve this particular problem, the theoretical considera- 
tions discussed above all indicate that the strategies used above will be 
even more valuable when we begin to examine high-dimension problems 
where speed differences will be of great importance. 

7. CONVERGENCE PROPERTIES OF GALERKIN METHODS 

When using numerical procedures, it is desirable to know something 
concerning its errors. An important focus of theoretical numerical analysis 
is the derivation of bounds on errors. Two kinds of error results are 
desirable. First, it is desirable to derive an upper bound on the error for a 
given level of approximation. Second, if such upper bounds are not 
possible, it may still be valuable to know that the error goes to zero 
asymptotically, that is, as one lets the degree of approximation become 
arbitrarily large. The first kind of error information is rarely available. 
More typical in numerical algorithms for differential equations are 
asymptotic results. There has been little work on proving that the algo- 
rithms used by economists are asymptotically valid. 

Fortunately, there are general theorems concerning the consistency of 
the Galerkin method. Recall that the Galerkin method takes projections of 
the residual function against the basis elements, and the integrals are 
theoretically exact. Zeidler [36, 371 proves consistency for the Galerkin 
method, assuming that the nonlinear operator .H is monotone, coercive, 



450 KENNETH L. JUDD 

and satisfies a growth condition. Galerkin methods are quite natural for 
computational purposes since a common theoretical way to prove the 
existence of a solution to an operator is to prove the existence of a solution 
to an infinite collection of projection conditions. In fact, Zeidler shows that 
if these conditions are satisfied one simultaneously proves the existence of 
a (weak) solution and the consistency of the Galerkin method. Similarly, 
using degree theory, Krasnosel’skii and Zabreiko [20] demonstrate 
consistency for a more general set of projection methods (possibly 
including Galerkin methods which use numerical quadrature). 

I have not shown that the operators used above satisfy the sufficiency 
conditions discussed in Zeidler, Krasnosel’skii and Zabreiko, and 
elsewhere. Even though it remains to be seen whether these theorems do 
cover our problems, they do indicate promising directions for theorems 
concerning projection methods for our economic problems. 

8. CONCLUSIONS 

We have shown that a general class of techniques from the numerical 
partial differential equations literature can be usefully applied and adapted 
to solve nonlinear economic growth problems. Despite the specificity of the 
applications discussed here, the general description makes clear the general 
usefulness of projection methods for economics; Judd [16, 181 discusses 
some of them. The Fletcher books [ 11, 121 also illustrate many useful 
extensions of projection techniques. Within the projection method 
framework, we were able to interpret the differences among solution 
techniques previously used in the economics literature. By applying 
standard numerical analytic principles we were able to develop algorithms 
over a hundred times faster than previous methods. 
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