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Uncertainty about future economic and climate conditions substan-
tially affects the choice of policies for managing interactions between
the climate and the economy. We develop a framework of dynamic sto-
chastic integration of climate and economy, and show that the social
cost of carbon is substantially affected by both economic and climate
risks and is a stochastic process with significant variation. We examine
a wide but plausible range of values for critical parameters with robust
results and show that large-scale computing makes it possible to ana-
lyze policies in models substantially more complex and realistic than
usually used in the literature.
I. Introduction
Global warming has been recognized as a growing potential threat to eco-
nomic well-being. Determining which policies should be implemented
requires analyses that incorporate models of both the climate and the
economy and how they interact; this is the purpose of integrated assessment
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models (IAMs). This paper expands the scope of IAMs by adding uncer-
tainties and risks to a canonical model of the economic and climate sys-
tems and shows that such risks and uncertainties significantly affect op-
timal climate policy. Almost all IAMs assume that both the climate and
economic systems are deterministic and that economic agents are myo-
pic. Studies of those IAMs focus on uncertainty about the key parameters.
This study, instead, incorporates economic and climate risks into models
where economic agents have rational expectations concerning the future
of the economy and of the climate. This allows us to use ideas from eco-
nomic growth, investment, and consumption capital asset pricing model
theories to evaluate alternative climate change policies. As expected, ex-
plicit treatment of economic and climate risks significantly changes the
results.
The impact of carbon emissions on society is measured by the social

cost of carbon (SCC), defined as the marginal economic loss caused by
an extra metric ton of atmospheric carbon.1 The importance of SCC for
policy decisions has led to a large effort to estimate its value. One prom-
inent study was produced by the Interagency Working Group on Social
Cost of Carbon (IWG)—a joint effort involving several US federal agen-
cies. Their report (IWG 2010) was based on three well-known economic
1 We express the SCC in US dollars ($) per ton of carbon (tC). The SCC per ton of CO2

equals 12/44 times the SCC per ton of carbon.
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IAMs: FUND (climate framework for uncertainty, negotiation and distri-
bution; Anthoff and Tol 2014), PAGE (policy analysis of the greenhouse ef-
fect; Hope 2011), and DICE (dynamic integrated climate-economymodel;
Nordhaus 2008). The IWG report gives a wide range of plausible values for
the SCC, with amedian of $51/tC.2 The Stern report (Stern 2007) presents
an alternative analysis, focusing on parameter uncertainty. Using the prob-
abilistic IAM PAGE (Hope 2011), the report addresses parametric uncer-
tainty regarding the causes and impacts of climate change and argues for
substantially higher SCC values.
The models behind the IWG and Stern reports use simplified descrip-

tions of the climate. Many other analyses are based on far more complex
climate models and much more detailed economic models and are in-
cluded in the summary produced by the Intergovernmental Panel on Cli-
mate Change (IPCC). IPCC (2007) reports that estimates of the SCC vary
across peer-reviewed studies, with an average estimate of $43/tC but with
a large range.
All of these studies are based on IAMs with deterministic models of

economy and climate, with all economic agents knowing current and fu-
tureoutput and climate conditions. Recent reviews, suchasPindyck (2013)
and IPCC (2014), criticize the fact that SCC estimates are based on IAMs
that ignore the considerable risk and uncertainty in both the economic
system and the climate system and their interactions.
This study presents dynamic stochastic integration of climate and the

economy (DSICE), a computational dynamic stochastic general equilib-
rium framework for studying global models of both the economy and the
climate. We apply it to the specific issue of how the SCC depends on sto-
chastic features of both the climate and the economy and use specifica-
tions of tastes consistent with the observed willingness to pay to reduce
economic risk. This study focuses on the SCCas anexample of theflexibil-
ity of the DSICE framework and its ability to examine a wide range of is-
sues. DSICE builds on the canonical DICEmodel (Nordhaus 1992, 2008)
by adding both economic and climate risks to the DICE framework. We
choose to extend DICE because it is one of the few prominent IAMmod-
els based on dynamic models of agent decision-making.3
2 The IWG report is based on solving FUND, PAGE, and DICE for thousands of values of
the critical parameters, where those parameter choices are based on empirical data and
expert opinion. The models express the SCC in terms of US dollars per ton of CO2. After
converting the SCC to $/tC, they report that the 5th, 25th, 50th, 75th, and 95th percentile
values are 2$33, $15, $51, $102, and $238/tC, respectively.

3 Manne and Richels (2005) and Nordhaus and Yang (1996) are also based on dynamic
models of agent decision-making. Many IAMs say that they have “recursive” dynamic mod-
els of the economy. This use of the term “recursive” was common in dynamic computable
general equilibrium modeling in the 1970s. However, those models were recursive only in
the sense that economic decisions today create the state of the economy tomorrow. Today
we call those models “myopic,” because dynamic decisions, such as investment, were simple
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We first examine how economic risks affect the SCC. Specifically, we
assume that factor productivity growth implies consumption growth rates
that display long-run risk as modeled by Bansal and Yaron (2004) and
BeelerandCampbell (2011).WecombinethiswithEpstein-Zinutility spec-
ifications of dynamic preferences (Epstein and Zin 1989). Current empir-
ical analyses do not give us precise estimates of critical parameters, partic-
ularly risk aversion and the intertemporal elasticity of substitution (IES).
We solve DSICE for parameter values covering the range of empirical es-
timates in themacroeconomic literature.Wefind that the 2005SCC ranges
from $59 to $99/tC over a plausible range of parameter values. These re-
sults demonstrate that we should be skeptical of studies that give one num-
ber relying on a single parameterization. In this case, sensitivity analysis does
support the case for a significant carbon tax.
Of equal interest and greater novelty are our results on the dynamics of

the future SCC. Factor productivity shocks create riskiness in future out-
put and carbon emissions, which in turn makes the SCC a random pro-
cess. A common interpretation of results in deterministic models is that
they represent the expected path in stochastic models. In many cases, we
find that the mean path for the SCC is close to that implied by determin-
istic models. DSICE, however, can also determine the stochastic features
of the SCC process. The SCC is the shadow price of a state variable and, as
we expect, is approximately a random walk. When we quantify the SCC
process, we find that it displays substantial variance. For example, in our
benchmark case the median SCC is $286/tC in 2100, but with a 10 per-
cent chance of exceeding $700/tC and a 1 percent chance of exceeding
$1,200/tC. In general, the standard deviation of the SCC grows faster
than its mean.
It is recognized that temperature increases may cause substantial irre-

versible damage to the climate.4 Some studies (e.g., Scheffer et al. 2001;
Weitzman 2009; Pindyck 2011) use the possibility of very high damage
caused by a very low-probability catastrophic event to advocate aggressive
mitigation policies. Moreover, the IAM literature has recently studied the
importance of climate tipping points, which refer to “a critical threshold at
which a tiny perturbation can qualitatively alter the state or development
of [the climate] system,” and tipping elements, which are defined as “large-
scale components of theEarth system thatmay pass a tipping point” (both
4 When quantifying temperature increases throughout this paper, we are referring to
the year 1900 temperature level as the baseline level. Thus, our term “temperature change”
is analogous to the term “temperature anomaly,” which is often used in the climate litera-
ture and typically denotes the difference from some baseline temperature level.

functions of contemporaneous prices and states. Today, the description “recursive models”
refers to models where agents have rational expectations; see, e.g., Stokey and Lucas
(1989) and Ljungqvist and Sargent (2004). The antiquated use of the term “recursive”
in the IAM literature (such as Babiker et al. 2009) is misleading to economists familiar with
modern dynamic economic analysis.
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definitions from Lenton et al. 2008, 1786). A key feature of a tipping ele-
ment is that current temperature affects the likelihood of a tipping ele-
ment experiencing a tipping event—that is, a transition to an irreversible
climate process, called a tipping process. Examples of tipping processes in-
clude the irreversible melting of the Greenland ice sheet, the collapse of
the West Antarctic ice sheet, and the weakening of the Atlantic thermoha-
line circulation. The incorporation of tipping elements in DSICE allows it
to model a range of potentially irreversible climate processes, including
but not limited to global catastrophes. These processes are uncertain and
give DSICE a second source of risky damage to economic productivity.5

There is a consensus that the SCC specifically and optimal policy in
general are sensitive to the choice of discount rate used by the social plan-
ner. Standard IAMs are deterministic, treat mitigation expenditures as a
way of increasing consumption in the future, and use the same discount
rate for all issues. Some have argued that mitigation has an insurance
component. Schneider (1989), in his testimony to the Committee on En-
ergy and Commerce in 1989, argued that investing in climate changemit-
igation is like “buying insurance against the real possibility of large and
potentially catastrophic climate change.”More recently, former Secretary
of State George Shultz, who convinced President Reagan to support the
Montreal Protocol, argued
5 Catastr
many possi
A more ge
boundaries (
sity, and oz
hibit specifi
vironmenta
economy a
(2015, 2017
clear or bio
avoid these
ics but also

All use subj
We all know there are those who have doubts about the prob-
lems presented by climate change. But if these doubters are
wrong, the evidence is clear that the consequences, while var-
ied, will be mostly bad, some catastrophic. So why don’t we fol-
low Reagan’s example and take out an insurance policy? (Shultz
2015)
R&D is an example of insurance spending. The new technologies arising
from today’s R&D spending will arrive only with significant lags, and, if
we are lucky, we may not need to use them, just as we do not file a claim
ophic climate change—in our case a climate tipping process—is just one of
ble types of critical events that might ultimately affect economic productivity.
neral concept of ecological thresholds of the Earth is the concept of planetary
Rockström et al. 2009; Steffen et al. 2015). Ocean acidification, loss of biodiver-
one depletion are examples of Earth system processes that are believed to ex-
c boundaries—that is to say, thresholds that lead to irreversible and abrupt en-
l change. Furthermore, possible catastrophic events that affect the global
re, of course, not limited ecological ones. Most recently, Martin and Pindyck
) consider a broad variety of potential catastrophes, such as a megavirus, a nu-
terrorism attack, or a climate catastrophe. They study the willingness to pay to
extreme events, which, interdependently, not only affect consumption dynam-
might be fatal to the population.
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to our insurer if we experience no bad events. Insurance has a negative
expected rate of return, but we buy it because of its option value. Simi-
larly, simple discounting rules motivated by a deterministic model are
not valid in a dynamic stochastic context because they would ignore the
real option aspect of R&D investments.
The results in this study demonstrate the importance of adding both

economic and climate risk to IAMs. First, economic risks imply that there
is great uncertainty about the future SCC and the value of future climate
change policies. In particular, the possibility of climate change causing
substantial damage is much higher in DSICE than in models that ignore
economic risks. Second, while the SCC today is sensitive to parameter
choices regarding preferences, we do arrive at a robust finding that the
SCC is nontrivial, with $40–$100/tC being the range implied by the var-
ious opinions regarding dynamic preferences. Third, there is no simple
discounting rule to apply to climate change policy decisions. The IAM lit-
erature argues over the right discount rate for valuing future damages
from climate change (see, e.g., Nordhaus [2007] and Stern and Taylor
[2007]). DSICE shows that there is no one discount rate. As standard fi-
nance theory teaches, the appropriate discount rate depends on covari-
ance with consumption. In this study, we show that the damages arising
from tipping events should be discounted at amuch lower rate than dam-
ages from temperature increases. This may seem surprising, because we
follow Nordhaus’s approach and use the market equilibrium stochastic
discount factor instead of some planner discount rate unrelated to the
market pricing of risks. The intuition is clear: the damages from a perma-
nent shock to productivity have little covariance with short-run fluctua-
tions in consumption. Therefore, damages from tipping events should
be discounted less than damages from temperature (which are propor-
tional to output). Fourth, DSICE examines cases where both economic
and climate risks are present and shows that the results differ significantly
from a separate examination of these two sources of risk. More generally,
this study shows that it is important to examine these issues in a model
that incorporates multiple kinds of uncertainty.
Many studies express great skepticism about what is computationally

feasible and use this as a reason to look at simple models. Traeger’s claim
that the curse of dimensionality limits what can be done is typical:
T
 use subject 
The quantitative analysis of optimal mitigation policy under un-
certainty requires a recursive dynamic programming implemen-
tation of IAMs. Such implementations are subject to the curse
of dimensionality. Every increase in the dimension of the state
space is paid for by a combination of (exponentially) increasing
processor time, lower quality of the value or policy function
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approximations, and reductions of the uncertainty domain.
Traeger (2014, 1)
The computational-mathematics literature has developed many meth-
ods that avoid the curse of dimensionality,6 and DSICE uses them to
solve problems generally considered intractable. This study solves nine-
dimensional stochastic dynamic programming problems over multiple
centuries. The nonstationary character of the problemsmakes value func-
tion iteration the only possible approach. The specifications of risksmake
these problems among the most computationally demanding ever solved
in economics. However, DSICE is not limited by any curse of dimension-
ality because it uses efficient multivariate methods to approximate value
functions. Even though DSICE solves millions (billions in some exam-
ples) of optimization problems, this is possible because it uses reliable op-
timization methods and parallelization to solve the Bellman equations
(Bellman 1957; Cai and Judd 2010; Cai et al. 2015). The “curse of dimen-
sionality” is not a valid excuse for oversimplified modeling.
Any numerical computation has numerical errors, and the fact that

DSICE must solve billions of small numerical problems means that we
need to subject any results to stringent accuracy checks. In recent years,
the scientific-computing community has addressed this issue in its litera-
ture on verification, validation, and uncertainty quantification (VVUQ);
see Oberkampf and Roy (2010) for a comprehensive discussion of this lit-
erature. The “verification” part of the VVUQ literature develops methods
for verifying the accuracy of the numerical results. We develop such a test
for each value function iteration and find that every value function com-
puted by DSICE passes demanding verification tests. This gives us confi-
dence that numerical errors do not affect our economic conclusions. Some
of the cases we present below required tens of thousands of core hours, and
sensitivity analysis demanded that we examine hundreds of cases to deter-
mine the robustness of results across empirically plausible parameter val-
ues. This study required the use of a fewmillion core hours on BlueWaters,
a modern supercomputer. DSICE is based on general-purpose numerical
methods, implying that many economics problems with similar computa-
tional requirements can now be solved.
We present the climate model in Section II and the economic model

in Section III. In Section IV, we formulate the dynamic programming
problem and outline our solution method. Sections V–VII present and
discuss the implications for SCC from stochastic specifications of factor
productivity growth and a Markov chain process, first each in isolation
and then combined. Section VIII concludes the paper.
d (1998) for an elementary introduction to some of those methods.
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II. The Climate Model
Our climate model contains three modules. First is the carbon system,
describing how carbon diffuses across the atmosphere, the upper ocean,
and the deep ocean. Second is the temperature system, which describes
howheat energy diffuses between the atmosphere, ocean, and space. The
carbon and temperature systems are not closed, because economic and
biological activity injects carbon into the atmosphere, carbon interacts
with solar radiation to cause heating, and some heat is lost through radi-
ation to space. We follow the specification for the carbon and tempera-
ture modules used in DICE-2007 (Nordhaus 2008).
We add a third system that models climate conditions other than car-

bon and temperature. A simple example of such a climate state is sea level.
Prolonged periods of warm atmospheric temperatures will (likely) melt
ice in glaciers (on land), which will then lead to higher sea levels. This
makes sea levels and the condition of glaciers dependent on past temper-
atures. We focus on what are called tipping elements, which model irre-
versible changes. For example, if warming causes the melting of glaciers,
even if temperatures fall back to preindustrial levels, glaciers reappear, if
at all, only after millions of years (IPCC 2014).
Climate change affects economic productivity in different ways. Higher

temperatures will likely reduce agricultural output, raise expenditures on
cooling, and facilitate the spread of disease. There is evidence that higher
temperatures will increase the likelihood of severe droughts and floods
(Wuebbles 2016). Higher sea levels will worsen coastal flooding and may
even cause some land to disappear. We provide details on the productiv-
ity effects below when we describe the economic model in DSICE.
A. Carbon System
We assume two sources for carbon emissions at each time t, an industrial
source, EInd,t, related to economic activity, and an exogenous source,
ELand,t, arising from biological processes on the ground.7 Total emissions
are denoted by

Et ; EInd,t 1 ELand,t : (1)

The details of EInd,t are presented below, when we discuss the economic
model. We follow DICE-2007 and aggregate the distribution of carbon in
the world into three “boxes”—atmosphere, upper ocean, and lower ocean.
The three-dimensional vector Mt 5 ðMAT,t ,MUO,t ,MLO,tÞ⊤ represents the
masses of carbon in the atmosphere, upper levels of the ocean, and lower
7 These emissions depend, e.g., on many biological processes and are also subject to un-
certainty. However, here we adopt the DICE specification of land emissions that are as-
sumed to be exogenous and deterministic.
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levels of the ocean, respectively (in gigatons of carbon). The carbon con-
centrations evolve over time according to the physics of diffusion and
are represented by the linear dynamical system

Mt11 5 FMMt 1 Et , 0, 0ð Þ⊤, (2)

where

FM 5

1 2 f12 f21 0

f12 1 2 f21 2 f23 f32

0 f23 1 2 f32

2
6664

3
7775: (3)

The coefficient fij inFM is the rate at which carbon diffuses from level i to
level j, where i, j 5 1, 2, 3 represent the atmosphere, upper ocean, and
lower ocean, respectively. If Et 5 0, then this would be a closed system,
implying that the column sums of FM must be unity. Also note that there
is no diffusion between the atmosphere and the lower ocean. Table A.4
(tables A.1–A.13 are available online) lists the parameter values for the
carbon system. The exogenous processes and calibration of the module
appear in appendixes A.1 and A.3 (apps. A.1–A.10 are available online).
B. Temperature System
The DICE family of models is based on the continuous-time differential
equation system in Schneider and Thompson (1981). DSICE also uses
1-year time periods in all examples in this paper. The temperature system
tracks the temperatures of the atmosphere (TAT) and the ocean (TOC),
measured in degrees Celsius above the preindustrial level. That system
is governed by the diffusion of heat, is represented by the vector Tt 5
ðTAT,t , TOC,tÞ⊤, and evolves according to

Tt11 5 FTTt 1 y1Ft MAT,tð Þ, 0ð Þ⊤, (4)

where

FT 5
1 2 J21 2 y2 J21

J12 1 2 J12

" #
: (5)

The coefficient Jij is the heat diffusion rate from level i to level j, where
i, j 5 1, 2 represent the atmosphere and the ocean, respectively. The co-
efficient y2 is the rate of cooling arising from infrared radiation to space
(Schneider and Thompson 1981), and y1 represents heating due to radi-
ative forcing. Atmospheric temperature rises through two sources of ra-
diative forcing: an exogenous level, FEX,t, and endogenous forcing due
to carbon in the atmosphere. Total radiative forcing at t is
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F t MAT,tð Þ 5 hlog2

MAT,t

M*
AT

� �
1 FEX,t , (6)

whereM *
AT is the preindustrial atmospheric carbon concentration and h is

the radiative-forcing parameter. Table A.5 lists the parameter values for
the temperature system. The exogenous processes and calibration of the
module appear in appendixes A.1 and A.3.
C. Tipping-Element System
The temperature and carbon systems in DSICE are deterministic and
evolve smoothly over time. Recent work in the IAM literature has drawn
attention to tipping points, which we defined in Section I. Tipping points
are not necessarily irreversible, but they are essentially irreversible for the
planning horizons related to the examples considered in this paper.
Let J represent some feature of the climate other than temperature or

carbon. It has a finite set of possible values and represents the state of a
tipping element; we refer to J as the tipping state. Changes in J aremodeled
by aMarkov chain where transition probabilities depend on the vector of
all climate states, (T, M, J ). The Markov transition process is denoted as

Jt11 5 g J Tt ,Mt , Jt , qJ ,t

� �
,

where qJ,t is one serially independent stochastic process.
The key properties of any tipping element include the likelihood of

tipping events, the expected duration of the tipping process, the mean
and variance of the long-run impacts on economic productivity, and how
all of these depend on (T,M, J ). There is substantial uncertainty about all
of these properties. Our examples are based on expert opinion expressed
in the climate science literature on various tipping elements. We use Len-
ton’s (2010) summary of the findings fromKriegler et al. (2009) and other
expert elicitation studies to calibrate the likelihood of transitions in tip-
ping elements. We also rely on damage estimates used in the IAM litera-
ture (e.g., Stern 2007;Nordhaus 2008; Smith et al. 2009;Hope 2011; IPCC
2014). The impact on economic productivity is included in our descrip-
tion of the economic system, below. Section VI examines some specific
cases and precisely describes the Markov process for J. Our calibration
of the tipping-element system appears in appendix A.4.
D. Comparisons with Other IAM Climate Systems
DSICE, as in DICE-2007, uses a five-dimensional system (two dimensions
for temperature and three for the carbon cycle) to compute paths of
world average carbon concentrations and temperature levels that are
close to the results frommuchmore complexmodels. DSICE uses amod-
ified version of the temperature module in DICE-2007. Cai, Judd, and
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 use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



social cost of carbon 000
Lontzek (2012b) point out that the computer code in Nordhaus (2008)
has temperature increases in each period depend on carbon emissions
10 years in the future. Cai, Judd, and Lontzek (2012a) use differential-
equation methods to solve the continuous-time physical model in Schnei-
der and Thompson (1981) and find that applying the Euler method to the
differential equations in Schneider and Thompson with 1-year time steps
produces the discrete-time system defined above in equations (2) and (4),
which successfully matches the MAGICC (model for the assessment of
greenhouse-gas induced climate change) scenarios (Meinshausen, Raper,
andWigley 2011) that DICE-2007 aimed tomatch. The differential-equation
approach produced results significantly different from those in DICE-2007.
To avoid confusion about the different solutionmethods, “DICE-2007” re-
fers to the model and results in Nordhaus (2008), and “DICE-CJL” refers
to the model specified in Cai et al. (2012a). The mathematical details of
this calibration method are presented in appendix A.3.
DICE is regarded as the canonical climate system in much of the IAM

literature, but few studies use it, often citing tractability issues. Golosov
et al. (2014) track only carbon concentration in the atmosphere to repre-
sent the whole climate system, implying that temperature is proportional
to carbon concentrations. Jensen and Traeger (2014) also use a one-box
climate model, with only atmospheric carbon concentration. Themodels
in Golosov et al. (2014) and Jensen and Traeger (2014) ignore the lag be-
tween CO2 emissions and their impact on temperature, a lag that climate
scientists tell us is on the order of decades. Lemoine and Traeger (2014)
use a two-box climate model, tracking only atmospheric carbon concen-
tration and temperature, ignoring the impact of oceans on atmospheric
temperature and CO2 concentrations.
Others have studied tipping elements but make simplifying assump-

tions that do not conform with physical evidence. A common approach is
toassumethat there is a threshold(perhapsunknownto theplanner) such
that a tipping event will occur immediately when the temperature crosses
that threshold (see, e.g., Keller, Bolker, and Bradford 2004). With eco-
nomic uncertainty, temperatures can fall or rise. If the temperature were
to cross a threshold, the tipping event would immediately happen even if
the temperature quickly fell below that threshold.
More recent studies assume that the full impact of a tipping event is im-

mediate and that its level is known (see, e.g., Lemoine and Traeger 2014).
In our framework, that is equivalent to assuming that there are only two
climate states related to tipping: pretipping and posttipping. Our tipping-
element specification is also the first, and so far the only, one to address
the recent critique by Kopits, Marten, and Wolverton (2014) of these
assumptions. In DSICE, the timing of a tipping event is unknown, even
conditional on knowing the full state of the climate system, the timing
of the transitions after the tipping event is unknown, and—furthermore—
the impact of the Markov chain is unknown before the tipping event
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(Lenton et al. 2008; National Research Council 2013). DSICE is so far the
only model that can handle these characteristics of Markov chain points.
Other applications of DSICE have considered various transition times
of Markov chain points (Cai et al. 2015; Cai, Lenton, and Lontzek 2016;
Lontzek et al. 2015).
Earlier studies ignore expert opinion and climate science when they

calibrate the process producing tipping events. Lemoine and Traeger
(2014), for example, keep track of the historically maximum temperature
level and assume that a tipping event cannot be triggered as long as the
temperature is below that maximum level. This assumption ignores the
inertia in the climate system, implying that long-lasting heating dynamics
that might be present in the climate system could trigger climate tipping
events. It also rules out the possibility that tippingmight be triggered dur-
ing periods of decreasing temperature trends. DSICE, instead, relies on
expert opinion (Lenton et al. 2008; Kriegler et al. 2009) to calibrate its tip-
ping elements and assumes that a tipping event is a random event with
probability depending on the state of the climate system, assuming that
the hazard rate of the tipping-point event is increasing with global warm-
ing. Lontzek et al. (2015) present a detailed discussion of studies on cli-
mate tipping in stochastic IAMs.
Several recent studies look at analytically tractable climate-economy for-

mulations. Subsequent to our work, Anderson et al. (2014), for example,
conduct a robustness analysis of model uncertainty in a simple IAM. Van
der Ploeg and de Zeeuw (2016) decompose the SCC analytically in the
face of catastrophic climate events. Gerlagh andLiski (2018) present an an-
alytically tractable model of learning about impacts from climate change.
Other numerical IAMs (e.g., Kelly and Kolstad 1999; Kelly and Tan 2015;
Hwang et al. 2017) deal with uncertainty by incorporating Bayesian learn-
ing about the parameter describing climate sensitivity—that is to say, the
equilibrium temperature change in response to changes of the radiative
forcing (by carbon dioxide; see, e.g., Roe and Baker 2007). More gener-
ally, Bayesian methods could be applied to integrate model uncertainty
into IAMs.8 While this approach can generate insightful results regarding
the evaluation of different policies, it is not the focus of our study. Instead,
we apply an uncertainty quantification analysis to determine the robust-
ness of our results across empirically plausible parameter values.
III. The Economic Model
DSICEmerges a basic dynamic stochastic general equilibriummodel with
the commonly used box model for climate in DICE-2007. This allows us
8 See, e.g., Brock, Durlauf, and West (2007) and Cogley et al. (2011) for an analysis in
macroeconomics.
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to explore how economic risks and climate risks interact and affect the
evaluation of climate change policies.
A. Predamage Output
The economic side of DSICE is a simple stochastic growth model where
production produces greenhouse gas emissions and output is affected by
the state of the climate. We assume that time is discrete, with each period
equal to 1 year. Let Kt be the world capital stock in trillions of dollars at
time t, and let Lt be the world population in millions at time t.
The deterministic parts of our economicmodel are taken directly from

the calibrated DICE-2007 model in Nordhaus (2008). This includes the
production function, population growth, productivity growth, the carbon
intensity of output, and the damage due to temperature levels.9 In the ab-
sence of any climate damage, the gross world product is theCobb-Douglas
production function

f K , L, ~At

� �
5 ~AtK

aL12a,

where a 5 0:3 (as in Nordhaus 2008) and Ãt is productivity at time t. Pro-
ductivity is decomposed into two pieces: a deterministic trend At, and a
stochastic productivity state zt; that is to say, ~At ; z tAt . The deterministic
trend At is taken from Nordhaus (2008) and denoted as

At 5 A0 exp
a1 12 e2a2tð Þ

a2

� �
, (7)

where a1 is the 2005 growth rate and a2 is the decline rate of the growth
rate.
We add a stochastic component, zt, to the productivity process so that

we can examine how uncertainty about productivity affects climate change
policies. Our specification of zt uses ideas from the long-run-risk literature
(e.g., Bansal and Yaron 2004; Hansen, Heaton, and Li 2008). We let xt rep-
resent the persistence of zt and use the formulation introduced in Bansal
and Yaron (2004):

log z t11ð Þ 5 log z tð Þ 1 xt 1 ϱqz ,t , (8)

xt11 5 rxt 1 ςqx,t , (9)

where qz ,t , qx,t ∼ i:i:d:Nð0, 1Þ (i.i.d.means “independently and identically
distributed”) and r, r, and ς are parameters.
9 The DSICE framework is flexible enough to allow for various functional forms of its
components. However, to maximize comparability with the DICE model that is currently
used in research for the design of US regulatory policy, we retain the assumptions of the
DICE model.
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For theoretical and computational reasons, we need to change some
details of the Bansal and Yaron (2004) specifications. Bansal and Yaron
(2004) assume that qz,t , qx,t ∼ i:i:d:Nð0, 1Þ. Gaussian disturbances are
unbounded; this implies the possibility of arbitrarily large growth rates
and output. The unbounded character of the state space makes it diffi-
cult to even prove that expected utility exists. This creates computational
challenges. Even if we could overcome these theoretical and computa-
tional challenges, our results for the SCC could be driven by highly un-
likely tail events. Others have examined the impact of very bad outcomes
that have very small probabilities. An example of this is the “dismal” theo-
rem of Weitzman (2009), which states that the risk premium could be
infinite for unboundedly distributed uncertainties. We want to avoid ex-
istence issues and to avoid repeating insights regarding extreme tail
events. We also want to use numerically stable computational methods
that allow us to verify our results. We achieve these goals by constructing
a time-dependent, finite-state Markov chain for (zt, xt) with parameter
values implying conditional and unconditional moments of consumption
processes observed in market data. The Markov transition processes are
denoted

z t11 5 gz z t , xt , qz,tð Þ,
xt11 5 gx xt , qx,tð Þ,

where qz,t, and qx,t are two serially independent stochastic processes. This
approach also makes it possible to directly apply reliable numerical meth-
ods for solving dynamic programming problems.
The approximation of the stochastic growth process requires a careful

formulation of the Markov chains for the productivity shock zt and the
rate of its growth persistence xt. Markov chains with only a few states can-
not represent the kind of persistence properties observed in Bansal and
Yaron (2004). After examining various possibilities, we choose nz 5 91
values of zt and nx 5 19 values of xt at each time t ; the time dependence
is required as a result of the fact that the variance of consumption levels
grows over time. Appendix A.2 describes the discretization procedure in
greater detail.
We calibrate the stochastic factor productivity growth so that the result-

ing consumption process is statistically close to empirical data. Calibrat-
ing the productivity process presents some computational challenges be-
cause we need to solve the economicmodel inDSICE for various values of
r, r, and ς and to choose those values, which imply a consumption process
that matches US data on per capita consumption growth.10 For our
10 We are grateful to Ravi Bansal for providing us with the annual per capita data on real
consumption used in Bansal, Kiku, and Yaron (2012) and obtained from the Bureau of
Economic Analysis website.
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calibration, we solve versions of DSICE without stochastic climate impact
because the consumption data we use come from the twentieth century,
when climate damage to productivity was negligible. Appendix A.2 de-
scribes the calibration procedure in greater detail and shows that the sta-
tistics of simulation paths of our consumption growth from our calibrated
parameters are close to those of the empirical data. The results of the cal-
ibration gave us the following values:

ϱ 5 0:035, r 5 0:775, ς 5 0:008:
B. Damage Function and Emissions
DSICE models two potential ways in which output is affected by the cli-
mate: global average temperatureTAT and theMarkov chain state denoted
by J. The function Q(TAT,t, Jt), referred to as the damage function, repre-
sents the impact of climate on output, in that gross world product equals

Yt ; Q TAT,t , Jtð Þf Kt , Lt , z tAtð Þ,
where

Q TAT,t , Jtð Þ 5 QT TAT,tð ÞQJ Jtð Þ 5 1

11p1TAT,t 1p2 TAT,tð Þ2 12D Jtð Þð Þ

decomposes the damage function as the product of QT (damage due to
temperature rise) and QJ (damage related to the climate conditions im-
plied by the Markov process, J ). When Dð JtÞ5 0, our damage function
reduces to QT(TAT,t), for which we use the damage function in Nordhaus
(2008).11 Here D( J ) equals the impact of state J on productivity. This
study generalizes the damage function to include effects of the tipping
state and associated past cumulative effects along with the impact of tem-
perature on productivity.
We assume that industrial emissions are proportional to output, with

the proportionality factor jt, which is referred to as the carbon intensity
of output. The social planner can mitigate (i.e., reduce) emissions by a
factor mt, 0 ≤ mt ≤ 1. Annual industrial carbon emissions (billions of met-
ric tons of carbon) equal
11 The damage function in DSICE is, of course, highly aggregated and to be considered
only as an approximation of smooth damages from global warming. Recently, several stud-
ies have attempted to quantify climate-related damages on a disaggregated scale: e.g.,
Deschênes and Greenstone (2011) and Dell, Jones, and Olken (2014) make use of weather
data to assess the impact of temperature on a local scale. While this approach certainly gen-
erates important insight, more research is needed, e.g., to quantify longer-term impacts of
temperature increase. Here, we make these choices to keep the model simple and to facil-
itate comparisons with Nordhaus’s canonical model. The only general requirement is that
QðTAT,t , JtÞ > 0.
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EInd,t 5 jt 12 mtð Þf Kt , Lt , z tAtð Þ: (10)

We follow Nordhaus (2008) and assume that the cost of mitigation level
mt is

Wt 5 v1,tm
v2
t Yt : (11)

World output, net of damage, is allocated across total consumption Ct,
mitigation expenditures Wt, and gross capital investment It; that is to say,

Yt 5 Ct 1 Wt 1 It , (12)

and the capital stock evolves according to

Kt11 5 12 dð ÞKt 1 It , (13)

where d 5 0:1 is the annual depreciation rate for capital. In all of our
computations, K 0 5 137 trillion dollars.
C. Epstein-Zin Preferences
The additively separable utility functions commonly used in climate-
economy models do not do well in explaining the willingness of people
to pay to avoid risk. Epstein-Zin preferences (Epstein and Zin 1989) are
used because they better explain observed equity premia. The equity pre-
mium tells us about society’s willingness to pay to reduce consumption
risk, which will in turn affect how much society is willing to pay to reduce
the risk of economic damage from climate change.
We assume that agents care only about consumption.12 Let Ct be the

stochastic consumption process. Epstein-Zin preferences recursively de-
fine social welfare as

Ut 5 1 2 bð Þu Ct , Ltð Þ 1 b Et U 12g
t11

� �� � 12 1=wð Þ½ �= 12gð Þ
h i1= 12 1=wð Þ½ �

, (14)

where Etf�g is the expectation conditional on the states at time t and b is
the discount factor. Here,

u Ct , Ltð Þ 5 Ct=Ltð Þ121=w

12 1=w
Lt
12 There may be other aspects of climate change that affect social welfare, but they are
not included in DSICE or in the standard Nordhaus (2008) family of models. See, e.g., the
Cai et al. (2015) version of DSICE including uncertain, nonmarket impacts such as ecosys-
tem tipping points.
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is the annual world utility function (assuming that each individual has
the same power utility function), w is the IES,13 and g is the risk aversion
parameter. Epstein-Zin preferences are flexible specifications of decision-
makers’ preferences regarding uncertainty and allow us to distinguish be-
tween risk preference and the desire for consumption smoothing. Even
though we refer to g as the risk aversion parameter, equilibrium risk premia
will depend on interactions between w and g.
We compare the results of DSICE with results of deterministic models

such as DICE. Those models assume intertemporally separable prefer-
ences. It is important to note that in the absence of uncertainty, the risk
aversion parameter, g, disappears, and Epstein-Zin preferences become
intertemporally separable. In deterministic models with time-separable
utility, it is common to refer to 1=w as the “risk aversion” parameter, but
that is misleading and implicitly assumes g5 1=w. A better way to think
about deterministic models is that they use Epstein-Zin preferences, with
w representing the IES, but that the risk aversion parameter, g, can take
any value. This observation will be important when we discuss the impact
of adding risks to DICE.
Empirical analyses of macroeconomic data have not given us definitive

values for the parameters g and w. We examine a range of parameter val-
ues, relying on the literature on long-run risk and asset pricing, in partic-
ular Bansal and Yaron (2004), Barro (2009), Bansal and Ochoa (2011),
PindyckandWang(2013),Epstein,Farhi,andStrzalecki(2014),andSchorf-
heide, Song, and Yaron(2014).Most studies estimate or assumeg to bebe-
tween2and10andargue forw > 1.Table 1 summarizes the rangeof values
for w and g in the literature. Our benchmark parameter specifications are
w5 1:5 and g5 10, choices consistent with the majority of opinion. We
also solve DSICE for a broad range of values covering 2 ≤ g ≤ 15 and
0:5 ≤ w ≤ 2:0.
D. Relation to the Literature
Some have used Epstein-Zin preferences to examine the SCC but use
much simpler models. Bansal and Ochoa (2011) assume an endowment
model, implying that their SCC tells one only how to price the exoge-
nous shocks exerted by the climate on the endowment. DSICE, instead,
13 Here we assume w > 1. When 0 < w < 1, the utility function u(Ct, Lt) is negative, and
the formula becomes

Ut 5 2 2 1 2 bð Þu Ct , Ltð Þ 1 b Et 2Ut11ð Þ12g ∣ Ct , Lt

� �� � 121=wð Þ= 12gð Þ
h i1= 121=wð Þ

:

While the standard formulation of Epstein-Zin preferences does not have a denominator
of 12 1=w in the annual world utility function u(C, L), here we use this formulation to en-
sure that it is consistent with our later reformulation of the Bellman equation (eq. [15]).
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builds on a Ramsey-type, representative-agent, stochastic growth model
where the agent at each time must choose how to allocate output across
consumption and savings. Savings are split between capital investment
and mitigation expenditures, both of which are forms of spending that
aim to improve future productivity. Our SCC represents the social trade-
off between spending resources on investment and on mitigation.
IAMs have only recently used long-run risk and Epstein-Zin prefer-

ences. Jensen and Traeger (2014) assume levels of volatility much lower
than those implied by empirical data. See appendix A.2 for a detailed
comparison. The higher volatility in DSICE (which is calibrated to fit em-
pirical data) presents computational challenges because the state vari-
ables cover amuch larger region in the (K,M,T, z, x) space. DSICE is suc-
cessful because it uses a flexible set of functions for approximations.
IV. The Dynamic Programming Problem
We formulate the nine-dimensional, social planner’s dynamic optimization
problem as a dynamic programming problem. The nine states include six
continuous state variables (the capital stock K, the three-dimensional car-
bon system M, and the two-dimensional temperature vector T) and three
discrete state variables (the climate shock J, the stochastic productivity state
z, and the persistence of its growth rate x). Let S ; ðK ,M, T, z , x, J Þ de-
note the nine-dimensional state variable vector, and let S1 denote its next
period’s state vector.
The Epstein-Zin utility definition (eq. [14]) expressed utility in terms

of consumption. We make a nonlinear change of variables14 in terms of
utils, ðUtÞ121=w, and then get the following Bellman equation:
14 That i

T
 use subject 
TABLE 1
Default or Estimated Values of IES and the Risk Aversion

Parameter (RA) in the Literature

Reference IES RA

Bansal and Yaron 2004 1.5 10
Bansal and Ochoa 2011 1.5 10
Vissing-Jørgensen and Attanasio 2003 >1 5–10
Barro 2009 2 4
Pindyck and Wang 2013 1.5 3.066
Ackerman, Stanton, and Bueno 2013 1.5 10
Constantinides and Ghosh 2011 1.41 9.43
Schorfheide et al. 2014 1.7 10.8
Epstein et al. 2014 1.5 7.5
Jensen and Traeger 2014 1.5 10
s, VtðSÞ 5 ðUtðSÞÞ121=w=ð1 2 bÞ.
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Vt Sð Þ 5 max
C ,m

u Ct , Ltð Þ 1 b Et Vt11 S1ð Þð Þ 12gð Þ= 121=wð Þ� �� � 121=wð Þ= 12gð Þ
,

such that K1 5 1 2 dð ÞK 1 Yt 2 Ct 2 Wt ,

M1 5 FMM 1 Et , 0, 0ð Þ⊤,
T1 5 FTT 1 y1Ft MATð Þ, 0ð Þ⊤,
z1 5 gz z , x, qzð Þ,
x1 5 gx x, qxð Þ,
J 1 5 g J T,M, J , qJ

� �
,

(15)

for t 5 0, 1, ::: , 599 and any w > 1.15 The terminal value function V600 is
given in appendix A.5.16 In the model, consumption C and emission con-
trol rate m are the two control variables.
A. Numerical Solution Method
We solve the nine-dimensional problem specified in equation (15) by us-
ing value function iteration. Three state variables (z, x, and J ) are dis-
cretized, and their movements are modeled as transitions of finite-state
Markov chains. The productivity process states (z and x) useMarkov chains
that have enough states to ensure that the resulting consumption processes
match the conditional variance and autocorrelation observed in consump-
tion data. Furthermore, J is calibrated to represent processes discussed in
the climate literature on tipping points. At each discrete point in the (z,
x, J ) space, the value function has six continuous states, (K, M, T), and is
approximated by multivariate orthogonal polynomials after appropriate
nonlinear changes of variables. The range of each continuous state variable
is chosen so that all simulation paths stay in that range. This is a large prob-
lem, but the use of parallel programming methods and hardware makes it
tractable. For example, the largest case has 366 billion optimization prob-
lems, but we solved it in less than 8 hours, using 110,688 cores in parallel on
the Blue Waters supercomputer. See appendixes A.2 and A.5 of this paper
and Cai et al. (2015) for an extended discussion of the mathematical and
computational details.
15 When 0 < w < 1, the objective function of the optimization problem is

u Ct , Ltð Þ 2 b Et 2Vt11 S1ð Þð Þ 12gð Þ= 121=wð Þ� �� � 121=wð Þ= 12gð Þ
:

16 As in Nordhaus (2008), we assume a model time horizon of 600 periods. The terminal
value function should be regarded as an approximation of the value function at the termi-
nal period.
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B. A Verification Test
One theme of the VVUQ literature (e.g., Oberkampf andRoy 2010) is the
implementation of tests that check the correctness of the computer code;
this is called verification. One common test is to apply the code to special
cases where the solution is known. If all uncertainty is removed, then
DSICE reduces to a deterministic optimal control problem that can be
solved using nonlinear programming methods. We compare these opti-
mal control solutions to our value function iteration results to seewhether
the value functions imply an optimal path in line with the results usingnon-
linear programming. Our tests show that paths implied by the value func-
tions have at least 3-digit accuracy, often significantly more. See appen-
dix A.7 for more details.
C. The SCC
The climate literature interprets the SCC as a marginal concept—that is
to say, the monetized economic loss caused by a 1-metric-ton increase in
atmospheric carbon. We follow that notation: in DSICE, the SCC is the
marginal cost of atmospheric carbon expressed in terms of the numer-
aire good, which can be either consumption or capital, as there are no
adjustment costs. We define the SCC as the marginal rate of substitution
between atmospheric carbon concentration and capital, as in

SCCt 5
21,000 ∂Vt=∂MAT,tð Þ

∂Vt=∂MAT,t

: (16)

It is important to remember that the SCC is a relative shadow price—that
is to say, a ratio of twomarginal values—and does not express the total so-
cial cost of climate damage.17 For example, as we change economic and/
or climate risks, the SCCmay go up or down because that change in risks
will affect the marginal value of carbon, the marginal value of consump-
tion, and themarginal valueof investment.DSICE isageneral equilibrium
model where the results arise from assumptions about tastes and technol-
ogy as well as their equilibrium interactions.
The SCC will often be the optimal carbon tax. The optimal carbon tax is

the tax on carbon that would equate the private and social costs of carbon.
In DSICE we also examine the optimal carbon tax, which is the Pigovian
tax policy because the externality from carbon emissions can be directly
dealt with by a carbon tax and because there are no other market imper-
fections. The social planner in DSICE chooses mitigation mt, which is
equivalent to choosing a carbon tax equal to
17 Because K is measured in trillions of dollars andMAT is measured in billions of tons of
carbon, the factor 1,000 is needed to express the SCC in units of dollars per ton of carbon.
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1,000v1,tv2m
v221
t
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(17)

in units of dollars per ton of carbon. If mt < 1, then the carbon tax equals
SCC. However, if mt 5 1, its maximum value, then the carbon tax equals
only that level that will drive emissions to zero and may be far less than
the SCC. In such cases, mitigation policies have reached their limit of ef-
fectiveness. Alternative policies may reduce carbon concentrations di-
rectly, as would carbon removal and storage technologies, or reduce tem-
peraturedirectly, as would certain solar geoengineering technologies.We
do not explicitly include those technologies in DSICE, but our SCC num-
bers will identify equilibrium paths along which the SCC is so high that
these more direct technologies may be competitive.18 We leave a quanti-
tative analysis of these issues to future studies.
The business-as-usual (BAU) case is the solution to the dynamic pro-

gramming problem (15) but with the restriction that m5 0, that is, no
mitigation. It is used in the IAM literature as an approximation of the
competitive equilibrium in the absence of any carbon tax. We generally
do not report any BAU results because they differ little from the optimal
mitigation results.
D. Simulation Procedures
In Sections V, VI, and VII, respectively, we analyze the implications for cli-
mate policy of only stochastic growth, only stochastic climate, and stochas-
tic growth and stochastic climate combined. In each of these sections, we
define a benchmark parameter specification and show its implications
for the SCC and other economic variables. We then perform a sensitivity
analysis on some parameters, using tables to report how today’s optimal
level of the SCC is affected by different parameter choices.
All three sections follow the same procedure. First, we solve the dy-

namic programming problem, computing the value function and policy
decision rules at each time t. We then use the decision rules to simulate
some paths of the key economic variables. We use 2005 as the first year in
order to be comparable with Nordhaus (2008) and similar studies. These
paths are affected by shocks to productivity; we simulate 10,000 paths that
differ only in the realized shocks. This set of paths allows us not only to
18 Robock et al. (2009) critically assess geoengineering options in the context of decision-
making on climate change and point out severe side effects of geoengineering, as well as
the lack of knowledge associated with this technology. Recently, Heutel, Moreno-Cruz, and
Shayegh (2016) present one of the first studies to address geoengineering in a stochastic
IAM. Their study focuses on the effectiveness of geoengineering to deal with different types
of damage from a tipping point. Further research is needed to improve understanding of
how different sources of uncertainty affect the effectiveness of geoengineering as an option
to combat climate change.
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compute the expected value of the SCC and economic variables but also
to compute their distribution at any time t. The large number of simula-
tions allows us to compute even the 99th percentile and gives us a good
measure of the important tail events. Each simulation begins with the sto-
chastic growth states equal to x0 5 0 and z0 5 1. Other initial values are
given in tables A.4 and A.5. In cases with a tipping element, we assume
that a tipping point has not yet been triggered in the year 2005.
V. The SCC with Stochastic Growth
This section analyzes the impact of stochastic growth and risk prefer-
ences on the SCC and on the combined climate and economic system.
This section excludes tipping elements so that it can focus on the impact
of productivity risk. We first present a detailed analysis of a benchmark
example based on parameter specifications; we call this our stochastic
growth benchmark case. The stochastic growth benchmark case assumes
Epstein-Zin parameter values w5 1:5 and g5 10. This stochastic growth
benchmark case allows us to exposit key features of the resulting dynamic
processes, such as consumption, output, productivity, climate states, and
the SCC. We then perform a sensitivity analysis for empirically plausible
alternative preference parameters, focusing on how preference assump-
tions affect the SCC in 2005.
A. The Stochastic Growth Benchmark
Figures 1 and 2 display features of the solution to the Bellman equation (15)
for the stochastic growth benchmark case. Each panel summarizes the re-
sults of our 10,000 simulations. We also display results from two determin-
istic cases of DICE-CJL. DICE-CJL with w5 0:5 (solid red line) represents
the DICE-2007 choice of w, and DICE-CJL with w5 1:5 (dashed red line)
represents the choice in our stochastic growth benchmark. The gray area
represents the 1st–99thpercentiles of the SCCpaths, and theother lines rep-
resent various quantiles.
Figure 1 displays the SCC process for 2005–50. First, note that moving

from the DICE-2007 choice of w5 0:5 to our benchmark choice of w 5
1:5 substantially increases the SCC. However, when we add uncertainty
with g5 10, we see a decline in the SCC to $61/tC, which is still higher
than that implied byDICE-2007 preferences. During 2005–50, we see that
the no-risk line (dashed red line) exceeds the average SCC with long-run
risk (black line) by about $50/tC. Therefore, in the next half-century,
uncertainty reduces the SCC.We discuss the intuition for this belowwhen
we carry out sensitivity analysis. The productivity risk does substantially
increase the range of the SCC. By 2050, there is a 25 percent chance of
the SCC being almost $200/tC or greater and a 10 percent chance of it
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exceeding $250/tC. The large range is easily explained. If there is a sus-
tained sequence of positive shocks to productivity, then output will rise,
which will have two effects: the damage due to temperature will increase
proportionately, and emissions will also rise and increase the risk of even
greater damage from high temperatures in the future. Recall that the
SCC results in figure 1 represent the solution to the optimal tax and mit-
igation policy.
Figure 2 describes several variables over the twenty-first century. PanelA

describes the SCC process. After 2050, the average SCC in DSICE moves
closer to the SCC in DICE-CJL with w5 1:5. By 2100, the impact of uncer-
tainty is small. Therefore, while uncertainty substantially lowers the SCC
before 2050, that effect nearly disappears over the following 50 years.
After 2050, the variation in the SCC in DSICE continues to grow rapidly.
The 1st–99th percentile range is $67–$1,282/tC, and even the 10 per-
cent and 90 percent quantiles in 2100 show a range of $127–$667/tC.
Figure 2B displays the optimal carbon tax, and figure 2C displays the

optimal rate of mitigation. If mitigation is less than 100 percent, then a
Pigovian tax policy would be to impose a tax equal to the SCC, thereby
equating the private and social costs of carbon. Panels A–C show that this
is always the case before 2085. After 2085, the emission control rate may
FIG. 1.—SCC ($/tC): 2005–50
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hit its limit of m5 1, and optimal policy requires only that the carbon tax
be large enough to eliminate all emissions. In that case, the optimal tax
can bemuch less than the SCC, which is true at 2100 in about 3.5 percent
of simulation runs. When the optimal tax is less than the SCC, the ben-
efits of other carbon policies, such as carbon removal and storage or so-
lar geoengineering technologies, would be valued using the SCC.
FIG. 2.—Simulation results of the stochastic growth benchmark—climate system and
policies.
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Table 2 lists the mean and standard deviation of SCCt and their statis-
tics on a log10 scale.19 Table 2 tells us that both the mean and the stan-
dard deviation of log10(SCCt) are increasing over time. In fact, the stan-
dard deviation of log10(SCCt) is increasing much faster than its mean.
Figures 2D and 2E both indicate that long-run risk will, on average,

lead to more accumulation of carbon in the atmosphere and higher tem-
perature, a natural consequence of the reduced mitigation efforts. How-
ever, the economic risk implies uncertainty in atmospheric temperature
in 2100, with the 10th–90th percentile range being 0.67C.
Our findings point to one very important fact: there is great uncertainty

about all aspects of the combined economic and climate system. Formany
variables, themean value at each point in time is close to the solution of the
purely deterministic model. Tracking the mean is all one can ask of any
deterministic model, and in that sense deterministic models can be suc-
cessful. However, there is great uncertainty about the future value of
each key variable. This fact is of particular importance for understanding
the SCC. The SCC is themarginal cost of extra carbon in terms of wealth,
making it the marginal rate of substitution between mitigation expendi-
tures and investment expenditures in physical capital. At the margin, these
two uses of savings have different impacts on future economic variables,
making allocation decisions between mitigation and investment essen-
tially a portfolio choice problem; a large SCC represents the amount
of investment in new capital that one is willing to sacrifice to reduce car-
bon emissions by a gigaton.
In comparison to a model with purely deterministic growth, DSICE

implies a lower ratio of consumption to gross world output and higher
ratios of investment in capital accumulation and abatement. Figure 3
presents the details, displaying the optimal dynamic distribution of the
four ratios for the first 100 years with various quantiles of 10,000 simula-
tions of the solution to the dynamic programming problem (15).
For example, the black dotted lines represent the 10 percent quantiles

for each ratio. Similarly, the cyan dashed lines, red dotted lines, blue solid
lines, and green solid lines represent the 25, 50, 75, and 90 percent quan-
tiles at each time, respectively. The black solid lines represent the sample
mean path. As explained above, two cases of DICE-CJL (w5 0:5 or 1.5)
make it comparable with DICE-2007. We denote these two special deter-
ministic cases by red solid and red dashed lines, respectively. The lower
(upper) edge of the gray areas represent the 1 percent (99 percent) quan-
tile; the gray areas represent the 98 percent probability range of each ratio.20
19 We include the log10 scale because the SCC distribution is more like a lognormal
distribution.

20 We use the same graphical exposition for all plots describing the distributions of sim-
ulation results.
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Fromfigure 3A, we see that, withmore than 90 percent probability, It=Yt

will be greater than in the case of a purely deterministic model (the red
solid line is below the black dotted line). Furthermore, we find that in
2005, It=Yt is at 32 percent, about 8 percentage points higher than under
the deterministic growth assumption, and that the expected difference is
 use 
TABLE 2
SCC Statistics from 10,000 Simulation Paths

SCCt ($/tC) log10(SCCt)

Mean Standard Deviation Mean Standard Deviation

2020 87 18 1.924 .087
2050 158 71 2.153 .184
2100 357 247 2.457 .279
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FIG. 3.—Simulation results of the stochastic growth benchmark—ratios to gross world
output.
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about 5 percentage points toward the end of this century. Overall, the as-
sumption of stochastic factor productivity growth with persistence leads
to a significant expected increase in capital investments and thus to a pre-
cautionary buildup of the capital stock.21 Also, throughout the 10,000
simulations of DSICE, we found It=Yt to range roughly between 22 and
36 percent, expanding the distributional results reported in table 2.
Figure 3C presents quite the opposite statistical picture for Ct=Yt . We

see that, with more than 90 percent probability, Ct=Yt will be lower than
in a purely deterministic model and that toward the end of this century,
Ct=Yt appears to stabilize at about 70 percent—a reduction of about 6 per-
centage points from the deterministic model. Overall, this reduction is
not fully offset by higher capital investments, and, as figure 3B indicates,
that difference is allocated to expenditures on the abatement of emissions.
We find that the latter, which is denoted by Wt=Yt , is generally quite low
and does not exceed 0.2 percent in this century in the deterministic case.
Yet, as the black solid line in B indicates, there is a 50 percent probability
that the expenditures on emissions abatement will be at least three times
higher by the year 2100 when growth is modeled stochastically. Further-
more, withmore than 20 percent probability, more than 1 percent of gross
world output should be devoted to mitigation by the year 2100.
Some recent research has argued for simple rules of thumb for the

SCC. In particular, Golosov et al. (2014) set up a dynamic, forward-looking
climate-economy model with logarithmic utility and full capital depreci-
ation to argue that the SCC is proportional to output. Barrage (2014)
shows that the benchmark in Golosov et al. (2014) implies that the ratio
of the SCC to decadal gross world output is 8:07�1025 (i.e., SCCt=Yt 5
8:07�1024 for annual gross world output Yt) and constant over time with
constant productivity growth but that it increases over time for the produc-
tivity process in Nordhaus (2008), approaching 8:07�1024 from below.22

Figure 3D uses red dash-dotted lines to represent the results of Go-
losov et al. (2014). This plot shows that the SCCt=Yt ratio is stochastic
and that its mean or quantile paths have an upward trend, while its vola-
tility is also expanding. Its mean path increases from 0.11 percent in 2005
to 0.12 percent in 2100. This implies that long-run risk shows that the
constant SCCt=Yt in Golosov et al. (2014) does not hold true in general.
B. Sensitivity Analysis for Preference Parameters
Empirical work suggests plausible values for w and g, but the data do not
give us precise values for the key parameters. We next examine how the
21 The simulation paths of gross world output, capital, and per capita consumption
growth are shown in fig. A.2 in app. A.8.

22 More precisely, we report the ratio ðSCCt=1,000Þ=Yt in order to have the same units
used in Golosov et al. (2014).
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SCC varies across values of w and g. Each example differs from the sto-
chastic growth benchmark only in the preference specification, with no
change in the stochastic growth productivity process.
Our sensitivity analysis of IES (i.e., w) and risk aversion (i.e., g) in sto-

chastic growth cases will look at consumption, capital investment, and
the SCC in 2005. Tables 3–6 report the sensitivity of the initial ratios of
consumption to gross world output (Ct=Yt), capital investment to gross
world output (It=Yt), and abatement expenditure to output and of the
SCC, respectively, assuming the values of the elasticity of intertemporal
substitution to be w5 1:25, 1.5, 1.75, and 2.0, and the risk aversion pa-
rameter to be g5 2, 5, 10, and 15 (we also include the cases with w 5
0:5 and/or g5∞ for comparison and cases with w5 0:7, 0.9, and 1.1
for SCC in table 6). For example, in our benchmark example with w 5
1:5 and g5 10, the 2005 Ct=Yt is 0.68, the 2005 It=Yt is 0.32, and the op-
timal 2005 SCC is $61/tC. We see that the SCC ranges from $57 to $99/tC
for these combinations of 1:25 ≤ w ≤ 2 and 2 ≤ g ≤ 15, about 60–168 per-
cent larger than the 2005 SCC of the baseline deterministic model with
w5 0:5.
Tables 3–6 show that the patterns of the impact of IES and risk aversion

in the stochastic growth cases are similar to those of IES and productivity
growth in the deterministic growth cases. We use the extreme case of g 5
∞ to provide some intuition. In that case, the planner focuses on the worst-
case scenario, which inourdiscretizationof the productivity processmeans
 use su
TABLE 3
Initial Consumption-Output Ratio in Stochastic Growth Cases

IES (w) DICE-CJL

Risk Aversion Parameter (g)

2 5 10 15 ∞

.50 .76 .75 .73 .71 .69 .58
1.25 .72 .71 .70 .69 .68 .64
1.50 .72 .71 .69 .68 .68 .65
1.75 .71 .70 .69 .68 .67 .66
2.00 .71 .69 .68 .67 .67 .67
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TABLE 4
Initial Investment-Output Ratio in Stochastic Growth Cases

IES (w) DICE-CJL

Risk Aversion Parameter (g)

2 5 10 15 ∞

.50 .24 .29 .27 .29 .31 .42
1.25 .28 .29 .30 .31 .32 .36
1.50 .28 .29 .31 .32 .32 .35
1.75 .29 .30 .31 .32 .33 .34
2.00 .29 .31 .32 .33 .33 .33
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that decisions are the same as if productivity were deterministic and con-
stantly declining, allowing us to use deterministic optimal control meth-
ods for that case; see appendix A.9 for details. The last column of table 6
displays how IES affects economic quantities when g5∞. In this case,
DSICE is essentially optimal growth with declining productivity. A small
IES implies a strong desire to smooth per capita consumption and save
more today to reduce a future decline in consumption. As IES increases,
smoothing consumption is less of a priority, implying less savings in both
forms, capital and mitigation, and a smaller SCC.
When there is no risk (the “DICE-CJL” columnof table 6) or if risk aver-

sion is small, then the patterns are reversed. In these cases, the positive
future growth in productivity implies that as IES increases, there is less de-
sire for smoothing andmore willingness to save for the future, when pro-
ductivity is higher. The SCC and the share of savings going to mitigation
rise as IES increases, indicating that the relative importance of avoiding
climate damage increases.
Table 6 shows that the SCC is decreasing over risk aversion when w ≥

0:9 and increasing over risk aversion when w ≤ 0:7. From the above discus-
sion, we see that risk aversion in DSICE is related to productivity growth
in DICE-CJL: g5∞ corresponds to DICE-CJL with negative productivity
A

TABLE 5
Initial Abatement-Expenditure-to-Output Ratio in Stochastic Growth Cases

IES (w) DICE-CJL

Risk Aversion Parameter (g)

2 5 10 15 ∞

.5 2.6(24) 2.9(24) 4.1(24) 5.7(24) 6.6(24) 8.0(24)
1.25 9.1(24) 8.4(24) 7.0(24) 5.9(24) 5.5(24) 3.9(24)
1.5 1.1(23) 9.9(24) 7.6(24) 5.9(24) 5.5(24) 3.5(24)
1.75 1.3(23) 1.1(23) 8.1(24) 6.3(24) 5.5(24) 3.3(24)
2.0 1.4(23) 1.2(23) 8.6(24) 6.4(24) 5.6(24) 3.1(24)
This 
ll use subject to U
content downlo
niversity of Ch
aded from 1
icago Press T
71.066.112.1
erms and Co
36 on Octobe
nditions (http
r 16, 2019 1
://www.jour
Note.—a(2n) represents a � 102n.
TABLE 6
Initial Social Cost of Carbon ($/tC) in Stochastic Growth Cases

IES (w) DICE-CJL

Risk Aversion Parameter (g)

2 5 10 15 ∞

.5 37 39 49 60 66 76

.7 51 52 56 60 62 62

.9 64 63 61 60 60 55
1.1 75 71 65 60 58 50
1.25 82 77 68 61 58 48
1.5 94 86 71 61 57 45
1.75 103 93 74 62 57 43
2 111 99 76 62 57 41
0:11:47 AM
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growth, and a smaller risk aversion corresponds to DICE-CJL with a higher
productivity growth. Appendix A.10 shows that the SCC from DICE-CJL
with a range of w and 2005 productivity growth rate has a pattern similar
to that of table 6.
C. Comparisons with Others’ SCC Estimates
Our results differ from those of other studies on SCC estimates, but usu-
ally for understandable reasons. Golosov et al. (2014) obtain a relatively
high SCC as a result of the assumption that all global warming effects from
carbon emissions occur instantaneously, ignoring the lags in the climate
system. Anthoff and Tol (2014) use theirmodel, FUND, to argue for lower
estimates for the SCC in the early twenty-first century because their disag-
gregated damage function takes into account the fact that increases in
CO2 plusmildwarming can improve agricultural productivity in the upper
latitudes. However, FUNDdoes not allow agents to optimize consumption
decisions dynamically. Future versions of DSICE will aim to include more
sophisticated damage functions.
The IWG (2010) report finds that lowering the rate of discounting for

damages from3percent to 2 percent increases the SCCby a factor of 1.64.
Another major component that affects the SCC is the dynamic structure
of damages caused by global warming. For example, Dietz and Stern (2015)
assume much higher damages due to high temperature than does DICE
(when the temperature increase is 47C, the damage is 50 percent of out-
put in Dietz and Stern [2015] but only 4 percent in DICE-2007). We do
not examine these questions extensively in this study, but the limited ex-
perimentation we did indicates that DSICE responds to these changes in
the same way.
VI. The SCC with Stochastic Climate Tipping
We next study how a tipping element in the climate systemmay affect the
SCC in the absence of any economic uncertainty. First, we present a Mar-
kov chain specification of a representative climate tipping element. We
then specify benchmark parameters calibrated to a “representative” sce-
nario and study the optimal climate policy; we call this our climate tipping
benchmark. In a final step, we present a multidimensional sensitivity anal-
ysis. In light of the numbers provided in the few studies available, we con-
clude that the impact of potential tipping-point events should be carefully
assessed.
A. A Markov Chain Specification
of the Climate Tipping Process
We study a simple example of tipping, with uncertainty about the time
of tipping and the long-run damage. The initial state, which we call the
This content downloaded from 171.066.112.136 on October 16, 2019 10:11:47 AM
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pretipping state, is denoted J0, and DðJ0Þ5 0. “Tipping” is the time and
event when the climate leaves stateJ0 andmoves to some other state in the
tipping process. We follow the common assumption that warming alone
causes tipping (Smith et al. 2009; IPCC 2014) and assume that the prob-
ability that a tipping event occurs at time t is a function of temperature,

ptip,t 5 1 2 exp 2lmax 0, TAT,t 2 TAT

� �� �
, (18)

where l is the hazard rate parameter andTAT is the temperature for which
ptip,t 5 0. The hazard rate parameter, l, together with the temperature
process, determines the duration of the initial state J 0.
In this study, we examine a simple tipping process that models the

gradual nature of the tipping process and uncertainty about the ultimate
damage caused. After a tipping event, the state J follows one of three pos-
sible processes, each one also modeled by a Markov chain. DefineMi, for
i 5 1, 2, or 3, to be a Markov chain with states fJ i,1,J i,2,J i,3, J i,4,J i,5g.
Each process Mi moves in sequence through transient tipping states J i,2,
J i,3, and J i,4 and ultimately arrives at the absorbing state J i,5.
The damage factor in state J i,j isDi,j 5DðJi,jÞ. The damages at the ter-

minal states,fD1,5,D2,5,D3,5g represent three different levels of long-run
permanent damages. Let J∞ denote the random long-run state, and let D∞

denote the random long-run damage from tipping (i.e., D∞ 5Dð J∞Þ).
Therefore, we begin in state J0 and leave J0 at time t with probability

ptip,t, and, after a tipping event, J jumps to one of fJ1,1,J2,1,J3,1g with
equal probability. Before the tipping event, we do not know which Mi

process will be followed after tipping, and we do not know the final level
of damage. However, at the tipping time, we learn whichMi governs the
posttipping process and the long-run damage.
This is a stark simplification, but it does allow us to distinguish the ex-

pected duration of the transient posttipping process from the uncertainty
about the ultimate damage level. The fact that the uncertainty aboutD∞ is
resolved when the climate tipping process is triggered allows us to make
statements about the relative impact of the hazard rate of the tipping-point
event, the expected duration of the whole transient posttipping process,
and the mean and variance of D∞. The unconditional mean of D∞ is de-
noted �D∞, and the variance of D∞ is q �D2

∞, where q is called the “mean
squared-variance ratio.” The ratio q is analogous to the square of the
Sharpe ratio, a concept used in portfolio theory, and arises naturally in
our discussion of results.
In our examples, for each posttipping Markov chain Mi, we assume

that its expected duration from the time when the tipping event occurs
to the time when the tipping state reaches the absorbing state is known,
and it is denoted �G. We also refer to it as the expected duration of the post-
tipping process. There are four transient stages in the posttipping process,
and we assume that each transient stage from J i,j to J i,j11 has the same
This content downloaded from 171.066.112.136 on October 16, 2019 10:11:47 AM
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expected duration23 and that all transitions have an exponential distribu-
tion, implying that the transition probability is p 5 12expð24=�GÞ.24 The
complete mathematical description of J and its calibration are contained
in appendix A.4.
B. The SCC with Stochastic Climate Tipping
We choose parameter values that are roughly the average of the range of
opinions in the literature.25 More precisely, the climate tipping bench-
mark case assumes l5 0:0035, �D∞ 5 0:05, q 5 0:2, and �G5 50. The
choice of l5 0:0035 implies that the conditional annual probability of
tipping increases by 0.35 percent for a warming of 17C. The Epstein-Zin
preference parameters in the climate tipping benchmark case are again
w5 1:5 and g5 10.
First, we use figure 4 to show two sample paths of damage to output,

1 2 QðTAT,t , JtÞ, in percentage terms (solid lines) and their corresponding
paths for the SCC (dashed lines). The two lines in panel A represent one
sample realization of a tipping process that tips in 2146 with the largest
long-run damage level, and the two lines in panel B represent one sample
realization of a tipping process that tips in 2102 with the smallest long-
run damage level. The sample paths of damage to output clearly show
the four transient posttipping stages ( jumps).
The realized duration of the whole transient posttipping process is

38 years for the sample path in panel A (from 2146 to 2184) and 69 years
for the sample path in panel B (from 2102 to 2171), while the expected
duration of the posttipping process, �G, is 50 years. Moreover, the realized
final damage levelD∞ is 7.74 percent for the sample path in panel A and
2.26 percent for the sample path in panel B, while its expectation is 5 per-
cent. Therefore, the jumps in SCC paths just represent the fact that the
decision with regard to emissionsmitigation strongly depends on whether
the tipping process has been triggered or not. This is due to the fact that
once the tipping process is triggered, we cannot prevent or delay the se-
quential damages that occur during its multiple posttipping stages, and
thus there is no strong incentive to changemitigation policy, such as strong
discontinuous changes in the SCC.
It is obvious that adding a tipping element to DICE will increase the

SCC. The question is how much the SCC is increased, given the magni-
tude of the tipping-point damages. Figure 5 helps address that issue. It is
based on computing the BAU case with and without tipping. The dashed
23 Technically, DSICE could easily handle cases where the duration of each stage de-
pends on the entire state space.

24 Experimentation indicated that five posttipping stages is adequate to approximate
processes with more states.

25 A discussion of that literature is contained in app. A.4.
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line shows the relative increase in damage when we add the tipping ele-
ment. The increase is negligible until 2050 and peaks in around 2200 at
53 percent. Reducing carbon emissions in 2005 would delay any tipping
and shift the dashed curve to the right, but most of those changes would
FIG. 4.—Sample paths of damage on output and the social cost of carbon for the sto-
chastic climate tipping benchmark.
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occur after 2100. The solid line shows the impact of tipping on the mar-
ginal SCC and shows that the marginal damage of carbon rises by 60 per-
cent in 2005. Even though the tipping element only moderately increases
damages 200 years from now, the impact on the SCC today is substantial.
We next consider the implications of a climate tipping point for the

dynamics of the SCC, the carbon tax, the emissions control rate, and the
two most important climate states (atmospheric carbon concentration and
surface temperature). Figure 6 shows the results of 10,000 simulation
paths over the first 200 years for these variables.
Adding climate tipping risk is expected to result in a more intense

mitigation, compared to that of a deterministic model. Throughout this
century it is optimal to more than double mitigation efforts in response
to the threat of a tipping point in the climate. Emissions reductions imply
a strict reduction of atmospheric carbon concentrations (fig. 6D), com-
pared to the result from the deterministic model. The resulting path of
surface temperature (fig. 6E) corresponds to the temperature paths from
the lowest of the most recent emissions scenarios used by the IPCC (2013),
implying a peak temperature increase before 2100 of around 27C and a
decline afterward.
FIG. 5.—Comparison of DSICE and DICE-CJL with w 5 1:5 under business as usual
(BAU).
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A striking result in figure 6A is the 2005 SCC of $188/tC, a large in-
crease over the $94/tC resulting from DICE-CJL (where w5 1:5) in the
absence of any tipping risk. To underline the significance of this major
increase in the SCC, recall our rather conservative assumptions on the na-
ture of the tipping-point processes: we assume an expected duration of
the tipping process of 50 years and expect posttipping damage of 5 per-
cent and a mean squared-variance ratio of 0.2. As can be seen from the
FIG. 6.—Simulation results for the climate tipping benchmark—climate system and
policies.
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blue dashed line in figure 6A, these assumptions indicate that there is a
75 percent probability that a tipping process will not be triggered before
2150. Yet today’s optimal SCC is $188/tC, twice the value obtained from
the samemodel when the tipping point is ignored. This strongly suggests
that analyses of climate policy that simply ignore the potential of abrupt
changes to the climate system—as does the current US government study
(IWG 2010)—are significantly underestimating the SCC.
Related to the analysis in the previous section, we also note here that

by the year 2125, some of our 10,000 simulated paths will produce a car-
bon tax that is less than the SCC, indicating that the benefits of mitiga-
tion may be exhausted. In fact, it appears that, with a slightly higher than
75 percent probability, mitigation policies will reach the limits of their
effectiveness by 2125 and that alternative carbon management options
might prove useful.
C. Discounting Damages
To understand the impact of a tipping element on the SCC, we compute
the discount rate of damages from carbon emissions, denoted by rD,
which is implicitly used to value the marginal damage; that is, we solve

SCC0 5 o
∞

t50

1 1 rDð Þ2t
Dt

for the unknown rD, where SCC0 is given by the DSICE solution and Dt is
the expected extra damage to consumption at time t caused by one extra
unit of carbon emission in 2005. We do this for DICE-CJL with w5 1:5,
which has no tipping element, and the benchmark tipping case de-
scribed above (with w5 1:5 and g5 10), but we use their BAU versions
to cancel out the impact of mitigation on damages by following the
method of IWG (2010) for computing the discount rate of damages.
For comparison, we also compute the internal rate of return on capital
investment, which is the rate used to discount the additional consump-
tion caused by one extra unit of capital in 2005.
Table 7 displays rD and the internal rate of return on capital invest-

ment for both cases. We first see that marginal damages in DICE-CJL
BAU are discounted at 3.7 percent and capital investment at 2.7 percent,
a difference that is natural, given that BAU sets mitigation to zero. These
results are also similar to those of other deterministic models. In con-
trast, we see that rD is only 2.4 percent in the tipping benchmark DSICE
BAU case. But the internal rates of return on capital investment are close
to each other between DICE-CJL BAU and DSICE BAU. This tells us that
our higher SCC is not simply implied by higher potential damage from
climate tipping events; otherwise the discount rate of damage would be
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the same as with DICE-CJL. This lower discount rate of damages from
carbon emissions indicates that part of the justification of the higher
SCC is demand for insurance. To illustrate this justification more clearly,
table 7 also reports rD and the internal rate of return on capital invest-
ment for the case of DSICE BAU with the benchmark tipping setting
but QTðTATÞ5 1 (i.e., damages are only from tipping events). Both rates
are, respectively, close to those in the case of DSICE BAU with the bench-
mark tipping setting and the default damage factor for temperature. This
implies that the lower discount rate of damages in DSICE BAU with the
benchmark tipping setting is not arising from the potentially nonlinear
effect of additional damages from tipping events. The intuition is that the
damages from a permanent shock to productivity have little covariance
with short-run fluctuations in consumption. Therefore, damages from
tipping events should be discounted less than damages from tempera-
ture (which are proportional to output).
D. Sensitivity Analysis for the Climate Tipping Process
We next examine how the 2005 SCC is affected by parameter uncertainty
in the climate tipping process by recomputing the SCC over a range of
parameter choices that reflect scientific opinions. We examine the six-
dimensional collection of parameter values defined by the tensor prod-
uct of the following finite sets:

l ∈ 0:0025, 0:0035, 0:0045f g,  �D∞ ∈ 0:025, 0:05, 0:10f g, 
q ∈ 0, 0:2, 0:4f g, w ∈ 0:5, 1:25, 1:5, 1:75, 2:0f g, 
g ∈ 2, 5, 10, 15f g, �G ∈ 5, 50, 200f g:

We compute the SCC in 2005 for all the cases, and table 8 presents the
2005 SCC for some of the representative cases. For example, when l 5
0:0025, �G5 5, �D∞ 5 0:025, and q 5 0 (i.e., the first row in table 8), the
2005 SCC is $132/tC for w5 1:5 and g5 10. The value of the SCC with
the climate tipping process is always greater than that in the determinis-
tic case, in which the climate tipping process is ignored. This is expected,
since the tipping element increases possible future damage.
TABLE 7
Discount Rate of Damages and Internal Rate of Return on Capital Investment (%)

DSICE BAU with the
Benchmark Tipping

Setting

DSICE BAU with the
Benchmark Tipping

Setting but QT(TAT) ; 1

DICE-CJL
BAU with
w 5 1.5

Discount rate of damages 2.4 2.4 3.7
Internal rate of return on
capital investment 2.6 2.7 2.7
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Table 8 also shows that the SCC is larger for a higher IES (i.e., w) and a
higher value of the risk aversion parameter g. Furthermore, we observe
that the initial-time SCC increases with higher (present-discounted) ex-
pected damage from the climate tipping process, which can be caused by
a higherhazard rate parameter (l), a shorter expected duration of the tip-
ping process (�G), a higher mean long-run damage level ( �D∞), or a higher
mean squared-variance ratio of the expected damage level (q). As men-
tioned above, our specification of a climate tipping point in an economic
growthmodel is unique by the standards of how climate scientists view the
nature of climate tipping points (e.g., Lenton and Ciscar 2013).
 use 
TABLE 8
Initial Social Cost of Carbon ($/tC) with Stochastic Climate Tipping

w 5 .5 w 5 1.5 w 5 2

g 5 2 g 5 10 g 5 2 g 5 10 g 5 2 g 5 10

l 5 .0025, �G 5 5, �D∞ 5 :025

q 5 0 61 61 128 132 160 164
q 5 .4 61 61 129 135 161 169

l 5 .0025, �G 5 5, �D∞ 5 :100

q 5 0 74 87 275 349 348 412
q 5 .4 75 107 285 413 357 458

l 5 .0025, �G 5 200, �D∞ 5 :025

q 5 0 59 59 111 112 136 138
q 5 .4 59 59 111 112 136 139

l 5 .0025, �G 5 200, �D∞ 5 :100

q 5 0 62 64 174 195 237 276
q 5 .4 63 65 177 224 241 318

l 5 .0045, �G 5 5, �D∞ 5 :025

q 5 0 63 64 148 151 188 192
q 5 .4 63 64 149 155 189 200

l 5 .0045, �G 5 5, �D∞ 5 :100

q 5 0 91 113 365 418 422 461
q 5 .4 94 144 375 462 429 498

l 5 .0045, �G 5 200, �D∞ 5 :025

q 5 0 59 59 120 121 149 151
q 5 .4 59 59 120 122 150 153

l 5 .0045, �G 5 200, �D∞ 5 :100

q 5 0 66 69 227 259 318 356
q 5 .4 67 71 233 304 324 394
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Table 8 shows that with climate risk only, a higher IES (i.e., w) implies a
higher SCC. Given the positive productivity growth in our cases with cli-
mate risk only, a higher IES implies a lower desire to smooth per capita
consumption, leading to a higher investment in mitigation for higher fu-
ture consumptions. This effect occurs because the discount rate of dam-
ages from tipping events is less than the internal rate of return on capital
investment, as shown in table 7.
Table 8 also shows that a higher risk aversion will imply a higher SCC

too. Since our tipping probability ptip,t can be reduced by slowing the
temperature increase through mitigation and the variance of output at
time t is proportional to ptip,tð12ptip,tÞ, we see that the variance of output
can be diminished by reducing ptip,t (note that ptip,t is always smaller than
0.5 in our cases), and so can the variance of consumption be reduced.
Thus, a higher risk aversion implies a greater value for mitigation and
therefore also a higher SCC for the cases with climate risk only.
Table 8 shows that when �D∞, the mean long-run damage level, is small,

the SCC is insensitive to risk aversion g or to the mean squared-variance
ratio q (see rows with �D∞ 5 0:025), as a small �D∞ implies a much lower
variance of the uncertain, final, long-run damage level, which is equal
to q �D2

∞. For example, when l5 0:025, �G5 5, �D∞ 5 0:025, and w5 0:5,
the SCC is $61/tC for all g ∈ f2, 10g and q ∈ f0, 0:4g. However, when
�D∞ is large (e.g., �D∞ 5 0:1), the SCC increases significantly when g in-
creases from 2 to 10, since a large �D∞ implies a much larger variance of
the uncertain, final, long-run damage level. This reflects the nonlinear ef-
fect of climate tipping damage on the SCC. Inmodels assuming separable
preferences, it is only the mean of the uncertain damage, and not its var-
iance, that affects the SCC.
In addition, from the results of all the cases we find that one common

pattern exists: the 2005 SCC is linear in q. Figure 7 shows the numbers for
the SCC for various values of g and q when w5 1:5, l5 0:0035, �G5 50,
and �D∞ 5 0:05.26 Other cases have the same qualitative pattern, so we omit
them here. In figure 7, the four lines represent, from bottom to top, the
cases of g5 2, 5, 10, and 15. We see that all these lines are straight and
that a higher g implies a greater slope, meaning that it is more sensitive
to the variance of the uncertain damage level.
This is not surprising, since it fits into the logic of the basic consumption-

based capital asset pricing model (Lucas 1978), which tells us that the
price of risk is related to its covariance with the aggregate endowment.
Since themagnitude of the damage is proportional to output, the damage
is strongly related to output; in fact, in this case climate damage is the only
stochastic element of output conditional on the tipping event. Therefore,
26 In fig. 7, the horizontal axis is the variance of the uncertain damage level at the final
absorbing stage—namely, q �D2

∞—and it is scaled by 10,000.
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the correlation is unity, and the SCC has a price-of-risk component that is
linear in the variance of the uncertain damage level.
Note that the SCC increases as the variance of the uncertain damage

level increases. One interpretation of variance is that it represents our ig-
norance of the consequences of an unfolding tipping process. With that
interpretation, the horizontal difference represents the decline in the SCC
that would result if we carried out more scientific research and reduced
the uncertainty regarding the posttipping damage level. This observation
shows that DSICE could be used to identify the value of reducing uncer-
tainty and to indicate which kinds of scientific studies would be the most
valuable to pursue. We leave this point for further research.
E. Other Approaches to Damage Functions
with Tipping Events
A few studies attempt to integrate stochastic tipping into their determin-
istic models (e.g., Lempert et al. 2000; Nordhaus 2009; Ackerman, Stan-
ton, and Bueno 2010; Ackerman and Stanton 2012). They do this by
FIG. 7.—Sensitivity of the social cost of carbon to the risk aversion parameter and uncer-
tainty regarding posttipping damage (w 5 1:5, l 5 0:0035, �G 5 50, and �D∞ 5 0:05).
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altering the damage function in an ad hocmanner, such as increasing the
convexity of the damage function. Similarly, Mastrandrea and Schneider
(2001) increase the exponent of the DICE-type damage function with the
purpose of quantifying the effects of an abrupt nonlinear climatic change:
the shutdown of the thermohaline circulation. The reasoning for in-
creasing the exponent is to deal with abrupt nonlinear changes by creat-
ing a more nonlinear damage function. Lontzek et al. (2015) discuss this
approach, showing with the DSICE model that this approach fails to
capture the implications of stochastic tipping points. It is, furthermore,
incompatible with the real-world task of decision-making under uncer-
tainty. Therefore, DSICE shows that there is no need for such ad hoc
approximations.
Several IAMs have carried out analyses of a climate catastrophe event

that directly affects utility. Early studies include Gjerde, Grepperud, and
Kverndokk (1999) and Castelnuovo, Moretto, and Vergalli (2003). These
studies assume that an uncertain level of global temperature triggers an
irreversible drop in utility and find that large reductions in emissions
are optimal. Nevertheless, these studies apply a certainty-equivalent ap-
proach to uncertainty and do not address stochasticity. Most recently,
Cai et al. (2015) use the DSICE framework to include the possibility of
a catastrophic event with nonmarket impacts, such as impacts on the
ecosystem. Most cost-benefit analyses rarely take account of environmen-
tal tipping points leading to abrupt and irreversible impacts on market
and nonmarket goods and services, including those provided by the cli-
mate and by ecosystems. Cai et al. (2015) shows that including environ-
mental tipping-point impacts in a stochastic dynamic IAM profoundly al-
ters cost-benefit assessment of global climate policy. The risk of a tipping
point, even if it has only nonmarket impacts, could substantially increase
the present optimal carbon tax.
VII. The SCC with Stochastic Growth
and Climate Tipping
The previous two sections have examined the impacts on SCC from sto-
chastic growth and stochastic climate tipping, both in isolation. The real-
world system includes both uncertainties, and this section presents the re-
sults of DSICE in the presence of long-run risk in both economic growth
and the climate tipping process. The optimal policy will now have to bal-
ance the need to delay the triggering of the tipping-point process with
the accumulation of additional capital in the face of stochastic growth
and with the desire to smooth our consumption patterns. We study a sto-
chastic growth and climate tipping benchmark case of parameter speci-
fication and carry out a sensitivity analysis.
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A. The Stochastic Growth and Climate Tipping Benchmark
We use w5 1:5, g5 10, l5 0:0035, �D∞ 5 0:05, q 5 0:2, and �G5 50 for
the stochastic growth and climate tipping benchmark. Figure 8 shows
the results of 10,000 simulation paths over the first 100 years with regard
to the dynamics of the SCC, the carbon tax, and the ratio of the SCC to
gross world output. Other variables, such as capital, consumption and its
growth, atmospheric carbon concentration, and surface temperature, have
pictures visually similar to the corresponding pictures in figures 2 and
6, so we omit them. We use the same line and color types as in previous
figures.
We first study the SCC. Its initial-time level is $124/tC, and at 2100 the

average (or expected) SCC is $461/tC. Thus, the path of the expected
SCC is situated between its paths obtained from our analyses of each risk
component in isolation. In 2005, the SCC of $124/tC is even exactly the
average of the numbers obtained for the two cases from the previous sec-
tions ($61 and $188/tC). Compared to that in a deterministic model,
which ignores both risk components and has w5 0:5, we find that the
FIG. 8.—Simulation results for the stochastic growth and climate tipping benchmark
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2005 SCC increases by a factor of more than 3 and that with 90 percent
probability the SCC will be significantly higher throughout this century.
The presence of both stochastic growth and climate tipping risk also

increases the variance of the future SCC relative to the separate stochas-
tic growth and climate tipping benchmarks. For example, the SCC in
2100 ranges from $100/tC (the 1 percent quantile) to $1,700/tC (the
99 percent quantile). The carbon tax, which we present in figure 8B, is
also more likely to hit its upper bound after 2072 than in either of the
single-risk benchmarks. The combination of these risks implies that there
is a probability of about 7.5 percent that mitigation policies will have
reached the limit of their effectiveness by 2100.
We also revisit the analysis of the SCCt=Yt ratio of Section V.A, here in

the case of stochastic growth and climate tipping. Figure 8C shows that
the SCCt=Yt ratio is quite stochastic. First, we note that, compared to that
in the deterministic version of the model, SCCt=Yt is about three times
larger in 2005, while at 2100 it is expected to be about twice as large. Sec-
ond, we find that the expected SCCt=Yt is decreasing over time by about
50 percent and is thus not constant. Third, and most importantly, we find
that the ratio of the SCC to gross world output is not close to any simple
path but is rather a stochastic process varying over the interval [0.00108,
0.00215] at year 2100 and over an even larger interval for the second half
of this century. When contrasting our results with the constant SCCt=Yt

ratio postulated by Golosov et al. (2014), we find that the inclusion of a
long-run risk and a tipping process with Epstein-Zin preference makes
SCCt=Yt significantly uncertain and leads to substantially different quali-
tative and quantitative results.27

Table 9 shows the SCC in 2005, the mean SCC in 2100, and the 90 per-
cent quantile SCC in 2100 for our three benchmark examples. We see that
the 2005 SCC and the mean SCC in 2100 of the stochastic growth and tip-
ping benchmark are, respectively, between those of the stochastic growth
benchmark and the climate tipping benchmark but that the 90 percent
quantile SCC in 2100 of the stochastic growth and tipping benchmark
is larger than the corresponding ones of both the stochastic growth bench-
mark and the climate tipping benchmark.
Furthermore, when comparing our results to those for DICE-CJL with

w5 0:5, we find that the interaction between multiple uncertainties,
such as long-run risk and a tipping process, could be nontrivial: for ex-
ample, while either long-run risk or a tipping process leads to a higher
27 The Golosov et al. (2014) model produces—because of its simplicity—elegant results.
Our approach in this paper is to use scientifically valid model features rather than con-
structing simplified models. We see the additional complexity in our model as justified
in the sense that we come closer to being consistent with the best science and also provide
very different results.
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2005 SCC than does the deterministic DICE-CJL (with w5 0:5), their
combination does not imply a further increase in the 2005 SCC when
compared to cases with only one type of uncertainty. Thus, it is necessary
to carry out a systematic analysis rather than a stylized one. For the case
of DICE-CJL with w5 1:5, we have argued in Section V.B that, as there is
no risk, the positive future growth in productivity and a higher w (here
1.5) lead to larger incentives to avoid climate damage increases. The
SCC will be larger in that case, when compared to the case of stochastic
growth only. Nevertheless, the combination of stochastic growth and cli-
mate tipping will produce an SCC substantially larger than that in the
deterministic case.
B. Sensitivity of the Stochastic Growth
and Climate Tipping Benchmark
We compute the sensitivity of the stochastic growth and climate tipping
benchmark case to several parameters. Table 10 lists the 2005 SCC for
selected combinations of the parameter values for the sensitivity analysis.
These parameters are the hazard rate l, themean duration time of the tip-
ping process �D, the mean long-run damage level �D∞, the mean squared-
variance ratio q, the IES w, and the risk aversion parameter g.
We find that some qualitative properties found in previous examples

with only climate risk still hold—that is, a higher hazard rate parameter
l, a shorter expected duration �G, a higher mean damage level �D∞, or a
larger mean squared-variance ratio q will lead to a higher SCC, although
their quantitative values differ substantially. For example, by comparing
the cases of l5 0:0035 and l5 0:0045 from table 10 with the other val-
ues, �D∞ 5 10 percent, �G5 50, and q 5 0, we see that the case with l 5
0:0045 has a larger SCC than the case with l5 0:0035. Moreover, the
range of the initial SCC is wide, from $43/tC (the case with l5 0:0025,
�G 5 200, �D∞ 5 0:025, q 5 0, w5 0:5, and g 5 2) to $477/tC (the case
with l5 0:0045, �G5 5, �D∞ 5 0:10, q 5 0:4, w5 2, and g5 2).
TABLE 9
SCC ($/tC) for Three Benchmark Examples

DICE-CJL
DSICE (w 5 1.5, g 5 10)

w 5 .5 w 5 1.5
Stochastic
Growth

Climate
Tipping

Stochastic Growth
with Tipping

2005 SCC 37 94 61 188 124
Mean SCC in 2100 180 389 357 620 461
Standard deviation of SCC
in 2100 0 0 247 105 316

90% quantile SCC in 2100 180 389 667 662 844
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Furthermore, by comparing the columns with g5 2 or comparing the
columns with g5 10, we see that a higher IES always implies a higher
SCC for the cases with g ≤ 10. This is consistent with our findings in ear-
lier examples with stochastic growth only or climate risk only. However,
the qualitative properties of the risk aversion parameter g are now non-
trivial: table 10 shows that the effect of a higher g on the SCC can be pos-
itive or negative. This nontriviality comes from the combination of eco-
nomic risk and climate tipping risk: with economic risk only, if w is small
(i.e., w < 0:7), then a higher risk aversion implies a higher SCC; but with
climate tipping risk only, a higher risk aversion always implies a higher
SCC for any IES. For the cases with w5 0:5 in table 10, a higher risk aver-
sion implies a higher SCC, but in most cases in table 10 with w5 1:5 and
all cases with w5 2, a higher g will result in a smaller SCC, implying that
for lower levels of w the effect of higher g is more likely to be positive.
This complicated pattern originates from the interaction between the
nontrivial pattern of the impact of w and g on the SCC in the stochastic
growth cases and the pattern in the climate tipping cases.
TABLE 10
Initial Social Cost of Carbon ($/tC) under Stochastic Growth

and Climate Tipping

w 5 .5 w 5 1.5 w 5 2

g 5 2 g 5 10 g 5 2 g 5 10 g 5 2 g 5 10

l 5 .0025, �G 5 200, �D∞ 5 :025

q 5 0 43 70 102 76 120 78

l 5 .0035, �G 5 5

�D∞ 5 :05, q 5 0 63 133 177 144 217 149
�D∞ 5 :10, q 5 .4 93 337 313 373 400 384

l 5 .0035, �G 5 50, �D∞ 5 :05

q 5 0 55 111 156 124 192 128
q 5 .2 55 114 157 124 193 132

l 5 .0035, �G 5 50, �D∞ 5 :10

q 5 0 73 187 247 212 317 220

l 5 .0045, �G 5 5, �D∞ 5 :10

q 5 0 102 294 356 314 455 324
q 5 .2 104 339 365 372 466 383
q 5 .4 106 394 374 438 477 446

l 5 .0045, �G 5 50, �D∞ 5 :05

q 5 0 59 122 171 136 212 141
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VIII. Summary and Conclusion
This study has presented DSICE, a computational framework for the sto-
chastic integrated assessment of issues related to the joint evolution of
the economy and the climate. We analyzed the optimal level and dynamic
properties of the SCC and the associated optimal carbon tax in the face
of stochastic and irreversible climate change and its interaction with eco-
nomic factors including growth uncertainty and preferences regarding risk.
We did this in a manner that allows us to compare our results to those of
the deterministic model in Nordhaus (2008), an influential and well-known
IAM. The specific examples in this study show three basic points.
First, we use Epstein-Zin preferences in order to specify tastes that are

more compatible with the evidence on risk aversion and the IES. This also
allows us to separate the impact of risk aversion from the impact of inter-
temporal substitution. The impact of risk aversion depended on the na-
ture of the risk, with the SCC rising as risk aversion increases for the tipping
case, but with more ambiguous implications for the case of stochastic
growth.
Second, the incorporation of long-run risk shows that the SCC is itself

a stochastic process with considerable uncertainty. Climate change issues
are not just about the expected state of the climate in the future but also
about avoiding disasters. Climate change policy has to recognize the un-
certainty about the future SCC and be prepared to consider policies, such
as geoengineering and carbon capture, that are currently considered
to have costs that would never be justified by deterministic models that
essentially focus on the expected SCC. An examination of parameter un-
certainty also shows that the range of plausible SCC values is much larger
than implied by other integrated assessment analyses. We found this great
uncertainty for single parameterizations; when we also include uncer-
tainty regarding economic parameters, that uncertainty is even greater.
Third, climate scientists have recently argued that tipping elements in

the climate system contribute to uncertainty regarding future climate con-
ditions. We incorporate the concept of tipping elements into DSICE and
find that the threat of a tipping element leads to significant and immedi-
ate increases in the SCC, where the increase in the SCC is disproportion-
ately large relative to the damage caused by tipping. This is true even for
moderate assumptions regarding the likelihood and impacts of climate
tipping events. The SCC can be very high, even without assuming cata-
strophic climate change events but rather by merely assuming plausibly
parameterized examples of uncertain and irreversible climate change. An
internal rate-of-return analysis showed that one should use a smaller dis-
count rate when valuing damage from tipping events, a natural result be-
cause the damage caused by tipping is less correlated to total consump-
tion than is damage to output.
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Finally, we have also shown that it is possible to solve empirically plau-
sible nine-dimensional models of the climate and the economy that in-
clude (1) productivity shocks of the kind studied in macroeconomics,
(2) dynamically nonseparable preferences consistent with observed prices
of risk, and (3) stochastic tipping elements in the climate system. Our
examination of examples including both the usual Nordhaus-style dam-
age function for output and damages arising from tipping events shows
that these separate sources of damages must be examined together. The
usual approach is to study them separately or to create ad hoc approxima-
tions. This study shows that analyses that avoid such shortcuts are both
feasible and necessary if we are to obtain reliable answers. This study has
ignored many features that might be important, but this weakness is un-
avoidable when modeling a complex system, particularly one that is a
merger of two enormously complex systems. This study has shown that
it is possible to look at models of much greater complexity than before
and that, in the case of the SCC, incorporating that complexity signifi-
cantly alters the implications for economic policy. The fact that we solve
a nine-dimensional dynamic programming problem with long-run risk
over a span of 600 years implies that it is straightforward to use those
nine dimensions to model other topics, such as geoengineering, robust
optimization, and learning.
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