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1. Introduction 

A large body of literature in finance and macroeconomics makes the simplifying assumption that aggregate variables

are determined by the behavior of a representative agent. In reality, different people earn different incomes, have different

talents, and hold different expectations. For this heterogeneity to be reflected in aggregate outcomes, incompleteness of asset

markets is essential. In reality, substantial amounts of idiosyncratic risk can only be partially insured. Labor income risk

serves as a prime example. Modeling this type of idiosyncratic risk permits a more stringent test of our current economic

theory since we can use information about the entire distribution of economic outcomes across the population. 

This paper proposes a numerical method and solves an incomplete markets model with a finite but arbitrarily large

number of households. The algorithm is based on perturbation methods and thus is simple to apply and particularly well

suited for economies in which the state space is large. We demonstrate that the solution around the deterministic steady

state, the standard point of approximation for perturbation methods, is highly symmetric. Therefore, despite the state space

consisting of distributions of state variables across households, computing the solution remains manageable. 
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We analyze a dynamic stochastic general equilibrium (DSGE) model with aggregate risk in production and an endoge-

nous capital stock. A firm employs a Cobb-Douglas production technology to produce a single consumption good. Future

total factor productivity is uncertain due to aggregate risk. Households maximize expected discounted utility given by an

additively separable utility function with constant relative risk aversion in consumption. 

We add idiosyncratic shocks to labor income that households cannot insure against. Households only trade claims to cap-

ital, which renders markets incomplete. As a result, equilibrium outcomes respond to idiosyncratic conditions. Households

hold different levels of capital, which translates into inequality of wealth and consumption. 

The analysis of this model presents a difficult problem. Ultimately, we want to be able to study the interaction of house-

holds’ choices and asset returns across states of the economy as well as the distribution of capital holdings and consumption

across the population. Therefore, we need a solution method that solves for individual behavior and aggregate variables in-

cluding asset prices as a function of the entire distribution of economic conditions. But, in turn, this distribution is affected

by all individuals’ behavior. In other words, the state space might contain several distributions of variables across households.

We lay out the mathematical structure of equilibrium conditions. We scale all standard deviations by a perturbation

parameter σ such that a value of σ = 1 corresponds to our model of interest. Setting this parameter to zero allows us to

study an auxiliary economy where we eliminate all uncertainty, the deterministic economy. 

To compute the equilibrium of our economy, we develop a solution technique for models with many heterogeneous

agents and incomplete markets based on perturbation methods. Perturbation methods build an approximation of the optimal

policies as functions of the state variables based on Taylor expansions. The first step is to find a special case of the model in

which the solution is known. Our model possesses a well-defined deterministic steady state available in closed form around

which we expand optimal policies with respect to all state variables. At the point of expansion, all households are identical

in all respects and thus the distribution of capital is degenerate. Having pinned down the deterministic steady state, we

build a Taylor expansion with respect to all state variables. We know that equilibrium outcomes are functions of the state

space. Thus we expand the deterministic economy in all state variables. But since we allow for an arbitrarily large number

of households, we also have an arbitrarily large number of state variables. 

The novel idea lies in exploiting the symmetry of decision rules across households. If two households are identical in

their objectives, they respond identically to the same economic conditions. For example, starting out from a case where

all households have identical state variables, a marginal increase in household one’s wealth will impact the decision of

household two the same way that a marginal increase in household two’s wealth would impact household one’s decision.

Exploiting this symmetry, we solve for the decision rules of all households as a function of the entire distribution of individ-

ual states. As a result, we only need to expand the optimality condition for one household around the deterministic steady

state. 

A second symmetry arises from the fact that all other households are “anonymous” to a household in the following sense.

At the deterministic steady state, an increase in wealth of household two impacts household one the same way as an equal

increase in household three’s wealth would. As a result, many coefficients in the Taylor series are identical. In an economy

where the state space consists of the distribution of capital, only two coefficients need to be computed in the first-order

approximation, the response to a marginal increase in one’s own capital and the response to a marginal increase in some

other household’s capital. 

Recognizing these symmetries simplifies the problem substantially. First, we only need to expand the optimality condi-

tions of one household. Second, we only need to compute few coefficients to reconstruct the entire Taylor series. We show

that this is not an approximation but arises from the structure of the problem. This is true independent of the number of

households and we can thus deal with an arbitrarily large cross-section of households. 

The last step of the algorithm makes the transition from the deterministic to the stochastic economy. Since shocks are

part of the state space, the previous expansion delivers equilibrium reactions to known, deterministic changes in these state

variables. For example, the previous expansion would compute the asset price reaction if the next period’s productivity was

above its steady-state level. To move to the stochastic economy, we integrate over all possible realizations of the shocks and

weight them by their probability. From this logic it follows immediately that we need a higher-order expansion. If we were

to resort to a first-order approximation, integrating over the first-order approximation would not affect equilibrium behavior

since a linear solution is certainty-equivalent. Higher-order expansions bring in the effects of uncertainty. A second-order

approximation reflects the effect of the variance of shocks, a cubic approximation additionally takes the third moment into

account, and so on. 

Our solution method is asymptotically valid and converges to the true solution within the radius of convergence. By

adding higher moments, we can construct better approximations to the true policy function. In practice, of course, conver-

gence is not complete. Therefore, we discuss a means of testing the accuracy of our solution. We plug our approximation

into the equilibrium conditions to check its optimality. 

We discuss the generality of the solution method. It applies whenever equilibrium or optimality conditions for a compet-

itive equilibrium or dynamic programming problems imply that the choice variables are smooth functions of state variables.

The dynamic programming problem or competitive equilibrium can feature arbitrarily many state variables and is thus in-

teresting for a large set of economic applications. We also discuss implementation of constraints as well as the addition of

portfolio choice to our economy. 

Next, we demonstrate the results from our solution method. First, we confirm previous research in finding that hetero-

geneity has an effect on the steady-state level of capital. Since households face idiosyncratic risk, they respond by building
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up a buffer stock of precautionary savings. With aggregate risk this channel is enforced. Due to the utility specification

featuring constant relative risk aversion, households increase their capital holdings further to guard against uncertain re-

turns to capital. 

Furthermore, we show the risk factors for this incomplete markets economy. We present the expansion of a stochastic

discount factor in closed form up to a given order. The expansion consists of standard risk factors such as total factor pro-

ductivity and, if stochastic, its variance but also risk due to incompleteness of markets such as the variance of idiosyncratic

labor income risk. This last factor only appears because there are missing markets that prevent households from insuring

against their idiosyncratic conditions. 

Finally, we state another economy taken from Panageas (2011) where we can apply perturbation methods. Since this

example allows for an explicit solution, we can compare our solution method to a standard technique that replaces the

actual law of motion with a function of moments of the distribution of state variables. We solve this asset pricing economy

explicitly using the linearized law of motion and the solution method of this paper. We find our technique shows superior

performance. 

We make two main caveats to our analysis. First, the model is not a state-of-the-art calibrated DSGE model but rather

serves as an illustration of the method. We chose this model because it allows our algorithm to be compared directly to

alternatives discussed in the literature (see Den Haan et al., 2010 ). However, we discuss generalizations in Section 6 . Second,

we do not prove the existence of an ergodic distribution. Our method introduces an arbitrarily small penalty for deviating

from an average level of capital for the auxiliary deterministic economy. In this case, the long-run distribution of capital is

determined but we do not extend the proof to the stochastic economy. 

This paper contributes to a growing literature on introducing heterogeneity into economic models and therefore

relates to several strands of research. After the seminal works of Bewley (1977) and Aiyagari (1994) , the litera-

ture has focused on idiosyncratic risk with aggregate shocks. In finance, a literature on asset pricing under hetero-

geneous expectations has evolved that takes changes in the wealth distribution into account (e.g. see Chiarella and

He (2001) or Chiarella et al., 2006 ). First, in special cases one might be able to find closed-form solutions as

in Heathcote et al. (2014) and Moll (2009) . Another promising idea is to use a multiplier approach to character-

ize features of the distribution of state variables across the population as in Chien et al. (2010) and Chien and

Lustig (2010) . Other papers make simplifying assumptions on the number of agents and the number of possible shocks,

as in Dumas and Lyasoff (2012) . Special cases with closed-form solutions can be used as a starting point for the

expansion. 

Most of the literature, however, is concerned with approximations. One idea is to replace the distribution of

wealth by aggregate wealth only when calculating the equation of motion for aggregate variables. The most prominent

method was developed in Krusell and Smith (1998) and inspired methods in the subsequent literature, for example in

Storesletten et al. (2007) , Gomes and Michaelides (2008) , Gomes and Schmid (2010) , and Favilukis et al. (2017) where ag-

gregate states and prices might influence the equation of motion. Alternatively, one might work with a limited history

of shocks as in Lustig and van Nieuwerburgh (2010) . Since we are particularly interested in the effect of distributions on

equity prices and the effect on new financial securities, this approximation method is not appropriate for this research

project. 

Recently, alternative solution methods for models with heterogeneous agents have been developed in Den Haan

et al. (2010) , Den Haan (2010) , Judd et al. (2009) , and Judd et al. (2010) . Den Haan et al. (2010) and Den Haan (2010) pa-

rameterize the distribution of state variables. Feng, Miao, Peralta-Alva and Santos (2014) approximate the equilibrium on a

lower-dimensional space. This paper develops a technique that does not require the specification of a class of distributions.

Compared with Judd et al. (2009) and Judd et al. (2010) , the method in this paper allows us to study as many agents as

desired whereas the number of agents is limited in their method. Reiter (2009) combines projection with a perturbation.

Our method applies to models with many state variables and choices for each individual and is asymptotically valid. Further-

more, the usual differences between perturbation and projection apply: while projection methods were designed as global

solution methods able to handle non-differentiabilities, our method returns quasi-analytical expressions, can handle many

state variables, and is easy to implement. 

Our method builds on perturbation methods as used in Jin and Judd (2002) , Judd and Guu (2000) , Judd (2002) ,

Hassan and Mertens (2017) , Mertens (2009) , Fernández-Villaverde and Rubio-Ramírez (2006) , and Garlappi and Sk-

oulakis (2010) . This paper, however, is not the first that attempts to use perturbation methods to analyze general equilib-

rium models with a large cross-section of agents. Alternative ideas have been explored by Preston and Roca (2007) and

Kim et al. (2010) . This line of work starts by restricting the state space for prices from the outset. More specifically,

Kim et al. (2010) use the process for prices from the representative agent economy, which amounts to assuming the state

space depends on aggregate capital only. Preston and Roca (2007) allow for expansions in moments of the distribution.

By contrast, this paper is the first to recognize the symmetry of the problem and build a solution method that exploits it

without limiting the state space. 

2. The stochastic neoclassical growth model with heterogeneous households 

This section describes the stochastic neoclassical growth model with aggregate risk in productivity and idiosyncratic labor

income risk. 
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2.1. Households 

A finite number of I households lives for an infinite number of periods indexed by t . Households are each endowed with

one unit of time that they devote towards labor inelastically. 1 While they are identical in their preferences, households differ

in their productivity. Each period, a household receives an idiosyncratic shock to its productivity and thus its labor income.

Markets are incomplete in that there is no asset available that lets households insure against their individual productivity.

Therefore, households can only partially insure against this shock by holding savings to buffer the impact of shocks on

consumption. The single tradable contract consists of claims to capital, which is risky due to aggregate productivity shocks. 

Each household i has rational expectations and chooses streams of consumption and capital holdings to maximize ex-

pected discounted utility 

max 
c i t ,k 

i 
t+1 

∞ ∑ 

t=0 

βt E 0 
[
u c (c i t ) 

]
i = 1 , . . . , I (1) 

where u ( · ) is the utility function, β is the time discount factor, and c i t and k i 
t+1 

are household i ’s choices of consumption

and capital holdings in period t . 

Households maximize utility subject to their budget constraint 

c i t + k i t+1 = (1 − δ + r k t ) k 
i 
t + w t ψ 

i 
t . (2)

The rate of return on capital before depreciation is denoted by r k t , the rate of depreciation by δ, and wages by w t . The shock

to individual productivity is denoted by ψ 

i 
t , which is independent and identically distributed across households. It follows a

stochastic process that we specify in our calibration. 

To keep a concise notation, we introduce capital case letters for aggregate quantities of consumption and capital 

C t = 

I ∑ 

i =1 

c i t K t = 

I ∑ 

i =1 

k i t . 

2.2. Technology 

Aggregate capital and labor enter the production process for the single consumption good that is produced with Cobb-

Douglas technology. Output is given by Y = f (K, L, z) = zK 

αL 1 −α where z denotes the shock to total factor productivity, K

aggregate capital, L aggregate labor demand, and α the capital share of output. 

Firms maximize output net of costs for capital and labor. Given constant returns to scale in the production of the con-

sumption good, capital and labor pay their marginal products reflected in returns to capital and wages 

r k t = αz t K 

α−1 
t L 1 −α

t 

w t = (1 − α) z t K 

α
t L −α

t (3) 

Due to the shocks to total factor productivity, the returns to capital and wages are risky. 

2.3. Definition of equilibrium 

Households’ first-order conditions determine their optimal choices of consumption 

u 

′ 
c (c i t ) = βE t 

[
(1 − δ + r k t+1 ) u 

′ 
c (c i t+1 ) 

]
. (4) 

Their budget constraint pins down the amount of capital holdings. The aggregate resource constraint 

C t + K t+1 − (1 − δ) K t = Y t (5) 

shows how current output and depreciated capital can be used for consumption or next period’s capital stock. The derivation

follows from households’ budget constraints and the market clearing conditions for capital by which demand k i 
t+1 

aggregates

to supply K t+1 . 

The state space of this economy consists of the set of individual capital holdings of each of the I households, the level

of their individual productivity, and aggregate shocks. In other words, the distribution of capital and labor income shocks

across households is part of the state space. Furthermore, we need to keep track of two aggregate state variables: the state

of total factor productivity and preference shocks. As a result, the state space is extremely high dimensional if we allow for

a large cross-section of households. 

To reflect the distinction between individual and aggregate state variables, we introduce two separate variables. X denotes

the matrix of individual state variables k i and ψ 

i . z is the vector of aggregate state variables. We also specify whether

the state space belongs to the DSGE model (which corresponds to σ = 1 ) or an auxiliary economy in which all shocks
1 We discuss a variety of extensions in Section 6 . 
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have a proportionately smaller standard deviation, scaled by the factor σ . In particular, the auxiliary deterministic economy,

characterized by σ = 0 , is of interest and will be discussed separately below. We denote an element of the state space by

S t = ( X t , z t , σ ) ∈ R 

2 I+1+1 . Lowercase bold variables stand for vectors and uppercase bold font letters for matrices. 

An equilibrium consists of price, choice, and transition functions over the state space such that all equilibrium conditions

are satisfied. To simplify notation, we stack all individual choices for all households in the optimal choice functions C in

a matrix, all price functions into a vector-valued function p , and all transition functions into τ . Appendix A.1 shows the

structure of these functions in detail. Furthermore, we denote a collection of these functions ( C , p , τ) by B . In order to write

down the law of motion, we collect all innovations to stochastic processes in a variable e t+1 = ({ θ i 
t+1 

} I 
i =1 

, ε t+1 ) , where θ i

are the innovations to idiosyncratic labor income shocks ψ 

i and ε innovations to total factor productivity z . 

We collect all equilibrium conditions in a single operator G 

G B (S t ) = 

(
E t [ g 1 (S t , C , p , τ, e t+1 ) ] 

g 2 (S t , C , p , τ, e t+1 ) 

)
. (6)

The operator takes the state variables as its inputs along with the collection of choice variables C , price functions p , and

transition functions for state variables and shocks τ as functions of the state space. The operator g 1 consists of all I Euler

equations stacked in one vector. g 2 stacks individual budget constraints, equations of motion for total factor and idiosyncratic

labor productivity, as well as market clearing conditions and definitions of aggregate variables. Appendix A.2 shows the

structure of these equilibrium conditions. 

Definition 1 (Definition of equilibrium for economy) . An equilibrium of the economy is a collection of choice ( C ), price ( p ),

and transition functions ( τ) such that G B (S t ) = 0 . 

These equilibrium relationships ensure that all households make their choices optimally and markets clear. 

By varying the parameter σ , which scales the standard deviation of all shocks proportionately, we can produce a range

of different economies that vary by their amount of uncertainty. For the numerical method, this comparative statics exercise

turns out to be convenient. In particular, for the case where the standard deviation is zero, there is one point in the state

space at which we can solve the model explicitly. 

Definition 2 (Deterministic steady state) . A deterministic steady-state is a point in the state space S 0 = (X 0 , z 0 , 0) such that

each household’s first-order conditions are satisfied and all prices and quantities remain constant over time. 

3. Numerical method 

This section proposes a numerical technique based on perturbation methods to solve the model of the previous section.

Perturbation methods derive a higher-order approximation to the solution around the deterministic steady state. The key

insight in this paper is that they are very well suited for incomplete market models with a large cross-section of house-

holds in which heterogeneity arises from idiosyncratic shocks. We show that the model has symmetry properties at the

deterministic steady state that perturbation methods can exploit. Hence the solution of the model remains tractable despite

the high dimensionality of the state space. 

3.1. Deterministic steady state 

To solve for the deterministic steady state, we set the standard deviation of all shocks to zero. Since households are

heterogeneous only with respect to their idiosyncratic labor income shocks in our model, the deterministic steady state

features identical households and no heterogeneity, conditional on having the same initial capital. The distribution of capital,

however, is not pinned down by equilibrium conditions. To see this, we look at the steady-state condition 

1 − δ + f K (K t , L t , 0) = 

1 

β
(7)

which only depends on aggregate capital and not on its distribution across households. 

To pin down the distribution of capital, we modify the auxiliary economies with less uncertainty by imposing a small

penalty for deviations from average capital holdings. Specifically, we adjust the utility function 

u (c i t , k 
i 
t ) = u c (c i t ) −

ν

2 

(1 − σ )(k i − k̄ ) 2 (8)

where k̄ is the average level of individual capital holdings. As a result, the deterministic steady state now ensures that all

households have the same amount of capital k i = k̄ . 

Importantly, the parameter ν in the penalty function can be arbitrarily small such that it has a negligible effect on

equilibrium quantities in the model of the previous section. Furthermore, we scale the penalty term by a factor 1 − σ so

that it appears in the deterministic steady state (when σ = 0 ) but not in the model of interest where σ = 1 . 2 
2 When using computer algebra systems such as Mathematica, one has an alternative option of leaving ν unspecified as a free parameter. Once all 

derivatives have been computed as a function of ν , we can set ν to zero. 
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3.2. Symmetry in higher-order expansions 

Computing a higher-order Taylor series for the equilibrium policy functions, equilibrium quantities, and prices is es-

sential to our solution method for two reasons. First, heterogeneity manifests its impact only in higher-order terms and

second, so does stochasticity. To compute high-order derivatives, a high-precision arithmetic might be necessary as shown

in Swanson et al. (2005) . 

A Taylor series expansion of high order serves as a good approximation to equilibrium outcomes. If the conditions of

the implicit function theorem are met, as in our economy of the previous section, the approximation converges within the

radius of convergence when we increase the order of the expansion. In practice, of course, we have to truncate the Taylor

series at a finite level. But the stage at which we stop can be endogenous to the accuracy of the solution. 

Taylor expansions are at the heart of perturbation methods and we state them using the standard multi-index notation

(see, for example, Taylor (2010) (p. 3–16) for a reference). We denote a C-tuple of integers by ιi = (ιi 1 , ιi 2 , . . . , ιiC ) to index

individual states for household i . Let I = { ι1 , . . . , ιI } be the collection of such indices for all households. Furthermore, j is

a Z-tuple of integers to index all aggregate shocks. The order of differentiation is then given by ‖ I ‖ + | j | + k where ‖ I ‖ =∑ I 
i =1 

∑ C 
χ=1 ιiχ and | j | = 

∑ Z 
ζ=1 j ζ . We also define the product of all entries I ! = 

∏ I 
i =1 

∏ C 
χ=1 ιiχ and j ! = 

∏ Z 
ζ=1 j ζ . A concise

notation for a derivative of choice C at the deterministic steady state reads 

C 

(I , j ,k ) (S 0 ) = 

( 

I ∏ 

i =1 

C ∏ 

χ=1 

∂ ιiχ

) ( 

Z ∏ 

ζ=1 

∂ ζ

) 

∂ k C (S 0 ) (9) 

where ∂ ιiχ
= ∂ ιiχ /∂X 

ιiχ

iχ
, ∂ ζ = ∂ j ζ /∂z 

j ζ
ζ

, and ∂ k = ∂ k /∂σ k . Finally, we define the monomials in the Taylor series accordingly.

Let (X − X 

0 ) I = 

∏ I 
i =1 

∏ C 
χ=1 (X i,χ − X 

0 
iχ

) ιiχ and analogously (z − z 0 ) j = 

∏ Z 
ζ=1 (z ζ − z 0 

ζ
) j ζ . 

Once we know the derivatives at a specific point, we can recover the choice variable of the ϖ-th choice of household i

from the Taylor series 

C 

i 
� 

(X , z , σ ) = 

∞ ∑ 

o=0 

∑ 

‖ I ‖ + | j | + k = o 

1 

I ! · j ! · k ! 
C 

(I , j ,k ) (S 0 )(X − X 

0 ) I (z − z 0 ) j σ k . (10)

Note that Eq. (10) can serve as an approximating function over the state space. 

To obtain derivatives at the deterministic steady state, we employ perturbation methods. Ultimately, we are interested

in a solution to Eq. (6) . Perturbation methods tell us to take derivatives of each equation with respect to all state variables

successively and evaluate the resulting equations at the deterministic steady state. By the chain rule of differentiating Eq. (6) ,

we obtain equations for the derivatives of the policy function at the deterministic steady-state which we can then solve

for. Plugging them into Eq. (10) results in an approximation of the policy function. To give an example, take a first-order

condition of the form (4) of household i � = 1. We take the derivative with respect to the first individual state variable x 1 
1 

u 

′′ 
c 

∂c i t 
∂x 1 

1 

− β
∂r k t 

∂x 1 
1 

u 

′ 
c − β(1 − δ + r k t ) u 

′′ 
c 

dc i t+1 

dx 1 
1 

= 0 (11) 

where arguments of the utility function are suppressed. For clearer exposition, we evaluated the expression at ν = 0 , and

did not expand the derivative d c i 
t+1 

/d x 1 
1 

using the chain rule. 

More generally, perturbation methods require us to take derivatives of every equilibrium equation g 1 
i 

or g 2 
i 

dg ·
i 

dx 1 
1 

= 

∂g ·
i 

∂x 1 
1 

+ 

∂g ·
i 

∂C t 

∂C t 

∂x 1 
1 

+ 

∂g ·
i 

∂p t 

∂p t 

∂x 1 
1 

+ 

∂g ·
i 

∂ τt 

∂ τt 

∂x 1 
1 

+ 

∂g ·
i 

∂X t+1 

∂X t+1 

∂x 1 
1 

+ 

∂g ·
i 

∂z t+1 

∂z t+1 

∂x 1 
1 

+ 

∂g ·
i 

∂C t+1 

dC t+1 

dx 1 
1 

+ 

∂g ·
i 

∂p t+1 

dp t+1 

dx 1 
1 

+ 

∂g ·
i 

∂ τt+1 

d τt+1 

dx 1 
1 

(12) 

and plug in steady-state values. 

Now we use the fact that the functional form for g 1 
i 

is known and so are all partial derivatives. They can be obtained

by taking the derivatives of the equilibrium conditions (in the example of the Euler equation, these derivatives entail dif-

ferentiating marginal utilities). When evaluating them at the deterministic steady state, the only remaining variables in

the differentiated equilibrium conditions are the derivatives of the optimal policies C , prices p , and transition functions τ
evaluated at the deterministic steady state. Solving for these derivatives delivers the coefficients in the Taylor series of the

optimal policies. So far, we described the standard use of perturbation methods. 

The key innovation of this paper lies in recognizing the symmetry of the problem. In principle, we would have to start

with household one, differentiate its first-order conditions with respect to each household’s state variables, move to house-

hold two and so on. However, we show that the actual computation of these derivatives can be much simplified. 

Mathematically, we can state the symmetry of the model as follows. If X 

i ↔ j denotes the matrix of state variables where

we exchange the state variables of household i with household j and vice versa and do the same for policy functions C 

i ↔ j ,

then we can express the symmetry requirement as 

g i k (X , z , σ, C , p , τ, e +1 ) = g j 
k 
(X 

i ↔ j , z , C 

i ↔ j , p , τ, e +1 ) k = 1 , 2 . (13)
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Specifically, we explore symmetry along two dimensions. 

First, all derivatives with respect to state variables of other households than the one whose policy we approximate are

identical, i.e., 

dc i 

dx 1 
= 

dc 1 

dx 2 
∀ i > 1 . 

For example, when differentiating household one’s first-order condition, there are only two different coefficients in the first-

order expansion: 3 The derivative with respect to the household’s own state variables and those of any other household.

These two numbers are sufficient to build the entire Taylor series since coefficients on other households’ state variables

have to be the identical given the same fundamentals. 

Second, we only have to take derivatives of first-order conditions for household one. Household two’s first-order condi-

tions look identical and thus lead to identical coefficients 

dc i 

dx j 
= 

dc j 

dx i 
. 

The symmetry here is that household one’s response to a marginal increase in household two’s state variable is the same

as household two’s response to a marginal increase in household one’s state variable. This carries over to all derivatives. 

Exploiting this symmetry, a first-order approximation requires two coefficients to be computed for each state variable.

The first coefficient returns the change in policy of household one in response to a change in her own capital holdings. The

second coefficient asks for household one’s reaction in response to a change in the state variable by an arbitrary household

two. For the second-order term, the system becomes slightly more complex. For each state variable, we compute how the

two coefficients from the linear system change in response to a change in state variables. More specifically, we need to com-

pute four values: (1) a change in the first coefficient in response to a change in household one’s state variable, (2) a change

in the first coefficient in response to a change in another household’s state variable, (3) a change in the second coefficient in

response to a change in household two’s state variable, and (4) a change in the second coefficient in response to a change

in a third household’s state variable. Increasing the order, we have quadratic growth in the number of coefficients. Solving

the system of equations is straightforward: From the second order on, the system of equations for the unknown coefficients

is linear. 

A first-order approximation implements standard linearization which is not sufficient for our purposes. Due to linearity,

heterogeneity does not affect aggregate equilibrium outcomes because, under these rules, the average choice is the choice of

the average household. Heterogeneity only enters through higher-order terms, starting with a second-order approximation.

For the same reason, stochasticity impacts equilibrium only through higher-order terms. The first-order approximation is

certainty equivalent while higher-order terms add the effects of variance, third and higher moments. 

3.3. Uncertainty 

Having obtained a higher-order approximation for the deterministic economy, we move towards the model of interest by

introducing uncertainty. We accomplish the transition by varying the perturbation parameter σ . 

Taking a first-order expansion with respect to the perturbation parameter produces coefficients that are all zero. The

reason lies in the fact that the first-order expansion of the standard deviation introduces shocks only into the linearized,

and thus certainty equivalent, economy. Hence, uncertainty does not come into play apart from the realization of shocks.

Only through second- and higher-order terms do we recover the solution to the stochastic system. The second-order term

introduces shocks into the quadratic economy. This approximation is no longer certainty equivalent and uncertainty takes

effect. To be more precise, the second-order term introduces a constant effect due to the variance of shocks stemming from

Jensen’s inequality, the third-order term recovers the reaction to skewness and time- or state-dependent variation in the

variance of shocks, and so on. 

We can interpret the way uncertainty enters the equilibrium as effectively altering the coefficients in the Taylor series.

Building the expansion with respect to the standard deviation of shocks effectively changes the coefficients of the Taylor

series for the deterministic system. To see this, we rewrite Eq. (10) in the form 

C 

i 
� 

(S ) = 

∞ ∑ 

o=0 

∑ 

‖ I ‖ + | j | = o 

1 

I ! · j ! 

( 

∞ ∑ 

k =0 

I ! · j ! 

I ! · j ! · k ! 
C 

(I , j ,k ) (S 0 ) σ
k 

) 

(X − X 

0 ) I (z − z 0 ) j . 

The rearrangement demonstrates that the expansion of the stochastic system looks just like the deterministic system except

that the coefficients (in brackets) contain a “correction term” for the stochasticity of the function. 

We can see this term graphically as depicted in Fig. 1 . In the second order, the function shifts while the third-order term

would also tilt the function, and even higher orders change its curvature. 
3 To make the exposition clearer, the following logic assumes a single distribution of individual state variables as the state space. 
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Fig. 1. Perturbation methods build an approximation in state variables around the deterministic steady state (thick solid line). The expansion with respect 

to the standard deviation shifts (second order) and tilts this line (third order). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4. The law of motion 

Perturbation methods deliver a polynomial representation of the approximation. The law of motion is no exception to this

rule. In our approximate solution, the equation of motion is not only a function of an aggregate statistic of state variables but

the entire distribution. With every increase in the order of approximation, our solution method includes the corresponding

moments from the distribution of state variables. In this sense, the solution method proposes a set of approximating statis-

tics with which to approximate policy functions. As an additional feature, a better approximation adds moments to the

previous approximation without needing to recompute previous approximations. 

The first-order expansion results in a law of motion for aggregate capital of the form 

1 
I 
K t+1 ≈ k 0 + (k 1 X 11 

− k 1 X 21 
+ Ik i X 21 

)(X 1 − X̄ 11 ) + (k 1 X 12 
− k 1 X 22 

+ Ik i X 22 
)(X 2 − X̄ 12 ) 

+ Ik 1 z 1 
(z 1 − z̄ 1 ) + Ik 1 z 2 

(z 2 − z̄ 2 ) + Ik 1 z 3 
(z 3 − z̄ 3 ) + . . . 

where X j = 

1 
I 

∑ I 
i =1 X i j , X̄ 1 · is the value of the state variable at the deterministic steady state, and k 1 

X 11 
= 

∂k 1 

∂X 11 
(see

Appendix B for a derivation). 

In our model in the previous section, aggregate capital in the next period depends, to a first order, on aggregate capital

and aggregate shocks today. As discussed before, heterogeneity does not impact aggregate variables in the first-order term. 

The second-order approximation depends both on the cross-sectional variance of individual state variables as well as a

quadratic term in the aggregate state variable. It thus depends not only on the cross-section but also nonlinearly on the

time-series variation of aggregate quantities. 

The above expression is not particular to the law of motion. Any function that depends identically on household choices,

will be approximated in this fashion. Appendix B contains details. 

3.5. Distribution of equilibrium variables 

Given our approximation method, we can compute the distribution of any equilibrium outcome or nonlinear function

thereof. Therefore, we combine perturbation methods with a nonlinear change of variables. 4 For example, from capital hold-

ings and idiosyncratic labor income shocks, we can compute the distribution of wealth or human wealth. 

Suppose we have some economic variable of interest that is a nonlinear function h ( X , z , C , p , τ) of the state variables

and choices, which we approximate by a Taylor expansion. The coefficients can be computed as follows 

dh 

dx i s 
= 

∂h 

∂X 

dX 

dx i t 
+ 

∂h 

∂z 

dz 

dx i t 
+ 

∂h 

∂C 

dC 

dx i t 
+ 

∂h 

∂p 

dp 

dx i t 
+ 

∂h 

∂ τ

d τ

dx i t 
(14) 

and analogously for other state variables. All partial derivatives of h are given through its functional form while the deriva-

tives of state variables, choices, and prices were previously computed through perturbation methods. 

The computation of the coefficient is trivial once we make the observation that the first term is given by the derivative

of h (which is given) and the second one has already been computed in the previous approximation. Thus, computing the

distribution of any variable of interest within the economy is not more intricate than computing the distribution of capital. 
4 Judd (2002) , Fernández-Villaverde and Rubio-Ramírez (2006) , and Mertens (2009) explain nonlinear changes of variables in conjunction with pertur- 

bation methods. 
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3.6. Accuracy 

The solution method gives rise to a natural way to check for its accuracy. The equilibrium conditions are satisfied when

the functional G in Eq. (6) returns zero values for all of its components. Since we have asymptotic validity of the solu-

tion method, we specify a tolerance as a threshold for the error. Once the error is below the tolerance in some norm, we

terminate the approximation process. 

To get a meaningful measurement for the error, it makes sense to normalize the optimality conditions such that they are

unit-free. For example, we rewrite the Euler Eq. (4) in the form 

βE t 

[
(1 − δ + r k t+1 ) 

u 

′ 
c (c i t+1 ) 

u 

′ 
c (c i t ) 

]
= 0 (15)

to avoid the error scaling with marginal utility. This measurement provides a way to check for accuracy after adding an

order of approximation. Thus one can decide at each step whether the approximation suffices the criteria or not. As an

additional benefit, there is no need to recompute previous orders after each step. The approximation method keeps previous

coefficients unaltered when refining the solution. 

3.7. Generality 

The numerical method described previously is applicable to a variety of complete and incomplete market models. This

section lays out the features that a model needs to possess to be handled by our technique. 

First, the optimality conditions must be representable by a system of equations consistent with the operator in Eq. (6) .

Both competitive equilibria and dynamic programming problems can be of this type. The operator ensures that first-order

conditions (or the Bellman equation for dynamic programming problems) along with the equations of motion, market clear-

ing conditions, and budget constraints hold. To apply perturbation methods, we require three main assumptions for the

models. 

First, we require the model to have differentiable policy functions. We apply perturbation methods to the problem, which

builds a Taylor series expansion of the optimal policies around the deterministic steady state. In many economic problems,

optimal policies have smooth policy functions and the Taylor series converges within a radius. If the assumptions are met,

the implicit function theorem guarantees existence of a differentiable policy function around the deterministic steady state

(see e.g. the implicit function theorem for analytic functions in Judd and Guu, 2001 ). Second, we require the economy to

have a well-defined ergodic distribution to avoid unit roots. And third, we require the existence of a deterministic steady

state at which all households are identical. 5 

If the equilibrium conditions given by functionals g · display the symmetry properties of Eq. (13) , the Taylor series of

only one household needs to be approximated. Furthermore, the number of distinct coefficients in the Taylor series is small

and, for a given degree, independent of the number of households. 

4. Results 

We first discuss the choice of functional forms and parameter values for the model in Section 2 . Then we show the

accuracy of the solution method before discussing our findings. 

4.1. Calibration 

For easier comparison with the previous literature, we implement the calibration to quarterly time periods in Den Haan

et al. (2010) that was given to a number of research teams that discussed the relative performance of different algorithms for

models with a cross-section of heterogeneous agents. We implement the specification in Kim et al. (2010) , who presented a

numerical algorithm based on perturbation methods. 

We therefore specify the utility function to have constant relative risk aversion with a coefficient of one, i.e., logarithmic

utility. The time preference factor β is 0.99. The parameters governing the technology are standard in the literature with a

capital share of output α of 0.36 and a depreciation rate of 2.5%. 

For the shocks to aggregate productivity and shocks to individual labor productivity, Kim et al. (2010) use a continuous

representation of the first-order Markov processes in Den Haan et al. (2010) . Therefore, we transform the idiosyncratic labor

income shock ψ = 

ˆ ψ 

ˆ �
and use the autoregressive process for ˆ ψ from Kim et al. (2010) 

ˆ ψ 

i 
t+1 = φ̄ψ 

+ φψ 

ˆ ψ 

i 
t + φθ ( ˆ ψ 

i 
t ) σθ i 

t+1 . (16)
5 Imposing identical households in the steady state does not mean that we cannot allow for heterogeneity. We can either allow for a finite number 

of different types. Alternatively, we can scale heterogeneity among agents, say in their risk aversion, by the perturbation parameter σ . That way, the 

steady-state remains unaffected but the higher-order expansion will introduce heterogeneity across agents. 
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Fig. 2. Euler equation error in the deterministic economy for deviations of capital holdings for one agent (left graph) or all agents (right graph). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The parameter φψ 

governs the degree of persistence in the evolution of the shock. φ̄ψ 

adjusts the long-run mean and

φθ (ψ 

i 
t ) governs the standard deviation of the shock that we allow to be a function of ˆ ψ 

i 
t . θ is white noise with unit

variance. 

Following the calibration from the literature, we set the process for the transformation of labor income shocks to 

ˆ ψ 

i 
t+1 = 0 . 4 + 0 . 55555 

ˆ ψ 

i 
t + (0 . 48989 − 0 . 28381 

ˆ ψ 

i 
t ) θ

i 
t+1 . 

We set upper and lower bounds for innovations to ± 0.1. 

Since we work with a finite number of households, the average of all individual shocks ˆ �t = 

1 
I 

∑ I 
i =1 

ˆ ψ 

i 
t will be stochastic.

To keep the average labor income shock constant over time, we normalize individual labor income shocks by ˆ �t . 

Total factor productivity follows an AR(1) process 

z t+1 = φ̄z + φz z t + φε σε t+1 (17) 

where the parameter φz determines the degree of mean reversion in total factor productivity. The calibration sets φ̄z to 0.25,

φz to 0.75, and φε to 0.00 6 61. 

We specify all shocks to z and ψ to have a mean of zero and a unit standard deviation. It is standard in the literature in

macroeconomics to specify a normal distribution for these shocks and truncate them when solving the model numerically.

For the application of perturbation methods, we use a finite support and therefore want to think of these shocks as following

a truncated normal distribution. 

The numerical parameter for the penalty function ν is set to 1 
1 , 0 0 0 , 0 0 0 . Despite being a rather arbitrary choice, it ensures

that the impact of ν on the coefficients in the Taylor series is negligible. 

The last parameter governs the number of households in the economy. As demonstrated when describing the solution

method, the computing power required is the same for any number of individuals. To generate the results of this section,

we set this number to roughly the current number of citizens in the United States, 324,420,0 0 0 leaving us with 648,840,002

state variables. 

4.2. Convergence 

As mentioned in Section 3 , the numerical method produces a polynomial solution for which we report the coefficients in

Appendix C . To check the accuracy of this solution, we normalize the Euler equation by dividing by marginal utility on both

sides as in Eq. (15) . Fig. 2 plots the logarithm of the Euler equation error as a function of one household’s capital stock. This

check for accuracy corresponds to the deterministic version of the economy. 

The deterministic steady state satisfies the deterministic optimality conditions. Thus, the Euler equation error is zero at

this point and its logarithm at negative infinity. 

Two observations stand out from this graph. First, we see convergence. The Euler equation error decreases for the inter-

val. And second, the result approximates the solution not just locally but globally on a sizable interval. 

4.3. Impact of heterogeneity 

Heterogeneity with aggregate risk increases the steady-state level of capital, as known from previous literature. There are

two reasons for it. First, idiosyncratic risk leads to precautionary savings on the part of households. Since households cannot

trade claims contingent on their labor income, they try to partially insure against these shocks by building up a buffer stock

of savings. Second, due to aggregate productivity shocks, holding capital is risky. There are two opposing forces. On the one

hand, households are risk averse and demand a higher risk premium for holding risky capital. Each unit should thus return

a higher dividend, which implies a higher marginal product of capital and thus a lower steady-state level of capital. On
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the other hand though, since returns to capital are risky, households respond by building up savings, which implies a higher

steady-state level of capital. With our utility specification of constant relative risk aversion, the latter effect dominates. Thus,

heterogeneity with aggregate risk increases the steady-state level of capital. 

The use of perturbation methods lends itself to a novel representation of the stochastic discount factor in heterogeneous

household modes. A nonlinear change of variables transforms the equilibrium policy functions into an expansion of the

stochastic discount factor. This representation allows us to study the pricing of assets in our incomplete markets economy. 

We see that an aggregate stochastic discount factor defined as the average of all individual discount factors is approxi-

mated by 

β

I 

I ∑ 

i =1 

u 

′ 
c (c i t+1 ) 

u 

′ 
c (c i t ) 

= c(X t , z t , X t+1 ) + 

(
c (1) 

z e z t+1 + c (2) 
z var (e z t+1 ) + . . . 

)
+ 

(
c (2) 
ψ 

var (ψ 

i ) + . . . 

)
(18)

The derivation of this expression can be found in Appendix D . 

The first term as well as all coefficients in the expansion are known at time t . The approximation thus tells us directly

which assets demand a risk premium. Every security that comoves with total factor productivity, its variance (which we

kept constant in our example), and higher moments will carry a risk premium. 

But heterogeneity also enters the pricing of securities. The variance of individual labor income shocks is a risk factor. A

time- or state-dependent variance will induce a risk premium for all assets that comove with this variance. Therefore, our

economy displays risk pricing effects of idiosyncratic income risk similar to Constantinides and Duffie (1996) . Other than in

their work, the impact of heterogeneity varies with aggregate productivity and the amount of capital. This effect can be seen

from the third-order terms in the Taylor expansion where the variance of idiosyncratic shocks is interacted with aggregate

capital or total factor productivity. 

5. Comparison between methods 

The main alternative to our method is based on the idea of replacing the true law of motion by a function that de-

pends on moments of state variables. We demonstrate the performance of a perturbation-based solution method in com-

parison with a general approach that underlies the standard methods in the literature, such as Krusell and Smith (1998) ,

Kim et al. (2010) , or Preston and Roca (2007) . 

To see the difference between the different approaches, we study a particularly challenging problem that we borrow

from Panageas (2011) . The model gives rise to an explicit solution that we can compare our approximate solutions to.

Panageas (2011) provided this model as a challenge to methods that replace the law of motion by a low-order polynomial. 

Panageas (2011) uses a simple representative agent economy with a Lucas tree where two taste shocks make up the state

space. As opposed to the setup in Section 2 , the multi-dimensionality of the state space thus stems from different shocks as

opposed to individual state variables by different agents. This assumption allows us to control the persistence of different

state variables, which is a crucial feature of this example. While this model does not feature a cross-section of agents, it

shows a condition under which quasi-aggregation performs poorly. 6 

A representative household prices a stochastic stream of endowments C t according to the following stochastic process 

log C t+1 = log C t + μ + ε t+1 

where the innovation ε is distributed ε ∼ N(0 , σ 2 
ε ) . The representative household’s expected utility is given by the dis-

counted stream of per-period utilities that have constant relative risk aversion with a coefficient γ and a preference shock

ξ t 

U 0 = E 0 

[ 

∞ ∑ 

t=0 

βt e ξt u c (C t ) 

] 

. (19)

The preference shock has two components 

ξt = A t + B t 

that evolve according to the stochastic processes 

log A t+1 = ρA log A t + σA ηt+1 

log B t+1 = ρB log B t + σB ηt+1 , 

where the innovations are standard normally distributed. 

To determine the value of the tree, we use the representative household’s Euler equation 

P 0 
C 0 

= E 0 

[
β

A 1 

A 0 

B 1 

B 0 

(
C 1 
C 0 

)1 −γ (
P 1 
C 1 

+ 1 

)]
(20)
6 Thanks to an anonymous referee for pointing this out. 
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Fig. 3. This figure compares deviations of approximations based on a linear or quadratic law of motion versus perturbation from the explicit solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and iterate forward to get 

P 0 
C 0 

= 

∞ ∑ 

t=1 

βt e −γμt+ γ 2 σ2 
ε 

2 t A 

ρt 
A 
−1 

0 
B 

ρt 
B −1 

0 
e 

1 
2 

[
σ 2 

A 

1 −ρ2 t 
A 

1 −ρ2 
A 

+ σ 2 
B 

1 −ρ2 t 
B 

1 −ρ2 
B 

+2 σA σB 

1 −ρt 
A 
ρt 

B 
1 −ρA ρB 

]
. (21) 

Appendix E.1 contains a derivation. 

We can evaluate the quasi-closed-form solution with arbitrary accuracy by forward iteration given by Eq. (21) . This refer-

ence solution serves as a benchmark for two approximation methods. First, we can assume a linear law of motion. Second,

we can use the approximation method described in this paper to solve for the pricing. 

As the closed-form solution in Eq. (21) shows, the state space depends on the two preference shocks, A t and B t . The dis-

tribution of shocks that make up the preference shock is thus the state space. A common theme in approximation methods

is now to approximate the law of motion by moments of this distribution. In most specifications, however, only the mean

is being used. 

To implement this law of motion, we replace the true law of motion with 

P t+1 

C t+1 

= φ̄PC + φPC 

P t 

C t 
+ φηηt+1 (22) 

which is a linear law of motion for which we will choose the coefficients optimally. Using this law of motion, we arrive at

an approximate closed-form expression for the price-dividend ratio 

P 0 
C 0 

= 

βe −γμ+ γ 2 σ2 
ε 

2 A 

ρA −1 
0 

B 

ρB −1 
0 

e 
1 
2 (σA + σB ) 

2 
(
(1 + φ̄PC ) + φη(σA + σB ) 

)
1 − φPC βe −γμ+ γ 2 σ2 

ε 
2 A 

ρA −1 
0 

B 

ρB −1 
0 

e 
1 
2 (σA + σB ) 2 

. (23) 

The derivation of this formula and details on the quadratic law of motion are in Appendix E.3 . 

The coefficients in the linear law are chosen to maximize the fit with the dynamic evolution under this law of mo-

tion. Therefore, we fix the coefficients, solve, and simulate the economy. We run a linear regression of next period’s price-

consumption ratio on this period’s ratio. Finally, we use the resulting coefficients as a new law of motion and iterate until a

fixed point is found. 

A related question is whether we could do better by adding the squared term of the price-consumption ratio in Eq. (22) .

To determine the coefficients, we project the next period’s price-consumption ratio onto the linear and quadratic term. 

We solve the economy for the identical parameter combination and realization of shocks as in Panageas (2011) . For

this parameter combination, the R 2 criterion for the linear law of motion provides values above 98%. Specifically, these

parameters are a growth rate μ = 1 . 4% , risk aversion at γ = 8 , and the time discount factor β = 1 . 05 . The persistence of

the two shocks is set to ρA = 0 . 98 and ρB = 0 . 8 . The standard deviations are fixed at σε = 0 . 04 , σA = 0 . 1 , and σB = 0 . 04 . 

Fig. 3 shows the quality of the best fit given a linear law of motion and the quadratic approximation as the deviation

from the explicit solution. Several results emerge. 

First, we observe that even the best fit with an approximated linear law of motion can substantially deviate from the

closed-form solution. The approximation can deviate by more than 20 from the true solution where the price-dividend ratio

varies between 30 and 90 (see Fig. 4 ). The discrepancy arises from the fact that the two components of the preference shock

have different persistence and, as a result, the average of the two components is a poor statistic of the true law of motion. 

Second, adding a quadratic term does not improve the overall fit much. In general, moments of the distribution cannot

capture the entire dynamics of the state variables since each component has a differential impact on next period’s state. 
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Fig. 4. Comparison between the true solution and approximation methods using a linear law of motion and the perturbation approach of this paper. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

How does our solution method fare with regards to this asset pricing problem? A perturbation-based method of this

paper is well suited to solve this economy. Heterogeneity in the two state variables arises from uncertainty. Both preference

shocks would remain at their means in the deterministic economy. 

We apply perturbation methods to the Euler equation in Eq. (20) . The price-dividend ratio is a function of the two state

variables A t and B t . We start with the deterministic steady state around which we approximate the price-dividend ratio.

Then we proceed in the standard fashion by building a high-order perturbation in the two state variables. Finally, we take

the derivatives (and cross-derivatives with the two state variables) with respect to the standard deviation of the shocks. 

This is a particularly hard problem for the solution technique because the price-consumption ratios in the stochastic

economy are in a different range from their deterministic counterparts, which lies at a price consumption ratio of roughly

15. If we set the standard deviations in Eq. (21) to zero, the deterministic price-consumption ration will be far smaller.

In our later calibration, the stochastic price-consumption ratios will be more than ten times larger than the deterministic

steady state. 

Fig. 3 shows, however, that the fit for the perturbation-based approach is far better than for the approximations using a

linear law of motion. For perturbation, we choose an approximation of order 5. Fig. 4 shows the time series in levels. As can

be seen from there, the approximation based on perturbation tracks the true solution closely, while a linear law of motion

deviates substantially although the R 2 diagnostic indicates a good fit ( Panageas (2011) . 

Panageas (2011) created this example to demonstrate difficulties when assuming a linear or quadratic law of motion. A

linear or quadratic law of motion might deliver a poor approximation when the model is either highly nonlinear or when it

is comprised of several state variables with different persistence. 

There is a key difference in our method compared to the use of a linear or quadratic law of motion. Our method

approximates the system of equilibrium conditions. Therefore, we determine the magnitude of those errors on the do-

main over which we solve the problem. Those tests are demanding in that they demand that the Euler equation con-

dition on each state be economically insignificant. Replacing the law of motion by linear or quadratic functions re-

quires approximating both the system of equilibrium conditions for each individual as well as the law of motion of

the state. Checking the error of the approximation for the law of motion is non-trivial, as, for example, pointed out by

Panageas (2011) . 

An alternative to using perturbation methods would be projection methods. Projection methods have the advantage of

being global methods. They also work for economies with hard constraints that produce non-differentiable policy func-

tions. However, since solution functions are approximated on grids, the number of state variables is rather limited. Per-

turbation methods, on the other hand, can handle high-dimensional state spaces, particularly when there are symmetries

with respect to the derivatives as shown in this paper. Perturbation methods are local by design but converge globally

within in the radius of convergence. Typically, perturbation methods are fast since they can be implemented without

iteration. 

Which method is preferable depends on the specific economic model. The representative agent counterpart of our model

in Section 2 is a standard real business cycle model. Aruoba et al. (2006) show for a similar model that perturbation methods

perform well. Our Euler equation errors confirm this conclusion. 

6. Extensions 

The model of Section 2 is stylized and lacks some of the features of models at the frontier of research in macroeconomics

and finance. This section shows how our perturbation-based approach can be used for more complex models. 
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6.1. State-of-the-art DSGE models 

There are a number of extensions that have become standard in the business cycle literature. Here are a few examples:

First, the utility function can be defined over consumption as well as leisure, which adds another optimality condition to

the system. Second, adjustment costs based on investment growth such as in Christiano et al. (2005) deliver a better fit for

business cycle moments. These specifications add lagged investment as an additional state variable. Third, the literature has

moved towards matching asset pricing as well as macroeconomic data. Therefore, habit utility or Epstein-Zin preferences in

conjunction with long-run risks in productivity have become the norm. Additionally, the inclusion of preference shocks as

in Pavlova and Rigobon (2007) is feasible. 

All of these extensions fall into the category of models that can be solved with the type of perturbation methods we

propose in this paper. While additional state variables or additional choice variables add complexity to the solution, the

extension of the algorithm is straightforward. In particular, perturbation methods have advantages for models with many

state variables since they do not require the solution to be approximated on a grid that would be limited in size by the

curse of dimensionality. 

6.2. Borrowing constraints 

The inclusion of borrowing constraints is another potentially interesting extension. Hard borrowing constraints typically 

induce non-differentiabilities at certain points in the policy function. Since perturbation methods work with derivatives and

approximate optimal policies by their Taylor series expansion, the method cannot handle non-differentiabilities. There are

two ways of dealing with the inclusion of borrowing constraints. 

First, modeling borrowing constraints as penalties on interest rates that increase when the borrower is close to the credit

limit renders the model tractable for perturbation methods. This smooth increase in the borrowing rate, until borrowing be-

comes prohibitively expensive, does not lead to a loss of derivatives in the relevant region and the perturbation methodology

of this paper can be applied. 

Second, we discuss the use of perturbation methods for models in which the borrowing limits take the form of inequal-

ity constraints on the amount of borrowing. As is standard in the optimization literature (see, for example, Nocedal and

Wright, 2006 ) and implemented in many optimization algorithms (for example in sequential quadratic programming meth-

ods), the borrowing constraint can be approximated arbitrarily well by a barrier function that preserves differentiability.

Barrier methods have been used successfully in conjunction with perturbation methods by Preston and Roca (2007) and

Kim et al. (2010) . Therefore, we would add a barrier function to the objective of maximizing utility, for example, of the form

u k (k i t ) = −ν1 
1 

(k i t − k ) 2 
+ 2 ν2 k 

i 
t , (24) 

where k denotes the lower bound on capital and ν · > 0 parameters for the barrier function. We impose the restriction

ν2 = 

ν1 

( ̄k −k ) 3 
that ensures a vanishing derivative at the deterministic steady state k̄ . 

A hard constraint can be reformulated as a limiting sequence of barrier functions (see Appendix F for the theory). Under

the barrier approach, borrowing is penalized with an increasing penalty close to the borrowing limit. Note that the barrier

function only takes effect when going to higher-order expansions. It induces a singularity in the objective function and

thus limits the radius of convergence to the relevant part of the state space. The singularity ensures that higher-order

approximations deliver stronger penalties. 

6.3. Portfolio choice 

Lastly, perturbation methods of the form discussed here can deal with portfolio choice problems where agents choose

between riskless and risky assets. The main complication is an indeterminacy of the portfolio for the auxiliary deterministic

economy. This indeterminacy arises since returns to capital and bonds are identical (and both riskless) in a deterministic

economy. There are two ways to deal with this indeterminacy. First, the Bifurcation Theorem, instead of the Implicit Function

Theorem, justifies building a Taylor series approximation around the point to which the solution converges when risk is

decreased to zero (see Judd and Guu, 20 0 0 ). Second, we can introduce a penalty function for bond holdings different from

a target level and multiply it by a penalty coefficient akin to the penalty introduced in Eq. (8 ). Any positive coefficient, no

matter how small, will prevent households from deviating from identical portfolios. As a result, the perturbation methods

of this paper apply to the penalty problem without modification. 

7. Conclusion 

In this paper, we presented a numerical method for solving an incomplete markets model with an arbitrarily large cross-

section of households. Our algorithm builds on perturbation methods that use Taylor series expansions around a determin-

istic steady state. This solution method is particularly useful for models with many state and choice variables. Generally,

this idea can be applied not only to competitive equilibria but also to dynamic programming problems. As a first example,
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we solved a dynamic stochastic general equilibrium model with idiosyncratic shocks to labor income. We demonstrated

the convergence properties for this particular example. Furthermore, we showed that heterogeneity impacts macroeconomic

quantities as well as the pricing of risk. 

Appendix A. Structure of model setup 

A1. Structure of variables 

The structure of state variables is given by 

X t = 

⎛ 

⎝ 

k 1 t ψ 

1 
t 

. . . 
. . . 

k I t ψ 

I 
t 

⎞ 

⎠ z t = ( z t ) . 

Equilibrium choice, price, and transition functions are 

C (S ) = 

⎛ 

⎝ 

c 1 (S ) k 1 +1 (S ) 
. . . 

. . . 

c I (S ) k I +1 (S ) 

⎞ 

⎠ p (S ) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

r k (S ) 
w (S ) 
K(S ) 

K +1 (S ) 
Y (S ) 
C(S ) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

τ(S t , σe t+1 ) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

ψ 

1 
t+1 (S t , σe t+1 ) 

. . . 

ψ 

I 
t+1 (S t , σe t+1 ) 

�(S t ) 
z t+1 (S t , σe t+1 ) 

w (S t ) 

r k (S t ) 
C(S t ) 

K +1 (S t ) 
K(S t ) 
Y (S t ) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

where k i +1 
denotes household i ’s optimal policy of capital holdings for the following period and K +1 the corresponding

aggregate capital stock. 

A2. System of equations 

This section describes the operator G which defines the equilibrium conditions. The first function g 1 describes the Euler

equations 

g 1 (X t , z t , X (σ ) , z (σ ) , C (σ ) , p (σ )) = 

⎛ 

⎜ ⎝ 

u 

′ 
c (c 1 t ) − β

(
(1 − δ + r k t+1 ) u 

′ 
c (c 1 t+1 ) 

)
. . . 

u 

′ 
c (c I t ) − β

(
(1 − δ + r k t+1 ) u 

′ 
c (c I t+1 ) 

)
⎞ 

⎟ ⎠ 

. 

The second part of the operator g 2 collects the budget constraints, laws of motion for random variables, market clearing

conditions, and aggregates variables. We assume mean reverting stochastic processes for preference shocks, total factor pro-

ductivity, and idiosyncratic labor income shocks as defined in Section 4.1 . 

g 2 (X t , z t , C , p , τ, e t+1 ) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

c 1 (S t ) + k 1 +1 (S t ) − (1 − δ + r k (S t )) k 1 t − w (S t ) ψ 

1 
t 

. . . 

c I (S t ) + k I +1 (S t ) − (1 − δ + r k (S t )) k I t − w (S t ) ψ 

I 
t 

τ1 (S t , σe t+1 ) − ( ̄φψ 

+ φψ 

ψ 

1 
t + φθ (ψ 

1 
t ) σθ1 

t+1 ) 
. . . 

τ I (S t , σe t+1 ) − ( ̄φψ 

+ φψ 

ψ 

I 
t + φθ (ψ 

I 
t ) σθ I 

t+1 ) 

τ I+1 (S t , σe t+1 ) − 1 
I 

∑ 

i ψ 

i 
t 

τ I+2 (S t , σe t+1 ) − ( ̄φz + φz z t + φε σε t+1 ) 
τ I+4 (S t , σe t+1 ) − (1 − α) z t K 

α
t L −α

t 

τ I+5 (S t , σe t+1 ) − αz t K 

α−1 
t L 1 −α

t 

τ I+6 (S t , σe t+1 ) −
∑ 

i c 
i (S t ) 

τ I+7 (S t , σe t+1 ) −
∑ 

i k 
i 
+1 (S t ) 

τ I+8 (S t , σe t+1 ) −
∑ 

i k 
i 
t 

α 1 −α

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
τ I+9 (S t , σe t+1 ) − z t K t L t 
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Appendix B. Approximation of the Law of Motion 

B1. The linear law of motion 

Next period’s average capital as 1 
I K t+1 = 

1 
I 

∑ I 
i =1 k 

i 
t+1 

(X t , z t , σ ) . Using Eq. (10) , we get a first-order approximation of the

form 

1 

I 
K t+1 ≈ k 0 

+ 

I ∑ 

i =1 

k i X 11 
(X 11 − X̄ 11 ) + k i X 21 

(X 21 − X̄ 21 ) + k i X 31 
(X 31 − X̄ 31 ) + k i X 41 

(X 41 − X̄ 41 ) + . . . 

+ 

I ∑ 

i =1 

k i X 12 
(X 12 − X̄ 12 ) + k i X 22 

(X 22 − X̄ 22 ) + k i X 32 
(X 32 − X̄ 32 ) + k i X 42 

(X 42 − X̄ 42 ) + . . . 

+ . . . 

+ 

I ∑ 

i =1 

k i z 1 (z 1 − z̄ 1 ) + k i z 2 (z 2 − z̄ 2 ) + k i z 3 (z 3 − z̄ 3 ) + . . . 

where X̄ ·1 is the deterministic steady-state value. 

With the assumptions on symmetry, coefficients on expansions as well as steady-state values are identical and summarize

to 

1 

I 
K t+1 ≈ k 0 

+ (k 1 X 11 
− k 1 X 21 

)(X 1 − X̄ 11 ) + Ik i X 21 
(X 1 − X̄ 11 ) 

+ (k 1 X 12 
− k 1 X 22 

)(X 2 − X̄ 12 ) + Ik i X 22 
(X 2 − X̄ 12 ) 

+ 

I ∑ 

i =1 

k i z 1 (z 1 − z̄ 1 ) + k i z 2 (z 2 − z̄ 2 ) + k i z 3 (z 3 − z̄ 3 ) + . . . 

where X j = 

1 
I 

∑ I 
i =1 X i j . 

B2. The quadratic law of motion 

For the second-order terms, we again build an expansion for one policy and sum up over all households. Thereby, we

invoke symmetry in the analogous fashion. Simply regrouping the terms from Eq. (10) yields 

k 1 (X, z) ≈ k 0 + first-order terms 

+ (k 1 X 11 , X 11 
− k 1 X 21 , X 21 

− 2 k 1 X 11 , X 21 
+ k 1 X 21 , X 31 

)(X 11 − X̄ 1 ) 
2 

+ (k 1 X 21 , X 21 
− k 1 X 21 , X 31 

) 
I ∑ 

i =1 

(X i 1 − X̄ 1 ) 
2 

+ (2 k 1 X 11 , X 21 
− k 1 X 21 , X 31 

)(X 11 − X̄ 1 )(X 1 − X̄ 1 ) 

+ k 1 X 21 , X 31 
(X 1 − X̄ 1 ) 

2 . 

To get to average capital, we average across all households and invoke symmetry 

1 

I 

I ∑ 

i =1 

k i (X, z) ≈ k 0 + first-order terms 

+ (k 1 X 11 , X 11 
− 2 k 1 X 11 , X 21 

) 
I ∑ 

i =1 

(X i 1 − X̄ 1 ) 
2 + 2 k 1 X 11 , X 21 

(X 1 − X̄ 1 ) 
2 . 

B3. Approximation of any symmetric variable 

The previous logic goes through for every approximation of a variable f ( k ) where 

∂ f 

∂k i 
= 

∂ f 

∂k j 
∀ i, j 
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Table 1 

Coefficients in the approximate solution of the policy function for the model in Section 2 . The table reports cross-derivatives where 1 

stands for constants such that the cross-derivative between 1 and 1 is the steady-state level, between 1 and k 1 is the first derivative with 

respect to k 1 , etc. 

1 k 1 k 2 k 3 ψ 

1 ψ 

2 ψ 

3 z σ

1 37.9893 0.9977 −6 . 7 × 10 −11 2.3415 −1 . 6 × 10 −10 3.5793 0 

k 1 1 . 6 × 10 −6 −4 . 1 × 10 −12 3 . 9 × 10 −6 2 . 8 × 10 −10 2.5293 0 

k 2 −3 . 1 × 10 −15 1 . 8 × 10 −20 2 . 0 × 10 −9 −7 . 2 × 10 −15 −3 . 2 × 10 −18 −5 . 8 × 10 −9 0 

ψ 

1 9 . 1 × 10 −6 −6 . 6 × 10 −10 8.1962 0 

ψ 

2 −1 . 7 × 10 −14 −7 . 3 × 10 −18 −1 . 4 × 10 −8 0 

z 2.1961 0 

σ 0.4371 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The first-order expansion delivers 

f (X ) ≈ f ( ̄X ) + f X 11 
( ̄X )(X 1 − X̄ 1 ) + f X 21 

( ̄X )(X 2 − X̄ 2 ) + . . . 

The symmetry conditions are simply 

(i) d 2 f 

dx 2 
i 

= 

d 2 f 

dx 2 
1 

(ii) d 2 f 
d x i d x j 

= 

d 2 f 
d x 1 d x 2 

for i � = j 

Using these conditions, we can simplify the expansion of f analogously to before. We get 

f (X ) ≈ f 0 + first-order terms + I 

(
d 2 f 

dx 2 
1 

− d 2 f 

d x 1 d x 2 
+ I 2 

d 2 f 

d x 1 d x 2 

)
(X 1 − X̄ 1 ) 

2 

Appendix C. Approximate solution of policy function 

Table 1 reports the coefficients in a second-order Taylor expansion of the optimal policy function for capital holdings for

agent 1. The cross-derivatives including “1” denote constants such that the number in the upper left denotes the steady-

state level of capital holdings. The rest of the first row are the first-order terms whereas the rest of the table represents

second-order derivatives between the variables in the first column and row. 

Appendix D. Approximation of a Stochastic Discount Factor 

One stochastic discount factor is given by the average individual stochastic discount factor. We use the technique of a

nonlinear change of variables to approximate it with perturbation methods. Therefore, we recognize that the marginal utility

of next period’s consumption is a function of X t+1 and z t+1 while the marginal utility of consumption today is a function of

today’s state variables. Together, we build one Taylor expansion with respect to all these state variables. Applying the logic

from Eq. (10) , we arrive at 

β

I 

I ∑ 

i =1 

u 

′ (c i t+1 ) 

u 

′ (c i t 
≈

∞ ∑ 

o=0 

∑ 

‖ I ‖ + | j | + k = o 

1 

I ! · j ! · k ! 

(
h t, I , j ,k (X t , z t ) + h t+1 , I , j ,k (X t+1 , z t+1 ) 

)
(25)

where h ·, I , j ,k (X t , z t ) = U 

(I , j ,k ) (X 

0 , z 0 , 0)(X · − X 

0 ) I (z · − z 0 ) j σ k . The function U is represents marginal utility of consumption

for period t + 1 and the inverse thereof for period t . The derivatives at the deterministic steady-state are computed using

the nonlinear change of variables. 

Given this expansion, collect all monomial terms merely depending on state variables known in period t , i.e., X t , z t , and

X t+1 . The collection of those terms is denoted by c(X t , z t , X t+1 ) in Eq. (18) . Next, collect all terms in which total factor

productivity appears linearly. These terms are the first-order term in the expansion of productivity and all cross-terms with

variables known at time t . Collect those in a term c (1) 
z (X t , z t , X t+1 ) where we drop the arguments in Eq. (18) . We similarly

collect the terms for second-order expansions with respect to total factor and individual productivity and arrive at Eq. (18) .

Appendix E. Asset Pricing Example — Derivations 

E1. Derivation of the closed form solution for the asset pricing economy 

We start from the Euler equation of the tree (20) which we iterate to get 

P 0 
C 0 

= E 0 

[ 

∞ ∑ 

t=1 

βt A t 

A 0 

B t 

B 0 

(
C t 

C 0 

)1 −γ
] 

. (26)
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Now we plug in the stochastic processes that we iterate to get 

A t 

A 0 

= A 

ρt 
A 
−1 

0 
e σA 

∑ t−1 
j=0 ρ

j 
A 
ηt− j (27) 

and 

B t 

B 0 

= B 

ρt 
B −1 

0 
e σB 

∑ t−1 
j=0 ρ

j 
B 
ηt− j . (28) 

As a result, the expectation over the product of these ratios reads 

E 0 

[
A t 

A 0 

B t 

B 0 

]
= A 

ρt 
A 
−1 

0 
B 

ρt 
B −1 

0 
e 

∑ t−1 
j=0 (σA ρ

j 
A 
+ σB ρ

j 
B 
) ηt− j 

= A 

ρt 
A 
−1 

0 
B 

ρt 
B −1 

0 
e 

1 
2 

[
σ 2 

A 

1 −ρ2 t 
A 

1 −ρ2 
A 

+ σ 2 
B 

1 −ρ2 t 
B 

1 −ρ2 
B 

+2 σA σB 

1 −ρt 
A 
ρt 

B 
1 −ρA ρB 

]
. (29) 

We plug this equation in our iterated Euler equation 

P 0 
C 0 

= 

∞ ∑ 

t=1 

E 0 

[
βt C 

1 −γ
t 

C 
1 −γ
0 

]
· E 0 

[
A t 

A 0 

B t 

B 0 

]

= 

∞ ∑ 

t=1 

βt e −γμt+ γ 2 σ2 
ε 

2 t A 

ρt 
A 
−1 

0 
B 

ρt 
B −1 

0 
e 

1 
2 

[
σ 2 

A 

1 −ρ2 t 
A 

1 −ρ2 
A 

+ σ 2 
B 

1 −ρ2 t 
B 

1 −ρ2 
B 

+2 σA σB 

1 −ρt 
A 
ρt 

B 
1 −ρA ρB 

]
(30) 

which yields our result in Eq. (21) . 

E2. Linear law of motion 

From the linear law of motion (22) and the Euler Eq. (20) , we receive the equation 

P 0 
C 0 

= E 0 

[
β

A 1 

A 0 

B 1 

B 0 

(
C 1 
C 0 

)1 −γ (
1 + φ̄PC + φPC 

P 0 
C 0 

+ φηη1 

)]
(31) 

that we need to solve. We rearrange it to 

P 0 
C 0 

= 

βe −γμ+ γ 2 σ2 
ε 

2 E 0 
[

A 1 
A 0 

B 1 
B 0 

(1 + φ̄PC + φηη1 ) 
]

1 − φPC βe −γμ+ γ 2 σ2 
ε 

2 

(32) 

and solve for the different parts. First note that 

E 0 

[
A 1 

A 0 

B 1 

B 0 

]
= A 

ρA −1 
t B 

ρB −1 
t e 

1 
2 (σA + σB ) 

2 

(33) 

which simplifies the denominator. For the numerator, we make use of the fact that consumption growth and growth of taste

shocks are independent. Thus, we can treat the terms in the expectation separately. For the preference shocks, we get 

E 1 

[
A 1 

A 0 

B 1 

B 0 

(1 + φ̄PC + φηe η1 ) 

]
= A 

ρA −1 
1 

B 

ρB −1 
1 

(
e 

1 
2 (σA + σB ) 

2 

(1 + φ̄PC ) + φη(σA + σB ) e 
(σA + σB ) 

2 

2 

)
(34) 

where the first part comes from a standard iteration as before. The second part follows from 

E 1 

[
A 1 

A 0 

B 1 

B 0 

φηη1 

]
= A 

ρA −1 
0 

B 

ρB −1 
0 

φηE 0 
[
e (σA + σB ) η1 η1 

]
. (35) 

The last expectation can be computed by solving the integral ∫ ∞ 

−∞ 

1 √ 

2 π
xe −

1 
2 (x −(σA + σB )) 

2 

e −
x 2 

2 dx = e 
(σA + σB ) 

2 

2 

∫ ∞ 

−∞ 

1 √ 

2 π
xe −

1 
2 (x −(σA + σB )) 

2 

dx 

= (σA + σB ) e 
(σA + σB ) 

2 

2 . (36) 

E3. Quadratic law of motion 

Households perceive the equation of motion to be 

P t+1 

C t+1 

= φ̄QPC + φQPC1 

P t 

C t 
+ φQPC2 

(
P t 

C t 

)2 

+ φQ ηηt+1 . 
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Plug the equation of motion into the Euler equation to get 

P t 

C t 
= E t 

[
β

A t+1 

A t 

B t+1 

B t 

(
C t+1 

C t 

)1 −γ
(

φ̄QPC + φQPC1 

P t 

C t 
+ φQPC2 

(
P t 

C t 

)2 

+ φQ ηηt+1 + 1 

)]
or simplified as 

�t (α + 1) + (ρp1 �t − 1) 
P t 

C t 
+ �t ρp1 

(
P t 

C t 

)2 

+ E t 

[
β

A t+1 

A t 

B t+1 

B t 

(
C t+1 

C t 

)1 −γ

δηt+1 

]
= 0 

where 

�t = E t 

[
β

A t+1 

A t 

B t+1 

B t 

(
C t+1 

C t 

)1 −γ
]
. 

The formula for quadratic equations delivers two solutions, one of which is the desired one. 

Appendix F. Barrier Functions 

For an optimization problem of the form 

max 
x 

f (x ) subject to c i (x ) ≥ 0 (37)

where i serves as an index for constraints c i , we can write a smooth version as 

max 
x 

f (x ) − μ
∑ 

i 

B (c i (x )) (38)

where B ( · ) is continuously differentiable and lim x → 0 B (x ) = ∞ . Take a sequence of barrier parameters { μk } which leads to

a sequence of solutions { x ∗
k 
} to Eq. (38) . Then every limit point x ∗ of the sequence of solutions { x ∗

k 
} is a global solution to

problem (37) . For details, e.g. see Nocedal and Wright (2006) . 
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