
Stabilized optimization via an NCL algorithm February 10, 2018

Ding Ma, Kenneth L. Judd, Dominique Orban, and Michael A. Saunders

1 Introduction

We consider constrained optimization problems of the form

NCO minimize
x∈Rn

φ(x)

subject to c(x)≥ 0, Ax≥ b, `≤ x≤ u,

where φ(x) is a smooth nonlinear function, c(x)∈Rm is a vector of smooth nonlinear
functions, and Ax ≥ b is a placeholder for a set of linear inequality or equality
constraints, with x lying between lower and upper bounds ` and u.

In some applications where m� n, there may be more than n constraints that
are essentially active at a solution. The constraints do not satisfy the linear indepen-
dence constraint qualification (LICQ), and general-purpose solvers are likely to have
difficulty converging. Some form of regularization is required. We achieve this by
adapting the augmented Lagrangian algorithm of the general-purpose optimization
solver LANCELOT [4, 5, 13] to derive a sequence of regularized subproblems denoted
in the next section by NCk.

Ding Ma
Management Science and Engineering, Stanford University, Stanford, CA, USA
e-mail: dingma@stanford.edu

Kenneth Judd
Hoover Institution, Stanford University, Stanford, CA, USA
e-mail: judd@hoover.stanford.edu

Dominique Orban
GERAD and Dept of Mathematics and Industrial Engineering, École Polytechnique, Montréal, QC,
Canada
e-mail: dominique.orban@gerad.ca

Michael Saunders
Dept of Management Science and Engineering, Stanford University, Stanford, CA, USA
e-mail: saunders@stanford.edu

1

2 Stabilized optimization via an NCL algorithm

2 BCL, LCL, and NCL methods

The theory for the large-scale solver LANCELOT is best described in terms of the
general optimization problem

NECB minimize
x∈Rn

φ(x)

subject to c(x) = 0, `≤ x≤ u

with nonlinear equality constraints and bounds. We let x∗ denote a local solution of
NECB and (y∗,z∗) denote associated multipliers. LANCELOT treats NECB by solving
a sequence of bound-constrained subproblems of the form

BCk minimize
x

L(x,yk,ρk) = φ(x)− yT
k c(x)+ 1

2 ρk‖c(x)‖2

subject to `≤ x≤ u,

where yk is an estimate of the Lagrange multipliers y∗ for the equality constraints.
This was called a bound-constrained Lagrangian (BCL) method by Friedlander and
Saunders [8], in contrast to the LCL (linearly constrained Lagrangian) methods of
Robinson [16] and MINOS [14], whose subproblems LCk contain bounds as in BCk
and also linearizations of the equality constraints at the current point xk (including
linear constraints).

In order to treat NCO with a sequence of BCk subproblems, we convert the
nonlinear inequality constraints to equalities to obtain

NCO′ minimize
x,s

φ(x)

subject to c(x)− s = 0, Ax≥ b, `≤ x≤ u, s≥ 0

with corresponding subproblems (including linear constraints)

BCk
′ minimize

x,s
L(x,yk,ρk) = φ(x)− yT

k(c(x)− s)+ 1
2 ρk‖c(x)− s‖2

subject to Ax≥ b, `≤ x≤ u, s≥ 0.

We now introduce variables r = −(c(x)− s) into BCk
′ to obtain the nonlinearly

constrained Lagrangian (NCL) subproblem

NCk minimize
x,r

φ(x)+ yT
k r+ 1

2 ρk‖r‖2

subject to c(x)+ r ≥ 0, Ax≥ b, `≤ x≤ u,

in which r serves to make the nonlinear constraints independent. Assuming existence
of finite multipliers and feasibility, for ρk > 0 and larger than a certain finite value,
the NCL subproblems should cause yk to approach y∗ and most of the solution
(x∗k ,r

∗
k ,y
∗
k ,z
∗
k) of NCk to approach (x∗,y∗,z∗), with r∗k approaching zero.

Stabilized optimization via an NCL algorithm February 10, 2018 3

Problem NCk is analogous to Friedlander and Orban’s formulation for convex
quadratic programs [7, Eq. (3.2)]. See also Arreckx and Orban [2], where the motiva-
tion is the same as here, achieving reliability when the nonlinear constraints don’t
satisfy LICQ.

Note that for general problems NECB, the BCL and LCL subproblems contain
linear constraints (bounds only, or linearized constraints and bounds). Our NCL
formulation retains nonlinear constraints in the NCk subproblems, but simplifies
them by ensuring that they satisfy LICQ. On large problems, the additional variables
r ∈ Rm in NCk may be detrimental to active-set solvers like MINOS or SNOPT
[9] because they increase the number of degrees of freedom (superbasic variables).
Fortunately they are easily accommodated by interior methods, as our numerical
results show for IPOPT [17, 10]. We trust that the same will be true for KNITRO
[3, 12].

2.1 The BCL algorithm

The LANCELOT BCL method is summarized in Algorithm BCL. Each subproblem
BCk is solved with a specified optimality tolerance ωk, generating an iterate x∗k
and the associated Lagrangian gradient z∗k ≡ ∇L(x∗k ,yk,ρk). If ‖c(x∗k)‖ is sufficiently
small, the iteration is regarded as “successful” and an update to yk is computed from
x∗k . Otherwise, yk is not altered but ρk is increased.

Key properties are that the subproblems are solved inexactly, the penalty parameter
is increased only finitely often, and the multiplier estimates yk need not be assumed
bounded. Under certain conditions, all iterations are eventually successful, the ρk’s
remain constant, the iterates converge superlinearly, and the algorithm terminates in
a finite number of iterations [4].

Note that at step 8 of Algorithm BCL, the inexact minimization would be typically
carried out from the initial guess (x∗k ,z

∗
k). However, other initial points are possible.

At step 12, we say that (xk,yk,zk) solves NECB to within ω∗ if the largest dual
infeasibility is smaller than ω∗.

2.2 The NCL algorithm

To derive a stabilized algorithm for problem NCO, we modify Algorithm BCL by
introducing r and replacing the subproblems BCk by NCk. The resulting method is
summarized in Algorithm NCL. The update to yk becomes y∗k ← yk−ρk(c(x∗k)−
s∗k) = yk +ρkr∗k , the value satisfied by an optimal y∗k for subproblem NCk. Step 8 of
Algorithm NCL would typically use (x∗k ,r

∗
k ,y
∗
k ,z
∗
k) as initial guess, and that is what

we use in our implementation below.

4 Stabilized optimization via an NCL algorithm

Algorithm 1 BCL (Bound-Constrained Lagrangian Method for NECB)
1: procedure BCL(x0, y0, z0)
2: Set penalty parameter ρ1 > 0, scale factor τ > 1, and constants α,β > 0 with α < 1.
3: Set positive convergence tolerances η∗,ω∗� 1 and infeasibility tolerance η1 > η∗.
4: k← 0, converged← false
5: repeat
6: k← k+1
7: Choose optimality tolerance ωk > 0 such that limk→∞ ωk ≤ ω∗.
8: Find (x∗k ,z

∗
k) that solves BCk to within ωk.

9: if ‖c(x∗k)‖ ≤max(η∗,ηk) then
10: y∗k ← yk−ρkc(x∗k)
11: xk← x∗k , yk← y∗k , zk← z∗k
12: if (xk,yk,zk) solves NECB to within ω∗, converged← true
13: ρk+1← ρk

14: ηk+1← ηk/(1+ρ
β

k+1)
15: else
16: ρk+1← τρk
17: ηk+1← η0/(1+ρα

k+1)
18: end if
19: until converged
20: x∗← xk, y∗← yk, z∗← zk
21: end procedure

Algorithm 2 NCL (Nonlinearly Constrained Lagrangian Method for NCO)
1: procedure NCL(x0, r0, y0, z0)
2: Set penalty parameter ρ1 > 0, scale factor τ > 1, and constants α,β > 0 with α < 1.
3: Set positive convergence tolerances η∗,ω∗� 1 and infeasibility tolerance η1 > η∗.
4: k← 0, converged← false
5: repeat
6: k← k+1
7: Choose optimality tolerance ωk > 0 such that limk→∞ ωk ≤ ω∗.
8: Find (x∗k ,r

∗
k ,y
∗
k ,z
∗
k) that solves NCk to within ωk.

9: if ‖r∗k‖ ≤max(η∗,ηk) then
10: y∗k ← yk +ρkr∗k
11: xk← x∗k , rk← r∗k , yk← y∗k , zk← z∗k
12: if (xk,yk,zk) solves NCO to within ω∗, converged← true
13: ρk+1← ρk

14: ηk+1← ηk/(1+ρ
β

k+1)
15: else
16: ρk+1← τρk
17: ηk+1← η0/(1+ρα

k+1)
18: end if
19: until converged
20: x∗← xk, r∗← rk, y∗← yk, z∗← zk
21: end procedure

Stabilized optimization via an NCL algorithm February 10, 2018 5

3 An application: optimal tax policy

Some challenging test cases arise from the tax policy models described in [11]. With
x = (c,y), they take the form

TAX maximize
c,y

∑i λiU i(ci,yi)

subject to U i(ci,yi)−U i(c j,y j)≥ 0 for all i, j
λ T (y− c)≥ 0

c, y≥ 0,

where ci and yi are the consumption and income of taxpayer i, and λ is a vector of
positive weights. The utility functions U i(ci,yi) are each of the form

U(c,y) =
(c−α)1−1/γ

1−1/γ
−ψ

(y/w)1/η+1

1/η +1
,

where w is the wage rate and α , γ , ψ and η are taxpayer heterogeneities. More
precisely, the utility functions are of the form

U i, j,k,g,h(cp,q,r,s,t ,yp,q,r,s,t) =
(cp,q,r,s,t −αk)

1−1/γh

1−1/γh
−ψg

(yp,q,r,s,t/wi)
1/η j+1

1/η j +1
,

where (i, j,k,g,h) and (p,q,r,s, t) run over na wage types, nb elasticities of labor
supply, nc basic need types, nd levels of distaste for work, and ne elasticities of
demand for consumption, with na, nb, nc, nd, ne determining the size of the problem,
namely m = T (T −1) nonlinear constraints, n = 2T variables, with T := na×nb×
nc×nd×ne.

Table 1 summarizes results for a 4D example (ne = 1 and γ1 = 1). The first term
of U(c,y) becomes log(c−α), the limit as γ → 1. Problem NCO and Algorithm
NCL were formulated in the AMPL modeling language [6]. The solvers SNOPT [9]
and IPOPT [17] were unable to solve NCO itself, but Algorithm NCL was successful
with IPOPT solving the subproblems NCk. We use a default configuration of IPOPT
with MUMPS [1] as symmetric indefinite solver to compute search directions. We
set the optimality tolerance for IPOPT to ωk = 10−6 throughout, and specified warm
starts for k ≥ 2 using options warm start init point=yes and mu init=1e-4. These
options greatly improved the performance of IPOPT on each subproblem compared
to cold starts, for which mu init=0.1. It is helpful that only the objective function of
NCk changes with k.

For this example, problem NCO has m = 39006 nonlinear inequality constraints
and one linear constraint in n = 395 variables x = (c,y), and nonnegativity bounds.
Subproblem NCk has 39007 constraints and 39402 variables when r is included.
Fortunately r does not affect the complexity of each IPOPT iteration, but greatly
improves stability. In contrast, active-set methods like MINOS and SNOPT are
very inefficient on the NCk subproblems because the large number of inequality

6 Stabilized optimization via an NCL algorithm

k ρk ηk ‖r∗k‖∞ φ(x∗k) Itns Time
1 102 10−2 3.1e-03 -2.1478532e+01 125 42.8
2 102 10−3 1.3e-03 -2.1277587e+01 18 6.5
3 103 10−3 6.6e-04 -2.1177152e+01 27 9.1
4 103 10−4 5.5e-04 -2.1110210e+01 31 10.8
5 104 10−4 2.9e-04 -2.1066664e+01 57 24.3
6 105 10−4 6.5e-05 -2.1027152e+01 75 26.8
7 105 10−5 5.2e-05 -2.1018896e+01 130 60.9
8 106 10−5 9.3e-06 -2.1015295e+01 159 81.8
9 106 10−6 2.0e-06 -2.1014808e+01 139 70.0
10 107 10−6 2.1e-07 -2.1014800e+01 177 97.6

Table 1 NCL results on a 4D example with na,nb,nc,nd = 11,3,3,2, giving m = 39006, n = 395.
Itns refers to IPOPT’s primal-dual interior point method, and Time is seconds on an Apple iMac
with 2.93 GHz Intel Core i7.

k ρk ηk ‖r∗k‖∞ φ(x∗k) Itns Time
1 102 10−2 7.0e-03 -4.2038075e+02 95 41.1
2 102 10−3 4.1e-03 -4.2002898e+02 17 7.2
3 103 10−3 1.3e-03 -4.1986069e+02 20 8.1
4 104 10−3 4.4e-04 -4.1972958e+02 48 25.0
5 104 10−4 2.2e-04 -4.1968646e+02 43 20.5
6 105 10−4 9.8e-05 -4.1967560e+02 64 32.9
7 105 10−5 6.6e-05 -4.1967177e+02 57 26.8
8 106 10−5 4.2e-06 -4.1967150e+02 87 46.2
9 106 10−6 9.4e-07 -4.1967138e+02 96 53.6

Table 2 NCL results on a 5D example with na,nb,nc,nd,ne = 5,3,3,2,2, giving m = 32220,
n = 360.

constraints leads to thousands of minor iterations, and the presence of r (with no
bounds) leads to thousands of superbasic variables. About 3.2n constraints were
within 10−6 of being active.

Table 2 summarizes results for a 5D example. The NCk subproblems have
m = 32220 nonlinear constraints and n = 360 variables, leading to 32581 variables
including r. Again the options warm start init point=yes and mu init=1e-4 for k ≥ 2
led to good performance by IPOPT on each subproblem. About 3n constraints were
within 10−6 of being active.

For much larger problems of this type, we found that it was helpful to reduce
mu init more often, as illustrated in Table 3. The NCk subproblems here have m =
570780 nonlinear constraints and n = 1512 variables, leading to 572292 variables
including r. Note that the number of NCL iterations is stable (k ≤ 10), and IPOPT
performs well on each subproblem with decreasing mu init. This time about 6.6n
constraints were within 10−6 of being active.

Note that the LANCELOT approach allows early subproblems to be solved less
accurately. It may save time to set ωk = ηk (say) rather than ωk = ω∗ throughout.

Stabilized optimization via an NCL algorithm February 10, 2018 7

k ρk ηk ‖r∗k‖∞ φ(x∗k) mu init Itns Time
1 102 10−2 5.1e-03 -1.7656816e+03 10−1 825 7763.3
2 102 10−3 2.4e-03 -1.7648480e+03 10−4 66 472.8
3 103 10−3 1.3e-03 -1.7644006e+03 10−4 106 771.3
4 104 10−3 3.8e-04 -1.7639491e+03 10−5 132 1347.0
5 104 10−4 3.2e-04 -1.7637742e+03 10−5 229 2450.9
6 105 10−4 8.6e-05 -1.7636804e+03 10−6 104 1096.9
7 105 10−5 4.9e-05 -1.7636469e+03 10−6 143 1633.4
8 106 10−5 1.5e-05 -1.7636252e+03 10−7 71 786.1
9 107 10−5 2.8e-06 -1.7636196e+03 10−7 67 725.7
10 107 10−6 5.1e-07 -1.7636187e+03 10−8 18 171.0

Table 3 NCL results on a 5D example with na,nb,nc,ne,ne = 21,3,3,2,2, giving m = 570780,
n = 1512.

4 Conclusions

This work has been illuminating in several ways as we sought to improve our ability
to solve examples of problem TAX.

• Small examples of the tax model solve efficiently with MINOS and SNOPT, but
eventually fail to converge as the problem size increases.

• IPOPT also solves small examples efficiently, but eventually starts requesting
additional memory for the MUMPS sparse linear solver. The solver may freeze,
or the iterations may diverge.

• The NCk subproblems are not suitable for MINOS or SNOPT because of the
large number of variables (x,r) and the resulting number of superbasic variables
(although warm-starts are natural).

• It is often said that interior methods cannot be warm-started. Nevertheless, IPOPT
has several runtime options that have proved to be extremely helpful for imple-
menting Algorithm NCL. For the results obtained here, it has been sufficient to
say that warm starts are wanted for k > 1, and that the IPOPT barrier parameter
should be initialized at decreasing values for later k (where only the objective of
subproblem NCk changes with k).

• The numerical examples of section 3 had 3n, 3n and 6.6n constraints essentially
active at the solution, yet were solved successfully. They suggest that the NCL
approach with an interior method as subproblem solver can overcome LICQ
difficulties on problems that could not be solved directly.

Funding

This work was supported by the National Institute of General Medical Sciences of
the National Institutes of Health [award U01GM102098] (DM and MAS), XXX
(KLJ), and an NSERC Discovery Grant (DO).

8 Stabilized optimization via an NCL algorithm

Acknowledgements We are extremely grateful to the developers of AMPL and IPOPT for making
the development and evaluation of Algorithm NCL possible. We are especially grateful to Mehiddin
Al-Baali and other organizers of the NAO-IV conference Numerical Analysis and Optimization
at Sultan Qaboos University, Muscat, Oman, which brought the authors and AMPL developers
together in January 2017.

References

1. Patrick R. Amestoy, Iain S. Duff, Jean-Yves L’Excellent, and Jacko Koster. A fully asyn-
chronous multifrontal solver using distributed dynamic scheduling. SIAM Journal on Matrix
Analysis and Applications, 23(1):15–41, 2001.

2. S. Arreckx and D. Orban. A regularized factorization-free method for equality-constrained
optimization. Technical Report GERAD G-2016-65, GERAD, Montréal, QC, Canada, 2016.

3. Richard H. Byrd, Jorge Nocedal, and Richard A. Waltz. Knitro: An integrated package
for nonlinear optimization. In G. Di Pillo and M. Roma, editors, Large-Scale Nonlinear
Optimization, pages 35–59. Springer US, Boston, MA, 2006.

4. A. R. Conn, N. I. M. Gould, and Ph. L. Toint. A globally convergent augmented Lagrangian
algorithm for optimization with general constraints and simple bounds. SIAM J. Numer. Anal.,
28:545–572, 1991.

5. A. R. Conn, N. I. M. Gould, and Ph. L. Toint. LANCELOT: A Fortran Package for Large-scale
Nonlinear Optimization (Release A). Lecture Notes in Computation Mathematics 17. Springer
Verlag, Berlin, Heidelberg, New York, London, Paris and Tokyo, 1992.

6. R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modeling Language for Mathematical
Programming. Brooks/Cole, Pacific Grove, second edition, 2002.

7. M. P. Friedlander and D. Orban. A primal–dual regularized interior-point method for convex
quadratic programs. Math. Prog. Comp., 4(1):71–107, 2012.

8. M. P. Friedlander and M. A. Saunders. A globally convergent linearly constrained Lagrangian
method for nonlinear optimization. SIAM J. Optim., 15(3):863–897, 2005.

9. P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP algorithm for large-scale
constrained optimization. SIAM Review, 47(1):99–131, 2005. SIGEST article.

10. IPOPT open source NLP solver. https://projects.coin-or.org/Ipopt.
11. K. L. Judd, D. Ma, M. A. Saunders, and C.-L. Su. Optimal income taxation with multidimen-

sional taxpayer types. Working paper, Hoover Institution, Stanford University, 2017.
12. KNITRO optimization software. https://www.artelys.com/tools/knitro_doc/

2_userGuide.html.
13. LANCELOT optimization software. http://www.numerical.rl.ac.uk/

lancelot/blurb.html.
14. B. A. Murtagh and M. A. Saunders. A projected Lagrangian algorithm and its implementation

for sparse nonlinear constraints. Math. Program. Study, 16:84–117, 1982.
15. NCL. http://stanford.edu/group/SOL/multiscale/models/NCL/.
16. S. M. Robinson. A quadratically-convergent algorithm for general nonlinear programming

problems. Math. Program., 3:145–156, 1972.
17. A. Wächter and L. T. Biegler. On the implementation of a primal-dual interior point filter line

search algorithm for large-scale nonlinear programming. Math. Program., 106(1), 2006.

Stabilized optimization via an NCL algorithm February 10, 2018 9

Appendix A AMPL models, data, and scripts

Algorithm NCL has been implemented in the AMPL modeling language [6] and
tested on problem TAX. The following sections list each relevant file. The files are
available from [15].

A.1 Tax model

File pTax5Dncl.mod codes subproblem NCk for problem TAX with five parame-
ters w, η , α , ψ , γ , using µ := 1/η . Note that for U(c,y) in the objective and constraint
functions, the first term (c−α)1−1/γ/(1−1/γ) is replaced by a piecewise-smooth
function that is defined for all values of c and α (see [11]).

Primal regularization 1
2 δ‖(c,y)‖2 with δ = 10−8 is added to the objective function

to promote uniqueness of the minimizer. The vector r is called R to avoid a clash
with subscript r.

pTax5Dncl.mod

Define parameters for agents (taxpayers)
param na; # number of types in wage
param nb; # number of types in eta
param nc; # number of types in alpha
param nd; # number of types in psi
param ne; # number of types in gamma
set A := 1..na; # set of wages
set B := 1..nb; # set of eta
set C := 1..nc; # set of alpha
set D := 1..nd; # set of psi
set E := 1..ne; # set of gamma
set T = {A,B,C,D,E}; # set of agents

Define wages for agents (taxpayers)
param wmin; # minimum wage level
param wmax; # maximum wage level
param w {A}; # i, wage vector
param mu{B}; # j, mu = 1/eta# mu vector
param mu1{B}; # mu1[j] = mu[j] + 1
param alpha{C}; # k, ak vector for utility
param psi{D}; # g
param gamma{E}; # h
param lambda{A,B,C,D,E}; # distribution density
param epsilon;
param primreg default 1e-8; # Small primal regularization

var c{(i,j,k,g,h) in T} >= 0.1; # consumption for tax payer (i,j,k,g,h)
var y{(i,j,k,g,h) in T} >= 0.1; # income for tax payer (i,j,k,g,h)
var R{(i,j,k,g,h) in T, (p,q,r,s,t) in T:

!(i=p and j=q and k=r and g=s and h=t)} >= -1e+20, <= 1e+20;

10 Stabilized optimization via an NCL algorithm

param kmax default 20; # limit on NCL itns
param rhok default 1e+2; # augmented Lagrangian penalty parameter
param rhofac default 10.0; # increase factor
param rhomax default 1e+8; # biggest rhok
param etak default 1e-2; # opttol for augmented Lagrangian loop
param etafac default 0.1; # reduction factor for opttol
param etamin default 1e-8; # smallest etak
param rmax default 0; # max r (for printing)
param rmin default 0; # min r (for printing)
param rnorm default 0; # ||r||_inf
param rtol default 1e-6; # quit if biggest |r_i| <= rtol

param nT default 1; # nT = na*nb*nc*nd*ne
param m default 1; # nT*(nT-1) = no. of nonlinear constraints
param n default 1; # 2*nT = no. of nonlinear variables

param ck{(i,j,k,g,h) in T} default 0; # current variable c
param yk{(i,j,k,g,h) in T} default 0; # current variable y
param rk{(i,j,k,g,h) in T, (p,q,r,s,t) in T: # current variable r = - (c(x) - s)

!(i=p and j=q and k=r and g=s and h=t)} default 0;
param dk{(i,j,k,g,h) in T, (p,q,r,s,t) in T: # current dual variables (y_k)

!(i=p and j=q and k=r and g=s and h=t)} default 0;

minimize f:
sum{(i,j,k,g,h) in T}
(

(if c[i,j,k,g,h] - alpha[k] >= epsilon then
- lambda[i,j,k,g,h] *

((c[i,j,k,g,h] - alpha[k])ˆ(1-1/gamma[h]) / (1-1/gamma[h])
- psi[g]*(y[i,j,k,g,h]/w[i])ˆmu1[j] / mu1[j])

else
- lambda[i,j,k,g,h] *

(- 0.5/gamma[h] * epsilonˆ(-1/gamma[h]-1) * (c[i,j,k,g,h] - alpha[k])ˆ2
+ (1+1/gamma[h])* epsilonˆ(-1/gamma[h]) * (c[i,j,k,g,h] - alpha[k])
+ (1/(1-1/gamma[h]) - 1 - 0.5/gamma[h]) * epsilonˆ(1-1/gamma[h])

- psi[g]*(y[i,j,k,g,h]/w[i])ˆmu1[j] / mu1[j])
)

+ 0.5 * primreg * (c[i,j,k,g,h]ˆ2 + y[i,j,k,g,h]ˆ2)
)

+ sum{(i,j,k,g,h) in T, (p,q,r,s,t) in T: !(i=p and j=q and k=r and g=s and h=t)}
(dk[i,j,k,g,h,p,q,r,s,t] * R[i,j,k,g,h,p,q,r,s,t]

+ 0.5 * rhok * R[i,j,k,g,h,p,q,r,s,t]ˆ2);

subject to

Incentive{(i,j,k,g,h) in T, (p,q,r,s,t) in T:
!(i=p and j=q and k=r and g=s and h=t)}:

(if c[i,j,k,g,h] - alpha[k] >= epsilon then
(c[i,j,k,g,h] - alpha[k])ˆ(1-1/gamma[h]) / (1-1/gamma[h])
- psi[g]*(y[i,j,k,g,h]/w[i])ˆmu1[j] / mu1[j]

else
- 0.5/gamma[h] *epsilonˆ(-1/gamma[h]-1)*(c[i,j,k,g,h] - alpha[k])ˆ2
+ (1+1/gamma[h])*epsilonˆ(-1/gamma[h])*(c[i,j,k,g,h] - alpha[k])

Stabilized optimization via an NCL algorithm February 10, 2018 11

+ (1/(1-1/gamma[h]) - 1 - 0.5/gamma[h])*epsilonˆ(1-1/gamma[h])
- psi[g]*(y[i,j,k,g,h]/w[i])ˆmu1[j] / mu1[j]

)
- (if c[p,q,r,s,t] - alpha[k] >= epsilon then

(c[p,q,r,s,t] - alpha[k])ˆ(1-1/gamma[h]) / (1-1/gamma[h])
- psi[g]*(y[p,q,r,s,t]/w[i])ˆmu1[j] / mu1[j]

else
- 0.5/gamma[h] *epsilonˆ(-1/gamma[h]-1)*(c[p,q,r,s,t] - alpha[k])ˆ2
+ (1+1/gamma[h])*epsilonˆ(-1/gamma[h])*(c[p,q,r,s,t] - alpha[k])
+ (1/(1-1/gamma[h]) - 1 - 0.5/gamma[h])*epsilonˆ(1-1/gamma[h])
- psi[g]*(y[p,q,r,s,t]/w[i])ˆmu1[j] / mu1[j]

)
+ R[i,j,k,g,h,p,q,r,s,t] >= 0;

Technology:
sum{(i,j,k,g,h) in T} lambda[i,j,k,g,h]*(y[i,j,k,g,h] - c[i,j,k,g,h]) >= 0;

A.2 Tax model data

File pTax5Dncl.dat provides data for a specific problem.

pTax5Dncl.dat

data;

let na := 5;
let nb := 3;
let nc := 3;
let nd := 2;
let ne := 2;

Set up wage dimension intervals
let wmin := 2;
let wmax := 4;
let {i in A} w[i] := wmin + ((wmax-wmin)/(na-1))*(i-1);

data;

param mu :=
1 0.5
2 1
3 2 ;

Define mu1
let {j in B} mu1[j] := mu[j] + 1;

data;

param alpha :=
1 0

12 Stabilized optimization via an NCL algorithm

2 1
3 1.5;

param psi :=
1 1
2 1.5;

param gamma :=
1 2
2 3;

Set up 5 dimensional distribution
let {(i,j,k,g,h) in T} lambda[i,j,k,g,h] := 1;

Choose a reasonable epsilon
let epsilon := 0.1;

A.3 Initial values

File pTax5Dinitial.run solves a simplified model to compute starting values
for Algorithm NCL. The nonlinear inequality constraints are removed, and y = c
is enforced. This model solves easily with MINOS or SNOPT on all cases tried.
Solution values are output to file p5Dinitial.dat.

pTax5Dinitial.run

Define parameters for agents (taxpayers)
param na := 5; # number of types in wage
param nb := 3; # number of types in eta
param nc := 3; # number of types in alpha
param nd := 2; # number of types in psi
param ne := 2; # number of types in gamma
set A := 1..na; # set of wages
set B := 1..nb; # set of eta
set C := 1..nc; # set of alpha
set D := 1..nd; # set of psi
set E := 1..ne; # set of gamma
set T = {A,B,C,D,E}; # set of agents

Define wages for agents (taxpayers)
param wmin := 2; # minimum wage level
param wmax := 4; # maximum wage level
param w {i in A} := wmin + ((wmax-wmin)/(na-1))*(i-1); # wage vector

Choose a reasonable epsilon
param epsilon := 0.1;

mu vector
param mu {B}; # mu = 1/eta

Stabilized optimization via an NCL algorithm February 10, 2018 13

param mu1{B}; # mu1[j] = mu[j] + 1
param alpha {C};
param gamma {E};
param psi {D};

var c {(i,j,k,g,h) in T} >= 0.1;
var y {(i,j,k,g,h) in T} >= 0.1;

maximize f: sum{(i,j,k,g,h) in T}
if c[i,j,k,g,h] - alpha[k] >= epsilon then

(c[i,j,k,g,h] - alpha[k])ˆ(1-1/gamma[h]) / (1-1/gamma[h])
- psi[g] * (y[i,j,k,g,h]/w[i])ˆmu1[j] / mu1[j]

else
- 0.5/gamma[h] *epsilonˆ(-1/gamma[h]-1)*(c[i,j,k,g,h] - alpha[k])ˆ2
+ (1+1/gamma[h])*epsilonˆ(-1/gamma[h]) *(c[i,j,k,g,h] - alpha[k])
+ (1/(1-1/gamma[h]) -1 - 0.5/gamma[h])*epsilonˆ(1-1/gamma[h])
- psi[g] * (y[i,j,k,g,h]/w[i])ˆmu1[j] / mu1[j];

subject to
Budget {(i,j,k,g,h) in T}: y[i,j,k,g,h] - c[i,j,k,g,h] = 0;

let {(i,j,k,g,h) in T} y[i,j,k,g,h] := i+1;
let {(i,j,k,g,h) in T} c[i,j,k,g,h] := i+1;

data;

param mu :=
1 0.5
2 1
3 2 ;

Define mu1
let {j in B} mu1[j] := mu[j] + 1;

data;

param alpha :=
1 0
2 1
3 1.5;

param psi :=
1 1
2 1.5;

param gamma :=
1 2
2 3;

option solver snopt;
option show_stats 1;

option snopt_options ’ \
summary_file=6 \

14 Stabilized optimization via an NCL algorithm

print_file=9 \
scale=no \
print_level=0 \
major_iterations=2000\
iterations=50000 \
optimality_tol=1e-7 \

*penalty=100.0 \
superbasics_limit=3000\
solution=yes \

*verify_level=3 \
’;

display na,nb,nc,nd,ne;
solve;
display na,nb,nc,nd,ne;
display y,c >p5Dinitial.dat;
close p5Dinitial.dat;

A.4 NCL implementation

File pTax5Dnclipopt.run uses files
pTax5Dinitial.run
pTax5Dncl.mod
pTax5Dncl.dat
pTax5Dinitial.dat

to implement Algorithm NCL. Subproblems NCk are solved in a loop until ‖r∗k‖∞ ≤
rtol = 1e-6, or ηk has been reduced to parameter etamin = 1e-8, or ρk has
been increased to parameter rhomax = 1e+8. The loop variable k is called K to
avoid a clash with subscript k in the model file.

Optimality tolerance ωk = 10−6 is used throughout to ensure that the solution of
the final subproblem NCk will be close to a solution of the original problem if ‖r∗k‖∞

is small enough for the final k (‖r∗k‖∞ ≤ rtol = 1e-6).
IPOPT is used to solve each subproblem NCk, with runtime options set to imple-

ment increasingly warm starts.

pTax5Dnclipopt.run

reset;
model pTax5Dinitial.run;
reset;
model pTax5Dncl.mod;
data pTax5Dncl.dat;
data; var include p5Dinitial.dat;

model;
option solver ipopt;
option show_stats 1;

Stabilized optimization via an NCL algorithm February 10, 2018 15

option ipopt_options ’\
dual_inf_tol=1e-6 \
max_iter=5000 \

’;

option opt2 $ipopt_options ’ warm_start_init_point=yes’;

NCL method.
kmax, rhok, rhofac, rhomax, etak, etafac, etamin, rtol
are defined in the .mod file.

printf "NCLipopt log for pTax5D\n" > 5DNCLipopt.log;
display na, nb, nc, nd, ne, primreg > 5DNCLipopt.log;
printf " k rhok etak rnorm Obj\n" > 5DNCLipopt.log;

for {K in 1..kmax}
{ display na, nb, nc, nd, ne, primreg, K, kmax, rhok, etak;

if K == 2 then {option ipopt_options $opt2 ’ mu_init=1e-4’};
if K == 4 then {option ipopt_options $opt2 ’ mu_init=1e-5’};
if K == 6 then {option ipopt_options $opt2 ’ mu_init=1e-6’};
if K == 8 then {option ipopt_options $opt2 ’ mu_init=1e-7’};
if K ==10 then {option ipopt_options $opt2 ’ mu_init=1e-8’};

display $ipopt_options;
solve;

let rmax := max({(i,j,k,g,h) in T, (p,q,r,s,t) in T:
!(i=p and j=q and k=r and g=s and h=t)} R[i,j,k,g,h,p,q,r,s,t]);

let rmin := min({(i,j,k,g,h) in T, (p,q,r,s,t) in T:
!(i=p and j=q and k=r and g=s and h=t)} R[i,j,k,g,h,p,q,r,s,t]);

display na, nb, nc, nd, ne, primreg, K, rhok, etak, kmax;
display K, kmax, rmax, rmin;
let rnorm := max(abs(rmax), abs(rmin)); # ||r||_inf

printf "%4i %9.1e %9.1e %9.1e %15.7e\n", K, rhok, etak, rnorm, f >> 5DNCLipopt.log;
close 5DNCLipopt.log;

if rnorm <= rtol then
{ printf "Stopping: rnorm is small\n"; display K, rnorm; break; }

if rnorm <= etak then # update dual estimate dk; save new solution
{let {(i,j,k,g,h) in T, (p,q,r,s,t) in T:

!(i=p and j=q and k=r and g=s and h=t)}
dk[i,j,k,g,h,p,q,r,s,t] :=
dk[i,j,k,g,h,p,q,r,s,t] + rhok*R[i,j,k,g,h,p,q,r,s,t];

let {(i,j,k,g,h) in T} ck[i,j,k,g,h] := c[i,j,k,g,h];
let {(i,j,k,g,h) in T} yk[i,j,k,g,h] := y[i,j,k,g,h];
display K, etak;
if etak == etamin then { printf "Stopping: etak = etamin\n"; break; }
let etak := max(etak*etafac, etamin);
display etak;

}
else # keep previous solution; increase rhok

16 Stabilized optimization via an NCL algorithm

{ let {(i,j,k,g,h) in T} c[i,j,k,g,h] := ck[i,j,k,g,h];
let {(i,j,k,g,h) in T} y[i,j,k,g,h] := yk[i,j,k,g,h];
display K, rhok;
if rhok == rhomax then { printf "Stopping: rhok = rhomax\n"; break; }
let rhok := min(rhok*rhofac, rhomax);
display rhok;

}
}

display c,y; display na, nb, nc, nd, ne, primreg, rhok, etak, rnorm;

Count how many constraint are close to being active.
data;
let nT := na*nb*nc*nd*ne; let m := nT*(nT-1); let n := 2*nT;
let etak := 1.0001e-10;
printf "\n m = %8i\n n = %8i\n", m, n >> 5DNCLipopt.log;
printf "\n Constraints within tol of being active\n\n" >> 5DNCLipopt.log;
printf " tol count count/n\n" >> 5DNCLipopt.log;

for {K in 1..10}
{
let kmax := card{(i,j,k,g,h) in T, (p,q,r,s,t) in T:

!(i=p and j=q and k=r and g=s and h=t)
and Incentive[i,j,k,g,h,p,q,r,s,t].slack <= etak};

printf "%9.1e %8i %8.1f\n", etak, kmax, kmax/n >> 5DNCLipopt.log;
let etak := etak*10;

}
printf "Created 5DNCLipopt.log\n";

