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Abstract We reformulate the quality ladder model of Pakes and McGuire, Rand
Journal of Economics, 25(4), 555–589 (1994) as a dynamic stochastic game with ran-
dom moves in which each period one firm is picked at random to make an investment
decision. Contrasting this model to the standard version with simultaneous moves
illustrates the computational advantages of random moves. In particular, the quality
ladder model with random moves avoids the curse of dimensionality in computing
firms’ expectations over all possible future states and is therefore orders of mag-
nitude faster to solve than its counterpart with simultaneous moves when there are
more than just a few firms. Perhaps unexpectedly, the equilibria of the quality ladder
model with random moves are practically indistinguishable from those of the model
with simultaneous moves.
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1 Introduction

Dynamic stochastic games have been applied widely to study the strategic interac-
tions among forward-looking players in dynamic environments. The model as written
down by Ericson and Pakes (1995), Pakes and McGuire (1994, 2001), and in stan-
dard textbook treatments of dynamic stochastic games (e.g., Filar and Vrieze 1997;
Basar and Olsder 1999) assumes that the players choose their actions simultaneously
each period and that the state then changes accordingly.

Besides simultaneous moves, there are many other ways to formulate dynamic
stochastic games. In applied work the timing of decisions within periods is typi-
cally not observable in the data, thus giving the researcher considerable latitude in
specifying a protocol of moves. As a consequence, a number of recent papers have
experimented with alternatives to the standard assumption of simultaneous moves
(Igami 2017, 2018; Iskhakov 2017).

Alternative protocols of moves are often defended on the grounds of computa-
tional convenience. As Pakes and McGuire (2001) and Doraszelski and Judd (2011)
observe, models with simultaneous moves suffer from a “curse of dimensionality”
as the burden of computing players’ expectations over all possible future states
under widely-used laws of motion increases exponentially in the number of play-
ers and state variables.1 Other formulations of dynamic stochastic games may be
computationally more tractable.

However, computational convenience may come at the high cost of altering the
model’s predictions and implications. From the basically static models in Cournot
(1838) and von Stackelberg (1934) to the genuinely dynamic models in Cyert and
DeGroot (1970) and Maskin and Tirole (1987, 1988a, b), a long literature has pointed
out cases where the protocol of moves matters crucially for equilibrium behavior.

In this paper, we explore the implications of the protocol of moves for the com-
putational burden and equilibrium behavior in the quality ladder model of Pakes
and McGuire (1994). In the Pakes and McGuire (1994) model, forward-looking
oligopolistic firms compete with each other in the product market and through their
investment, entry, and exit decisions. By investing a firm aims to increase the qual-
ity of its product—and ultimately its profit from product market competition—over
time. Investment, entry, and exit decisions are thus both dynamic and strategic.

The Pakes and McGuire (1994) model has been widely used as a template for
dynamic models of investment in the Markov perfect equilibrium framework of Eric-
son and Pakes (1995). It has been adapted to study mergers (Gowrisankaran 1999;
Gowrisankaran and Holmes 2004; Mermelstein et al. 2014); capacity accumulation
(Besanko and Doraszelski 2004; Besanko et al. 2010); advertising (Doraszelski and
Markovich 2007; Dube et al. 2005); network effects (Markovich 2008; Markovich
and Moenius 2009; Chen et al. 2009); research joint ventures (Song 2011); durable

1Another curse of dimensionality arises if the number of states increases exponentially in the number of
players. Applications of the Ericson and Pakes (1995) framework therefore routinely impose symmetry and
anonymity restrictions that ensure that the number of states grows polynomially rather than exponentially.
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goods (Goettler and Gordon 2011); investment in both vertical and horizontal prod-
uct differentiation (Narayanan and Manchanda 2009); the timing of version releases
(Borkovsky 2017a); and brand equity (Borkovsky et al. 2017b, c).

We reformulate the quality ladder model of Pakes and McGuire (1994) as a
dynamic stochastic game with random moves. Each period one firm is picked at
random to make an investment decision and the firm’s product quality changes
accordingly. Contrasting this model to the standard version with simultaneous moves
illustrates the computational advantages of random moves. In particular, the quality
ladder model with random moves avoids the curse of dimensionality in computing
the expectation over successor states and is therefore orders of magnitude faster to
solve when there are more than just a few firms.

Perhaps unexpectedly, the equilibria of the quality ladder model with random
moves are practically indistinguishable from those of the model with simultaneous
moves. Hence, the computational advantage of the model with random moves does
not come at the cost of altering equilibrium behavior and the industry dynamics
implied by it. This finding exemplifies the protocol-invariance theorem in Doraszel-
ski and Escobar (2017). We argue that the quality ladder model of Pakes andMcGuire
(1994) fits into the class of separable dynamic games with noisy transitions defined
by Doraszelski and Escobar (2017), so that the protocol of moves ceases to mat-
ter provided that periods are sufficiently short and moves are therefore sufficiently
frequent. Our computations illustrate that protocol invariance extends some distance
from this limit.

The remainder of this paper is organized as follows. Section 2 reviews the Pakes
and McGuire (1994) model and reformulates it with random moves. Section 3 com-
pares the computational burden of the models. Section 4 discusses the implications
of the protocol of moves for equilibrium behavior and Section 5 concludes.

2 Quality ladder model

We first review the Pakes and McGuire (1994) model and then reformulate it with
random moves. To focus on contrasting random with simultaneous moves and sim-
plify the exposition, we abstract from entry and exit. Time is discrete and the horizon
is infinite. At each point in time, the industry consists of N firms with poten-
tially different product qualities ω = (ω1, . . . ωN) ∈ � = {1, . . . , M}N , where
ωi ∈ {1, . . . ,M} is the quality of firm i’s product.2 We refer to ωi as the state of firm
i, to ω as the state (of the industry), and to � as the state space. A firm strives to max-
imize the expected net present value of its stream of cash flows and discounts future
cash flows using a discount factor β ∈ [0, 1). The solution concept is symmetric and

2To account for entry and exit, we add an extra state, say ωi = 0, that designates firm i as a potential

entrant. Entry is a transition from state ωi = 0 to state
(
ω′)i

> 0 and exit a transition from state ωi > 0

to state
(
ω′)i = 0. In this setting, N is the number of incumbent firms with ωi > 0 plus the number of

potential entrants with ωi = 0. See Appendix D for a simple example and Doraszelski and Satterthwaite
(2010) and Borkovsky et al. (2012) for further discussion.
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anonymous Markov perfect equilibrium.

Per-period profit We follow the literature and treat the per-period profit πi(ω) of
firm i from product market competition in state ω as a reduced-form input into the
model. We provide details on product market competition in Appendix A.

State-to-state transitions Firm i can invest to improve the quality of its product over
time. Let xi ≥ 0 denote firm i’s investment in quality improvements. If the invest-
ment is successful, then quality increases by one level. The probability of success is

αxi

1+αxi , where α > 0 is a measure of the effectiveness of investment. With probability

δ ∈ [0, 1] the firm is hit by a depreciation shock and quality decreases by one level.3

Combining investment decisions and depreciation shocks, the probability that the
quality of firm i’s product changes from ωi ∈ {2, . . . , M − 1} in the current period
to

(
ω′)i in the subsequent period is

Pr(
(
ω′)i |ωi, xi) =

⎧
⎪⎪⎨

⎪⎪⎩

(1−δ)αxi

1+αxi if
(
ω′)i = ωi + 1,

1−δ+δαxi

1+αxi if
(
ω′)i = ωi,

δ
1+αxi if

(
ω′)i = ωi − 1.

To ensure
(
ω′)i ∈ {1, . . . , M} we further set

Pr(
(
ω′)i |1, xi) =

{
(1−δ)αxi

1+αxi if
(
ω′)i = 2,

1+δαxi

1+αxi if
(
ω′)i = 1,

Pr(
(
ω′)i |M, xi) =

{
1−δ+αxi

1+αxi if
(
ω′)i = M,

δ
1+αxi if

(
ω′)i = M − 1.

Parameterization As in Pakes and McGuire (1994), the discount factor is β =
0.925, the effectiveness of investment is α = 3, and the depreciation probability is
δ = 0.7. The number of quality levels per firm is M = 18, but we also examine
M = 9 in Section 3.

2.1 Simultaneous moves

Bellman equation Let V i(ω) denote the expected net present value of the cash flows
accruing to firm i starting from state ω. The Bellman equation of firm i is

V i (ω) = max
xi≥0

πi (ω) − xi + βEω′
{
V i

(
ω′) |ω, xi, X−i (ω)

}
, (1)

3Whereas Pakes and McGuire (1994) assume an industry-wide depreciation shock, we assume that the
depreciation shocks are independent across firms.
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where X−i (ω) = (
X1(ω), . . . Xi−1(ω), Xi+1(ω), . . . , XN(ω)

)
denotes the invest-

ment strategies of firm i’s rivals and the expectation is taken over all possible
successor states ω′:

Eω′
{
V i

(
ω′) |ω, xi , X−i (ω)

}

= ∑

(ω′)1∈{ω1−1,ω1,ω1+1}
. . .

∑

(ω′)N ∈{ωN −1,ωN ,ωN +1}
V i(ω′)

∏

j �=i

Pr(
(
ω′)j |ωj , Xj (ω))Pr(

(
ω′)i |ωi, xi).

This N-dimensional expectation consists of 3N terms. Because of this exponential
growth in the number of firms N , the model with simultaneous moves suffers from
a curse of dimensionality in computing the expectation over successor states (Pakes
and McGuire 2001; Doraszelski and Judd 2011).

Investment strategy The investment strategy of firm i is

Xi (ω) = argmax
xi≥0

πi (ω) − xi + βEω′
{
V i

(
ω′) |ω, xi, X−i (ω)

}
. (2)

We provide a closed-form expression for Xi(ω) in Appendix B.

Equilibrium. The system of nonlinear equations (1) and (2) for all firms i ∈{1, . . . , N}
and all states ω ∈ � defines a Markov perfect equilibrium. We provide details on
how we impose symmetry and anonymity in Appendix C.

2.2 Random moves

To reformulate the Pakes and McGuire (1994) model, we assume that each period
one firm is picked at random to make an investment decision. The product quality
of the firm with the move then changes in response to its investment decision. Then
another random draw is taken to pick a firm and so on.

Note that in the model with random moves a firm’s state can change once in every
N periods on average, whereas it can change once in every period in the model with
simultaneous moves. To make the models comparable, we shorten the length of a
period by a factor of N in the model with random moves. To this end, we replace the
discount factor β by N

√
β and the per-period profit πi(ω) by 1

N
πi(ω). This ensures

comparability of the frequency of changes in a firm’s state and of the cash flows
accruing to the firm over an interval of time of fixed length.

Bellman equation Let V i,j (ω) denote the expected net present value of the cash
flows accruing to firm i starting from state ω if firm j has the move. Note that the
value function depends on the identity of the firm with the move. If firm i has the
move (j = i), then its Bellman equation is

V i,i(ω) = max
xi≥0

1

N
πi(ω) − xi + N

√
βE

k′,(ω′)i
{
V i,k′ ((

ω′)i
, ω−i

)
|ωi, xi

}
, (3)
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where k′ denotes the next firm to move, ω−i = (
ω1, . . . , ωi−1, ωi+1, . . . , ωN

)

denotes the product qualities of firm i’s rivals, and the expectation is

E
k′,(ω′)i

{
V i,k′ ((

ω′)i
, ω−i

)
|ωi, xi

}

= 1
N

∑

k′∈{1,...,N}
∑

(ω′)i∈{ωi−1,ωi ,ωi+1}
V i,k′ ((

ω′)i
, ω−i

)
Pr(

(
ω′)i |ωi, xi).

Because the identity of the next firm to move is a random variable, firm i forms
an expectation over it. If firm i does not have the move (j �= i), then its Bellman
equation is

V i,j (ω) = 1

N
πi(ω) + N

√
βE

k′,(ω′)j
{
V i,k′ ((

ω′)j
, ω−j

)
|ωj , Xj (ω)

}
. (4)

To consolidate the N Bellman equations (3) and (4) for all j �= i, we define

V
i
(ω) = 1

N

N∑

j=1

V i,j (ω). (5)

Intuitively, while V i,j (ω) is the value function after it is known that firm j has the

move, V
i
(ω) is the expected value function before it is known who is next to move.

Substituting (5) into (3) and (4) yields

V i,i(ω) = max
xi≥0

1

N
πi(ω) − xi + N

√
βE

(ω′)i
{
V

i
((

ω′)i
, ω−i

)
|ωi, xi

}
, (6)

V i,j (ω) = 1

N
πi(ω) + N

√
βE

(ω′)j
{
V

i
((

ω′)j
, ω−j

)
|ωj , Xj (ω)

}
. (7)

Adding (6) and (7) for all j �= i and dividing by N yields

V
i
(ω) = 1

N

{
max
xi≥0

πi(ω) − xi + N
√

βE
(ω′)i

{
V

i
((

ω′)i
, ω−i

)
|ωi, xi

}

+
∑

j �=i

N
√

βE
(ω′)j

{
V

i
((

ω′)j
, ω−j

)
|ωj , Xj (ω)

}
⎫
⎬

⎭
(8)

as the Bellman equation of firm i.
In contrast to theN-dimensional expectation consisting of 3N terms in Eq. 1, Eq. 8

contains N one-dimensional expectations that each consist of 3 terms. This yields
a total of 3N terms. As the number of terms grows linearly rather than exponen-
tially in the number of firms N , the model with random moves avoids the curse of
dimensionality in computing the expectation over successor states.

Investment strategy The investment strategy of firm i is

Xi(ω) = argmax
xi≥0

1

N
πi(ω) − xi + N

√
βE

k′,(ω′)i
{
V i,k′ ((

ω′)i
, ω−i

)
|ωi, xi

}

= argmax
xi≥0

πi(ω) − xi + N
√

βE
(ω′)i

{
V

i
((

ω′)i
, ω−i

)
|ωi, xi

}
, (9)
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where we again substitute (5). We provide a closed-form expression for Xi(ω) in
Appendix B.

Equilibrium The system of nonlinear equations (8) and (9) for all firms i ∈{1, . . . , N}
and all states ω ∈ � defines a Markov perfect equilibrium.

3 Computational burden

We use the block Gauss-Seidel version of the Pakes and McGuire (1994) algorithm
in Section 3.1 of Doraszelski and Judd (2011) to compute Markov perfect equilibria.4

The time to convergence in the left panel of Table 1 demonstrates the computa-
tional advantage of the model with random moves for the case of M = 9 quality
levels per firm. The model with random moves is faster to solve than the model
with simultaneous moves, and this advantage grows substantially with the number of
firms.

To better understand the source of the computational advantage of the model with
random moves, we decompose the time to convergence into the time per iteration
and the number of iterations. The right panel of Table 1 shows the ratio of the time
to convergence and its components for the model with simultaneous moves relative
to the model with random moves. On the one hand, an iteration of the Gauss-Seidel
algorithm is orders of magnitude faster for the model with random moves than for
the model with simultaneous moves when there are more than just a few firms. This
reflects the fact that the model with randommoves avoids the curse of dimensionality
in computing the expectation over successor states.

On the other hand, the model with random moves suffers an “iteration penalty.”
This is expected as the discount factor is a key determinant of the rate of conver-
gence of any Gaussian algorithm, and the discount factor is N

√
β > β in the model

with random moves. However, the loss in the number of iterations is small when
compared to the gain in the time per iteration from avoiding the curse of dimension-
ality. The model with random moves is thus much faster to solve than the model with
simultaneous moves.

4 Equilibrium and dynamics

It is not obvious how firms’ behavior in equilibrium and the industry dynamics
implied by that behavior change as the standard version of the Pakes and McGuire
(1994) model is recast as a model with random moves. The model with random
moves can be thought of as a “random-leadership Stackelberg game” in the sense that
when a firm makes its investment decision it knows that it is the leader at this point

4For the model with random moves, we further exploit the smaller number of successor states by using
pre-computed addresses (Doraszelski and Judd 2011, Section 3.3). The stopping rule is “distance to truth<
10−4” (Doraszelski and Judd 2011, Section 5.2).
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Table 1 Time to convergence of model with simultaneous moves and model with random moves and ratio
of time per iteration, number of iterations, and time to convergence of model with simultaneous moves
relative to model with random moves

Time to convergence Ratio simultaneous to random moves

Number simult. moves random moves time per number of time to

of firms (mins.) (mins.) iteration iterations convergence

2 1.41(-4) 1.00(-4) 2.55 0.55 1.40
3 1.33(-3) 8.11(-4) 4.58 0.36 1.64
4 1.24(-2) 4.18(-3) 10.72 0.28 2.96
5 1.02(-1) 1.99(-2) 22.61 0.23 5.13
6 7.74(-1) 6.89(-2) 57.84 0.19 11.23
7 5.19(0) 2.03(-1) 150.00 0.17 25.54
8 3.21(1) 5.99(-1) 352.17 0.15 53.66
9 1.94(2) 1.48(0) 960.78 0.14 131.12
10 1.10(3) 3.43(0) 2,642.86 0.12 320.59
11 5.80(3) 7.37(0) 7,134.15 0.11 786.81
12 2.94(4) 1.53(1) 19,008.97 0.10 1,923.53
13 1.51(5) 2.97(1) 54,527.14 0.09 5,101.20
14 7.08(5) 5.62(1) 144,763.30 0.09 12,592.71

(k) is shorthand for ×10k . Entries in italics are based on an estimated 119 iterations to convergence in
model with simultaneous moves. Quality ladder model with M = 9 quality levels per firm

in time and that its rivals are the followers. This may have repercussions for firms’
behavior. For example, in a preemption race (Fudenberg et al. 1983; Harris and Vick-
ers 1987) an early mover has a head start over a late mover, so that handing one firm
the move may well be decisive for the outcome of the race.

It turns out that in the quality ladder model the differences between random and
simultaneous moves are very small. Figure 1 illustrates this point by plotting the
value and policy functions for the case of N = 2 firms and M = 18 quality levels per
firm. There are no visible differences between the model with simultaneous moves
in the upper panels and the model with random moves in the lower panels.

From the policy function we construct the probability distribution over next
period’s state ω′ given this period’s state ω, i.e., the transition probability matrix
that characterizes the Markov process of industry dynamics. We compute the tran-
sient distribution over states in period t , μt(·), starting from state (1, 1). This tells
us how likely each possible industry structure is in period t , given that both firms
began the game at the minimal quality level. In addition, we compute the limiting (or
ergodic) distribution over states,μ∞(·).5 The transient distribution captures short-run
dynamics and the limiting distribution captures long-run (or steady-state) dynamics.

5Let P be the M2 × M2 transition probability matrix. The transient distribution in period t is given by
μt = μ0P t , where μ0 is the 1 × M2 initial distribution and P t the t th matrix power of P . The Markov
process turns out to be irreducible. That is, all its states belong to a single closed communicating class and
the 1 × M2 limiting distribution μ∞ solves the system of linear equations μ∞ = μ∞P .



Dynamic stochastic games with random moves

Figure 1 also depicts the limiting distribution. As can be seen, the differences
between the models with random and simultaneous moves are again very small.
Table 2 summarizes the dynamics of the industry. In the left panel, we list the most
likely industry structure (modal state) and its probability at various points in time.
Note that, because we shorten the length of a period in the model with random moves
by a factor of N = 2, the transient distribution in period t in the model with simul-
taneous moves is comparable to the transient distribution in period 2t in the model
with random moves. As can be seen, in the short run the industry evolves either in a
symmetric or an asymmetric fashion. However, even if a firm is able to gain the upper
hand over its rival in the short run, in the long run the most likely industry structure is
symmetric and the limiting distribution leaves little probability mass on asymmetric
industry structures (see again Fig. 1).

In the middle and right panels of Table 2, we additionally report a firm’s expected
profit from product market competition and its expected investment in quality
improvements along with their standard deviations. Again the differences between
the models with random and simultaneous moves are very small.

This finding exemplifies the protocol-invariance theorem in Doraszelski and Esco-
bar (2017). Protocol invariance means that the set of Markov perfect equilibria is
nearly the same irrespective of the order in which players are assumed to move within
a period, including—and extending beyond—simultaneous, random, and alternating
moves.
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Fig. 1 Value and policy functions (left and middle panels) and limiting distribution (right panels). Model
with simultaneous moves (upper panels) and model with random moves (lower panels). Quality ladder
model with N = 2 firms and M = 18 quality levels per firm
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Table 2 Most likely industry structure and its probability, expected profit and investment and their
standard deviations

Model with simultaneous moves (upper panel) and model with random moves (lower panel). Quality
ladder model with N = 2 firms and M = 18 quality levels per firm

Doraszelski and Escobar (2017) define a class of infinite-horizon dynamic
stochastic games with finite states and actions that they call separable dynamic games
with noisy transitions. In a separable dynamic game, per-period payoffs and state-to-
state transitions are assumed to depend on players’ actions in an additive manner: to
a first-order approximation, per-period payoffs and state-to-state transitions are built
from parts that depend on the actions taken by individual players. To the extent that
there are complementarities between players’ actions and other non-separabilities in
per-period payoffs and state-to-state transitions, they must vanish as periods become
short. Noisy transitions preclude that there is an action that a player can take to guar-
antee a change in the state. Doraszelski and Escobar (2017) establish that separable
dynamic games with noisy transitions are protocol invariant provided that periods are
sufficiently short.

Along with many other models, the quality ladder model of Pakes and McGuire
(1994) satisfies the assumptions of separability and noisy transitions.6 The qual-
ity ladder model is separable because a firm’s investment decision affects its rivals
only through changing the state and transitions are noisy because it is uncertain if
the investment is successful and because of depreciation shocks. Hence, we expect
protocol invariance to obtain in the limit as the period length goes to zero. Our
computations illustrate that we come close to protocol invariance even though the
period length—as determined by the discount factor β—is far from zero.

6Doraszelski and Escobar (2017) discuss in Section 4.3 how their protocol-invariance theorem extends to
continuous actions such as the investment decision in the quality ladder model.
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We emphasize that separability and noisy transitions are assumptions on the functional
forms of per-period payoffs and state-to-state transitions. As such, protocol invariance
does not hinge on particular parameterizations of the Pakes and McGuire (1994) model.
Indeed, we expect protocol invariance to obtain in most dynamic models of invest-
ment in the Markov perfect equilibrium framework of Ericson and Pakes (1995).

5 Concluding remarks

There are many ways to formulate dynamic stochastic games, and some of them
are computationally more tractable than others. Doraszelski and Judd (2011) and
Arcidiacono et al. (2016) propose continuous-time models in order to avoid the curse
of dimensionality in the expectation over successor states. This paper contributes by
studying discrete-time models with random moves.

Our key assumption is that each period one player is picked at random to choose
an action and that the player’s state then changes accordingly. We show that refor-
mulating the standard version of the Pakes and McGuire (1994) model in this way
substantially decreases the computational burden when there are more than just a few
firms. Importantly, the computational advantage of the model with random moves
does not come at the cost of altering equilibrium behavior and the industry dynamics
implied by it.

The computational advantage of the model with random moves does not stem
directly from the protocol of moves. Indeed, one can write down amodel with random
moves that suffers from the curse of dimensionality in computing the expectation
over successor states. Suppose, for example, that firm i’s investment xi in quality

improvements increases the quality of firm k’s product with probability γ xi

1+γ xi , where
γ ≥ 0, and that these spillovers occur independently across firm i’s rivals. Then the
expectation over successor states contains 3 · 2N−1 terms.7 By contrast, in the Pakes
and McGuire (1994) model a firm’s investment affects its product quality but not that
of its rivals. Reformulating the model with random moves therefore avoids the curse
of dimensionality in computing the expectation over successor states.

While the Pakes and McGuire (1994) model is a template for dynamic models
of investment, not all applications and extensions of the Ericson and Pakes (1995)
framework are equally well-suited to be formulated as models with random moves.
For example, in a learning-by-doing model such as Benkard (2004), a firm’s out-
put decision affects how much the firm receives in the product market and how
far it moves down its learning curve. Per-period profits and state-to-state transitions
depend directly on the output decisions of all firms, whereas competitive interactions
are channeled through the state in the quality ladder model. This makes it difficult to
reformulate a learning-by-doing model with random moves. Moreover, because the

7On the other hand, the expectation over successor states contains 5 instead of 3 · 2N−1 terms if an
investment success of firm i spills over to all its rivals with probability η ∈ [0, 1].



U. Doraszelski, K. L. Judd

protocol-invariance theorem in Doraszelski and Escobar (2017) relies on the assump-
tion of separability, reformulating the model may well alter how firms behave in
equilibrium.

The assumption of noisy transitions is equally important for protocol invariance.
In Appendix D, we develop an entry game between N = 2 firms. The state space is
� = {0, 1}2. In state ωi = 0, firm i is a potential entrant that decides whether to enter
an industry by incurring a setup cost K > 0. In state ωi = 1, firm i is an incumbent
firm with no further decisions to make. An incumbent firm receives a profit πM > 0
from product market competition if the industry is a monopoly and a profit πD = 0 if
the industry is a duopoly. We formulate this game first as a model with simultaneous
moves and then as a model with random moves. We show that equilibrium behavior
differs greatly between the models. In the model with simultaneous moves, there are
two asymmetric equilibria in which in state (0, 0) one of the firms enters the industry
for sure and one symmetric equilibrium in which both firms mix between entering
and not entering. In the model with random moves, in contrast, there is a symmetric
equilibrium in which in state (0, 0) the firm that first has the move enters the industry
for sure. Protocol invariance fails in this game because state-to-state transitions are
deterministic.8

In sum, dynamic stochastic games with random moves can have computational
advantages over the standard assumption of simultaneous moves. Moreover, equilib-
rium behavior can be invariant to reformulating a game with randommoves. Whether
computational advantages and/or protocol invariance arise depends on the specific
primitives of the application and has to be checked on a case-by-case basis.

Appendix A: Product market competition

Demand Each consumer purchases at most one unit of one product. The utility
consumer k derives from purchasing product i is g(ωi) − pi + εik , where

g(ωi) =
{

3ωi − 4 if ωi ≤ 5,
12 + ln

(
2 − exp

(
16 − 3ωi

))
if ωi > 5

maps the quality of the product into the consumer’s valuation for it and εik repre-
sents taste differences among consumers. There is a no-purchase alternative, product
0, which has utility ε0k . We assume that the idiosyncratic shocks ε0k, ε1k, . . . , εNk

are independently and identically extreme value distributed across products and
consumers; therefore, the demand for firm i ’s product is

qi(p1, . . . , pN ; ω) = m
exp

(
g(ωi) − pi

)

1 + ∑N
j=1 exp

(
g(ωj ) − pj

) ,

where m > 0 is the size of the market (the measure of consumers).

8Doraszelski and Judd (2011) show how to model entry and exit to satisfy the assumption of noisy
transitions (see also Doraszelski and Escobar 2017).
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Per-period profit Firm i observes the quality of its and its rivals’ products ω and
chooses the price pi of product i to maximize profit, thereby solving

max
pi≥0

qi(p1, . . . , pN ; ω)
(
pi − c

)
,

where c ≥ 0 is the marginal cost of production. There exists a unique Nash equilibrium(
p1(ω), . . . , pN(ω)

)
of the product market game in state ω (Caplin and Nalebuff

1991). It is found easily by numerically solving the system of first-order conditions

1 +
N∑

j=1

exp
(
g(ωj ) − pj

)
−

⎛

⎝1 +
∑

j �=i

exp
(
g(ωj ) − pj

)
⎞

⎠ (pi − c) = 0

for all firms i ∈ {1, . . . , N}. The per-period profit of firm i in state ω is derived from
the Nash equilibrium of the product market game as

πi(ω) = qi(p1(ω), . . . , pN(ω); ω)(pi(ω) − c).

Note that we implicitly assume that all firms are able adjust their prices after a change
in the state irrespective of whether they currently have the move or not.

Parameterization As in Pakes and McGuire (1994), the marginal cost of production
is c = 5. The size of the market is m = 5.

Appendix B: Investment strategy

Simultaneous moves If ωi ∈ {2, . . . , M − 1}, then

Xi(ω) =
−1+

√
max

{
1, βα

(
(1−δ)(Wi(ωi +1)−Wi(ωi))+δ(Wi(ωi)−Wi(ωi −1))

)}

α
,

where

Wi(ωi) =
∑

(ω′)1
. . .

∑

(ω′)i−1

∑

(ω′)i+1

. . .
∑

(ω′)N
V i(ωi,

(
ω′)−i

)
∏

j �=i

Pr(
(
ω′)j |ωj , Xj (ω))

Moreover, if ωi ∈ {1, M}, then

Xi(1, ω−i ) =
−1 +

√
max

{
1, βα(1 − δ)

(
Wi(2) − Wi(1)

)}

α
,

Xi(M, ω−i ) =
−1 +

√
max

{
1, βαδ

(
Wi(M) − Wi(M − 1)

)}

α
.

Random moves If ωi ∈ {2, . . . , M − 1}, then

Xi(ω) =
−1+

√
max

{
1, N

√
βα

(
(1−δ)(Wi(ωi + 1)−Wi(ωi))+δ(Wi(ωi)−Wi(ωi −1))

)}

α
,
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where Wi(ωi) = V
i
(ωi, ω−i ). Moreover, if ωi ∈ {1, M}, then

Xi(1, ω−i ) =
−1 +

√
max

{
1, N

√
βα(1 − δ)

(
Wi(2) − Wi(1)

)}

α
,

Xi(M, ω−i ) =
−1 +

√
max

{
1, N

√
βαδ

(
Wi(M) − Wi(M − 1)

)}

α
.

Appendix C: Symmetry and anonymity

Symmetry allows us to focus on firm 1 and anonymity—also called
exchangeability—says that firm 1 does not care about the identity of its rivals,
only about the distribution of their states. We refer the reader to Doraszelski and
Satterthwaite (2010) for a formalization. In practice, symmetry and anonymity are
imposed by limiting the computation of firms’ values and policies to states in the set
�̃ = {

ω ∈ � : ω1 ≤ ω2 ≤ . . . ≤ ωN
}
. Some additional restrictions are needed. If

N = 2, for example, symmetry and anonymity require that V 1(1, 1) = V 2(1, 1) and
X1(1, 1) = X2(1, 1); if N = 4, they require that V 2(1, 2, 2, 4) = V 3(1, 2, 2, 4) and
X2(1, 2, 2, 4) = X3(1, 2, 2, 4).

Appendix D: Entry game

Simultaneous moves Let V i(ω) denote the expected net present value of the cash
flows accruing to firm i starting from state ω and ξ i(ω) ∈ [0, 1] the probability
that firm i enters the industry in state ω. The Bellman equations defining a Markov
perfect equilibrium are:

V 1(1, 1) = πD + βV 1(1, 1), (10)

V 2(1, 1) = πD + βV 2(1, 1), (11)

V 1(0, 1) = max
ξ1∈[0,1]

ξ1
{
−K + βV 1(1, 1)

}
+ (1 − ξ1)βV 1(0, 1), (12)

V 2(0, 1) = πM + ξ1(0, 1)βV 2(1, 1) + (1 − ξ1(0, 1))βV 2(0, 1), (13)

V 1(1, 0) = πM + ξ2(1, 0)βV 1(1, 1) + (1 − ξ2(1, 0))βV 1(1, 0), (14)

V 2(1, 0) = max
ξ2∈[0,1]

ξ2
{
−K + βV 2(1, 1)

}
+ (1 − ξ2)βV 2(1, 0), (15)

V 1(0, 0) = max
ξ1∈[0,1]

ξ1
{
−K + ξ2(0, 0)βV 1(1, 1) + (1 − ξ2(0, 0))βV 1(1, 0)

}

+ (1 − ξ1)
{
ξ2(0, 0)βV 1(0, 1) + (1 − ξ2(0, 0))βV 1(0, 0)

}
, (16)

V 2(0, 0) = max
ξ2∈[0,1]

ξ2
{
−K + ξ1(0, 0)βV 2(1, 1) + (1 − ξ1(0, 0))βV 2(0, 1)

}

+ (1 − ξ2)
{
ξ1(0, 0)βV 2(1, 0) + (1 − ξ1(0, 0))βV 2(0, 0)

}
. (17)

To facilitate the exposition, we assume πD = 0 from hereon.
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Proposition 1 Suppose βπM

1−β
> K . There are three Markov perfect equilibria. In

the first equilibrium, ξ1(0, 0) = 0 and ξ2(0, 0) = 1; in the second equilibrium,
ξ1(0, 0) = 1 and ξ2(0, 0) = 0; and in the third equilibrium, ξ1(0, 0) = ξ2(0, 0) =
βπM−(1−β)K

βπM . In any Markov perfect equilibrium, ξ1(0, 1) = ξ2(1, 0) = 0.

Proof Equations 10 and 11 imply V 1(1, 1) = V 2(1, 1) = 0.
Consider (12) and (13) and plug in from above. There are three cases to consider:

1. Firm 1 does not enter for sure. The value and policy functions are:

V 1(0, 1) = 0, ξ1(0, 1) = 0.

For this to be part of a Markov perfect equilibrium, no unilateral one-shot
deviation can be profitable:

V 1(0, 1) ≥ −K.

This holds.
2. Firm 1 enters for sure. The value and policy functions are:

V 1(0, 1) = −K, ξ1(0, 1) = 1.

For this to be part of a Markov perfect equilibrium, no unilateral one-shot
deviation can be profitable:

V 1(0, 1) ≥ −βK.

This does not hold.
3. Firm 1 mixes between entering and not entering. The Bellman equation and

indifference condition are:

V 1(0, 1) = −ξ1(0, 1)K + (1 − ξ1(0, 1))βV 1(0, 1),
−K = βV 1(0, 1).

This does not hold.

It follows that in any Markov perfect equilibrium ξ1(0, 1) = 0, V 1(0, 1) = 0, and

V 2(0, 1) = πM

1−β
.

Consider (14) and (15). Similar to above, ξ2(1, 0) = 0, V 1(1, 0) = πM

1−β
and

V 2(1, 0) = 0 in any Markov perfect equilibrium.
Consider (16) and (17) and plug in from above. There are five cases to consider:

1. Firm 1 does not enter for sure, firm 2 does not enter for sure. The value and
policy functions are:

V 1(0, 0) = 0, ξ1(0, 0) = 0,
V 2(0, 0) = 0, ξ2(0, 0) = 0.
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For this to be part of a Markov perfect equilibrium, no unilateral one-shot
deviation can be profitable:

V 1(0, 0) ≥ −K + βπM

1−β
,

V 2(0, 0) ≥ −K + βπM

1−β
.

This does not hold.
2. Firm 1 does not enter for sure, firm 2 enters for sure. The value and policy

functions are:
V 1(0, 0) = 0, ξ1(0, 0) = 0,

V 2(0, 0) = −K + βπM

1−β
, ξ2(0, 0) = 1.

For this to be part of a Markov perfect equilibrium, no unilateral one-shot
deviation can be profitable:

V 1(0, 0) ≥ −K,

V 2(0, 0) ≥ β
(
−K + βπM

1−β

)
.

This holds.
3. Firm 1 enters for sure, firm 2 does not enter for sure. Similar to above.
4. Firm 1 enters for sure, firm 2 enters for sure. The value and policy functions are:

V 1(0, 0) = −K, ξ1(0, 0) = 1,
V 2(0, 0) = −K, ξ2(0, 0) = 1.

For this to be part of a Markov perfect equilibrium, no unilateral one-shot
deviation can be profitable:

V 1(0, 0) ≥ 0,
V 2(0, 0) ≥ 0.

This does not hold.
5. At least one firm mixes between entering and not entering. The Bellman

equations and indifference conditions are:

V 1(0, 0) = ξ1(0, 0)
{
−K + (1 − ξ2(0, 0)) βπM

1−β

}

+(1 − ξ1(0, 0))(1 − ξ2(0, 0))βV 1(0, 0),

−K + (1 − ξ2(0, 0)) βπM

1−β
= (1 − ξ2(0, 0))βV 1(0, 0),

V 2(0, 0) = ξ2(0, 0)
{
−K + (1 − ξ1(0, 0)) βπM

1−β

}

+(1 − ξ2(0, 0))(1 − ξ1(0, 0))βV 2(0, 0),

−K + (1 − ξ1(0, 0)) βπM

1−β
= (1 − ξ1(0, 0))βV 2(0, 0).

Solving for the value and policy functions yields:

V 1(0, 0) = V 2(0, 0) = 0, ξ1(0, 0) = ξ2(0, 0) = βπM − (1 − β)K

βπM
.

For this to be part of a Markov perfect equilibrium, it must be that:

ξ1(0, 0) ∈ [0, 1], ξ2(0, 0) ∈ [0, 1].
This holds.
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Randommoves Let V i,j (ω) denote the expected net present value of the cash flows
accruing to firm i starting from state ω if firm j has the move and ξ i(ω) ∈ [0, 1] the
probability that firm i enters the industry in state ω if it has the move. The Bellman
equations defining a Markov perfect equilibrium are:

V 1,1(1, 1) = 1

2
πD + √

βV
1
(1, 1),

V 1,2(1, 1) = 1

2
πD + √

βV
1
(1, 1),

V 2,2(1, 1) = 1

2
πD + √

βV
2
(1, 1),

V 2,1(1, 1) = 1

2
πD + √

βV
2
(1, 1),

V 1,1(0, 1) = max
ξ1∈[0,1]

ξ1
{
−K + √

βV
1
(1, 1)

}
+ (1 − ξ1)

√
βV

1
(0, 1),

V 1,2(0, 1) = √
βV

1
(0, 1),

V 2,2(0, 1) = 1

2
πM + √

βV
2
(0, 1),

V 2,1(0, 1) = 1

2
πM + ξ1(0, 1)

√
βV

2
(1, 1) + (1 − ξ1(0, 1))

√
βV

2
(0, 1),

V 1,1(1, 0) = 1

2
πM + √

βV
1
(1, 0),

V 1,2(1, 0) = 1

2
πM + ξ2(1, 0)

√
βV

1
(1, 1) + (1 − ξ2(1, 0))

√
βV

1
(1, 0),

V 2,2(1, 0) = max
ξ2∈[0,1]

ξ2
{
−K + √

βV
2
(1, 1)

}
+ (1 − ξ2)

√
βV

2
(1, 0),

V 2,1(1, 0) = √
βV

2
(1, 0),

V 1,1(0, 0) = max
ξ1∈[0,1]

ξ1
{
−K + √

βV
1
(1, 0)

}
+ (1 − ξ1)

√
βV

1
(0, 0),

V 1,2(0, 0) = ξ2(0, 0)
√

βV
1
(0, 1) + (1 − ξ2(0, 0))

√
βV

1
(0, 0),

V 2,2(0, 0) = max
ξ2∈[0,1]

ξ2
{
−K + √

βV
2
(0, 1)

}
+ (1 − ξ2)

√
βV

2
(0, 0),

V 2,1(0, 0) = ξ1(0, 0)
√

βV
2
(1, 0) + (1 − ξ1(0, 0))

√
βV

2
(0, 0),

where

V
i
(ω) = 1

2

2∑

j=1

V i,j (ω)
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is the expected value function of firm i. Adding equations and dividing by 2 yields

V
1
(1, 1) = 1

2

{
πD + 2

√
βV

1
(1, 1)

}
, (18)

V
2
(1, 1) = 1

2

{
πD + 2

√
βV

2
(1, 1)

}
, (19)

V
1
(0, 1) = 1

2

{
max

ξ1∈[0,1]
ξ1

{
−K + √

βV
1
(1, 1)

}
+ (2 − ξ1)

√
βV

1
(0, 1)

}
,(20)

V
2
(0, 1) = 1

2

{
πM + ξ1(0, 1)

√
βV

2
(1, 1) + (2 − ξ1(0, 1))

√
βV

2
(0, 1)

}
,(21)

V
1
(1, 0) = 1

2

{
πM + ξ2(1, 0)

√
βV

1
(1, 1) + (2 − ξ2(1, 0))

√
βV

1
(1, 0)

}
,(22)

V
2
(1, 0) = 1

2

{
max

ξ2∈[0,1]
ξ2

{
−K + √

βV
2
(1, 1)

}
+ (2 − ξ2)

√
βV

2
(1, 0)

}
,(23)

V
1
(0, 0) = 1

2

{
max

ξ1∈[0,1]
ξ1

{
−K + √

βV
1
(1, 0)

}
+ (2 − ξ1 − ξ2(0, 0))

√
βV

1
(0, 0)

+ ξ2(0, 0)
√

βV
1
(0, 1)

}
, (24)

V
2
(0, 0) = 1

2

{
max

ξ2∈[0,1]
ξ2

{
−K + √

βV
2
(0, 1)

}
+ (2 − ξ1(0, 0) − ξ2)

√
βV

2
(0, 0)

+ ξ1(0, 0)
√

βV
2
(1, 0)

}
. (25)

Proposition 2 Suppose
√

βπM

2(1−√
β)

> K . There is a Markov perfect equilibrium with

ξ1(0, 0) = ξ2(0, 0) = 1 and ξ1(0, 1) = ξ2(1, 0) = 0.

Proof Equations 18 and 19 imply V
1
(1, 1) = V

2
(1, 1) = 0.

Consider (20) and (21) and plug in from above. There are three cases to consider:

1. Firm 1 does not enter for sure. The value and policy functions are:

V
1
(0, 1) = 0, ξ1(0, 1) = 0.

For this to be part of a Markov perfect equilibrium, no unilateral one-shot
deviation can be profitable:

V
1
(0, 1) ≥ −K

2
.

This holds.
2. Firm 1 enters for sure. The value and policy functions are:

V
1
(0, 1) = − K

2 − √
β

, ξ1(0, 1) = 1.
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For this to be part of a Markov perfect equilibrium, no unilateral one-shot
deviation can be profitable:

V
1
(0, 1) ≥

√
βK

2 − √
β

.

This does not hold.
3. Firm 1 mixes between entering and not entering. The Bellman equation and

indifference condition are:

V
1
(0, 1) = 1

2

{
−ξ1(0, 1)K + (2 − ξ1(0, 1))

√
βV

1
(0, 1)

}
,

−K = √
βV

1
(0, 1).

This does not hold.

It follows that in any Markov perfect equilibrium ξ1(0, 1) = 0, V
1
(0, 1) = 0 and

V
2
(0, 1) = πM

2(1−√
β)
.

Consider (22) and (23). Similar to above, ξ2(1, 0) = 0, V
1
(1, 0) = πM

2(1−√
β)

and

V
2
(1, 0) = 0.
Consider (24) and (25) and plug in from above. There are five cases to consider:

1. Firm 1 does not enter for sure, firm 2 does not enter for sure. The value and
policy functions are:

V
1
(0, 0) = 0, ξ1(0, 0) = 0,

V
2
(0, 0) = 0, ξ2(0, 0) = 0.

For this to be part of a Markov perfect equilibrium, no unilateral one-shot
deviation can be profitable:

V
1
(0, 0) ≥ 1

2

{
−K +

√
βπM

2(1−√
β)

}
,

V
2
(0, 0) ≥ 1

2

{
−K +

√
βπM

2(1−√
β)

}
.

This does not hold.
2. Firm 1 does not enter for sure, firm 2 enters for sure. The value and policy

functions are:

V
1
(0, 0) = 0, ξ1(0, 0) = 0,

V
2
(0, 0) = 1

2−√
β

(
−K +

√
βπM

2(1−√
β)

)
, ξ2(0, 0) = 1.

For this to be part of a Markov perfect equilibrium, no unilateral one-shot
deviation can be profitable:

V 1(0, 0) ≥ 1
2

{
−K +

√
βπM

2(1−√
β)

}
,

V 2(0, 0) ≥
√

β

2−√
β

(
−K +

√
βπM

2(1−√
β)

)
.

This does not hold.
3. Firm 1 enters for sure, firm 2 does not enter for sure. Similar to above.
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4. Firm 1 enters for sure, firm 2 enters for sure. The value and policy functions are:

V
1
(0, 0) = 1

2

{
−K +

√
βπM

2(1−√
β)

}
, ξ1(0, 0) = 1,

V
2
(0, 0) = 1

2

{
−K +

√
βπM

2(1−√
β)

}
, ξ2(0, 0) = 1.

For this to be part of a Markov perfect equilibrium, no unilateral one-shot
deviation can be profitable:

V
1
(0, 0) ≥

√
β
4

{
−K +

√
βπM

2(1−√
β)

}
,

V
2
(0, 0) ≥

√
β
4

{
−K +

√
βπM

2(1−√
β)

}
.

This holds.
5. At least one firm mixes between entering and not entering. The Bellman

equations and indifference conditions are:

V
1
(0, 0) = 1

2

{
ξ1(0, 0)

{
−K +

√
βπM

2(1−√
β)

}
+ (2 − ξ1(0, 0) − ξ2(0, 0))

√
βV

1
(0, 0)

}
,

−K +
√

βπM

2(1−√
β)

= √
βV

1
(0, 0),

V
2
(0, 0) = 1

2

{
ξ2(0, 0)

{
−K +

√
βπM

2(1−√
β)

}
+ (2 − ξ1(0, 0) − ξ2(0, 0))

√
βV

2
(0, 0)

}
,

−K +
√

βπM

2(1−√
β)

= √
βV

2
(0, 0).

This does not hold.
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