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1. INTRODUCTION

Dynamic programming (DP) is the essential tool for solving dynamic and stochas-
tic control problems in economics, but the nonlinearities of dynamic economic
problems make them numerically challenging. This has led to the development of
a variety of methods for solving dynamic programming problems; see the surveys
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2 YONGYANG CAI ET AL.

in Rust (1996; 2008) and Cai and Judd (2014). One approach to solving problems
with continuous states has been to discretize the states and controls, and then
apply methods for discrete problems. For example, Trick and Zin (1997) applied
the linear programming (LP) approach to a discretized economic growth model.
The LP approach allowed them to formulate the infinite-horizon DP problem as
the solution to a finite-dimensional LP problem. The LP approach has been studied
extensively in the operations research literature; see De Farias and Van Roy (2003)
for more recent developments. However, it has limited value for problems with
continuous actions and/or states, because sufficiently fine discretization will often
create intractably large LP problems. For example, if each dimension of a d-
dimensional state space is discretized by m nodes, then the number of points in the
discrete-state problem is md . The necessity to discretize the action space substan-
tially increases the size of the LP problem, where the number of constraints equals
the product of the number of discrete states and discrete actions. These issues are
particularly important when we want to examine how utility changes in response
to economic policy changes. In these cases, it is necessary to obtain accurate
approximations to the decision rules as well as the value function, requirements
that easily lead to intractably large LP problems.

This paper presents a nonlinear programming (NLP) method, called DPNLP,
to solve infinite-horizon DP problems. DPNLP takes the underlying idea behind
the LP approach and adapts it to problems with continuous states and actions.
The DPNLP approach uses a variety of tools from numerical analysis, such
as shape-preserving approximation methods, numerical quadrature, and solvers
for general nonlinear constrained optimization. The use of efficient methods
from approximation theory is particularly important because they allow us to
mitigate, if not avoid, the curse of dimensionality for problems with smooth
solutions.

Our numerical examples illustrates the efficiency of the DPNLP approach. For
example, we solve optimal growth problems with two continuous state variables
and six continuous control variables. DPNLP solves them in minutes with up to
five-digit accuracy, a combination of speed and accuracy that is not possible with
the LP approach.

The DPNLP algorithm is an efficient and easily implemented approach to
solving infinite-horizon DP problems such as the optimal growth problems given
in Judd (1998), Maliar and Maliar (2004), and Den Haan et al. (2011). In fact,
the efficiency of the DPNLP algorithm allows it to be a critical component of
empirical estimation methods. For example, Michelangeli (2009) used DPNLP
inside an MPEC approach [see Su and Judd (2012)] to estimate a model of the
demand for reverse mortgages.

The paper is organized as follows. Section 2 describes the kind of dynamic
problems commonly used in economics and the subject of this paper. Section 3
defines the DPNLP algorithm for solving infinite-horizon DP problems. Section
4–6 apply DPNLP to optimal accumulation problems similar to many economics
problems. Section 7 concludes.
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NONLINEAR METHOD FOR DYNAMIC PROGRAMMING 3

2. DYNAMIC PROGRAMMING

An infinite-horizon stochastic optimal decision-making problem has the following
general form:

V (x0, θ0) = max
at∈D(xt ,θt )

E

{ ∞∑
t=0

βtu(xt , at )

}
, (1)

s.t. xt+1 = g(xt , θt , at ),

θt+1 = h(θt , εt ),

where xt is an endogenous continuous-state vector process with initial state x0, θt is
an exogenous state vector process with initial state θ0, εt is a serially uncorrelated
random vector process, g is a continuous function representing the change in
the state xt as a function of the state and the action at , h represents the transition
process for θt ,D(xt , θt ) is a feasible set of at dependent on (xt , θt ), β is the discount
factor with 0 < β < 1, u is a concave utility function, and E{·} is the expectation
operator. Although this description does not apply to many applications of dynamic
programming, it does apply to most models in dynamic economics. Examples
include economic growth, portfolio decisions, and investment decisions by firms.

The DP model for the general infinite-horizon problem is the following Bellman
equation [Bellman (1957)]:

V (x, θ) = max
a∈D(x,θ)

u(x, a) + βE
{
V (x+, θ+) | x, θ, a

}
, (2)

s.t. x+ = g(x, θ, a),

θ+ = h(θ, ε),

where (x+, θ+) is the next-stage state conditional on the current-stage state (x, θ)

and the action a, ε is a random variable, and V (x, θ) is the value function. The
case of no uncertainty is a special case of (1) with only one value of θ , implying

V (x0) = max
at∈D(xt )

∞∑
t=0

βtu(xt , at ), (3)

s.t. xt+1 = g(xt , at ),

and the Bellman equation

V (x) = �(V )(x) := max
a∈D(x)

u(x, a) + βV (x+), (4)

s.t. x+ = g(x, a).

We call � the Bellman operator.
The DP problem (4) is defined in terms of the optimal value function. When

the state variable is continuous, the value function must be approximated in
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4 YONGYANG CAI ET AL.

some finite-dimensional space; thus we have to use some approximation for the
value functions, because computers cannot model the entire space of continuous
functions.

An approximation scheme consists of two parts: basis functions and approxi-
mation nodes. Approximation nodes can be chosen as uniformly spaced nodes,
Chebyshev nodes, or some other specified nodes. From the viewpoint of basis
functions, approximation methods can be classified as either spectral methods
or finite-element methods. A spectral method uses globally nonzero basis func-
tions {φj (x)} and coefficients b = {bj } such that V̂ (x; b) = ∑n

j=0 bjφj (x) is a
degree-n approximation. Examples of spectral methods include ordinary polyno-
mial approximation, Chebyshev polynomial approximation, and shape-preserving
Chebyshev polynomial approximation [Cai and Judd (2013)]. In contrast, a finite-
element method uses local basis functions {φj (x)} that are nonzero over subdo-
mains of the approximation domain. Examples of finite-element methods include
piecewise linear interpolation, Schumaker interpolation, shape-preserving rational
function spline Hermite interpolation [Cai and Judd (2012)], cubic splines, and
B-splines. See Judd (1998), Cai (2010), and Cai and Judd (2010) for more details.
Appendices A and B describe (multidimensional) Chebyshev polynomials.

3. NONLINEAR PROGRAMMING METHOD FOR SOLVING
BELLMAN EQUATIONS

There are many approaches to solving Bellman equations, such as value function
iteration and policy iteration methods or LP approaches. This section describes
the general nonlinear programming method (DPNLP) for solving the Bellman
equation (4) or (2) for concave dynamic programming problems. We describe
the DPNLP in three stages. First, we present a formulation of (1), which is an
infinite-dimensional optimization problem. Second, we describe the logic of our
discretization of the infinite set of constraints in the infinite formulation. However,
the direct implementation of this basic concept is difficult because of the unde-
termined fineness of the necessary discretization. Third, we describe the DPNLP
algorithm, which will build up the value function approximation using successively
finer discretization, but will terminate in finite time and produce an approximate
solution to (1).

3.1. Review of Linear Programming Approaches

When the DP problem (4) has a discrete state x ∈ {x1, . . . , xm} and a discrete
control a in a finite set of points Ai for each state point xi , it can be solved by a
LP model [see Trick and Zin (1997)]:

min
v

m∑
i=1

vi,

s.t. vi ≥ u(xi, a) + βvi+(a), ∀a ∈ Ai , i = 1, . . . , m,
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NONLINEAR METHOD FOR DYNAMIC PROGRAMMING 5

where i+(a) is the index of the next-period state xi+(a) with current state xi and
action a. Note that the constraints must hold for any possible action a ∈ Ai , which
implies that

vi ≥ max
a∈Ai

u(xi, a) + βvi+(a),

for i = 1, . . . , m.
When the DP problem (4) has a continuous state x and a discrete control a in

a finite set of points Ai for each state point xi , Trick and Zin (1997) choose a set
of state points {x1, . . . , xm}, and then approximate the value function by a spline
V̂ (xi; b), linear in the unknown coefficients b. They solve the problem using the
following LP model:

min
b

m∑
i=1

V̂ (xi; b), (5)

s.t. V̂ (xi; b) ≥ u(xi, a) + βV̂ (g(xi, a); b), ∀a ∈ Ai , i = 1, . . . , m.

De Farias and Van Roy (2003) extend the preceding LP method by randomly
choosing xi , by changing the objective to a weighted sum [i.e.,

∑m
i=1 wiV̂ (xi; b)],

and by generalizing the form of V̂ (x; b) to be a linear combination of preselected
basis functions with the unknown coefficients b.

3.2. Infinite-Horizon Dynamic Programming as an Infinite Programming
Problem

In this paper, we generalize the concept of the LP method to problems
with continuous states and continuous controls. We start with the following
model:

max
a(x)∈D(x),V (x)

∫
X

V (x)dx, (6)

s.t. V (x) ≤ u(x, a(x)) + βV (g(x, a(x))), ∀x ∈ X,

where V (x) and a(x) are two functional variables in the set of measurable functions
on X, and then we prove the following theorem.

THEOREM 1. Suppose that

(i) X ⊂ Rd is an open and bounded domain;
(ii) u(x, a) and g(x, a) are continuous in both x ∈ X and a ∈ D(x);

(iii) there exists an optimal solution of (6), V̂ (x) and â(x), which are continuous and
bounded on X;

(iv) there exists an optimal measurable solution of (4), V ∗(x) and a∗(x), where V ∗(x) is
also continuous and bounded on X.
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6 YONGYANG CAI ET AL.

Thus, V ∗(x) = V̂ (x) for all x ∈ X. Moreover, â(x) is also an optimal policy
function of (4).

Proof. We first show by contradiction that the constraints of (6) bind at the
optimal solution of (6), V̂ (x) and â(x), for any x ∈ X. Suppose that there exists
x∗ ∈ X such that

V̂ (x∗) < u(x∗, â(x∗)) + βV̂ (g(x∗, â(x∗))).

Let V (x) ≡ u(x, â(x)) + βV̂ (g(x, â(x))). We have V (x∗) > V̂ (x∗) and V (x) ≥
V̂ (x) for all x ∈ X, because V̂ and â satisfy the constraints of (6). Thus,

V (x) ≡ u(x, â(x)) + βV̂ (g(x, â(x)))

≤ u(x, â(x)) + βV (g(x, â(x)))

for all x ∈ X, which implies that V (x) and â(x) are feasible for (6). From
continuity of u, g, V̂ , and â, we know that V is also continuous, and thus the set
{x ∈ X : V (x) > V̂ (x)} has a nonzero measurement, as X is an open set. B both
X and V̂ are bounded, we have a finite

∫
X V̂ (x)dx; then∫

X
V (x)dx >

∫
X

V̂ (x)dx.

This contradicts the assumption that V̂ (x) and â(x) are the optimal solution of
(6). Therefore, we have the binding constraints at the optimal solution, i.e.,

V̂ (x) = u(x, â(x)) + βV̂ (g(x, â(x))), (7)

for any x ∈ X. This also implies that

V̂ (x) =
∞∑
t=0

βtu(̂xt , â(̂xt )), (8)

with x̂t+1 = g(̂xt , â(̂xt )) and x̂0 = x.
Because V ∗(x) and a∗(x) are optimal for (4), we have

V ∗(x) = u(x, a∗(x)) + βV ∗(g(x, a∗(x))) (9)

for any x ∈ X, which implies that

V ∗(x) =
∞∑
t=0

βtu(x∗
t , a∗(x∗

t )), (10)

with x∗
t+1 = g(x∗

t , a∗(x∗
t )) and x∗

0 = x. Because V ∗ is the fixed point of the
Bellman operator �, we know that V ∗ and a∗ are also the solution of the problem
(3), so from (8) and (10) we have V ∗(x) ≥ V̂ (x) for all x ∈ X.

to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1365100515000528
Downloaded from https:/www.cambridge.org/core. Lane Medical Library / Stanford University Medical Center, on 16 Feb 2017 at 23:22:54, subject

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1365100515000528
https:/www.cambridge.org/core


NONLINEAR METHOD FOR DYNAMIC PROGRAMMING 7

Now we show that V ∗(x) ≤ V̂ (x) for all x ∈ X, by contradiction. Suppose that
there exists x̃ ∈ X such that V ∗(̃x) > V̂ (̃x). Let

� := {
x ∈ X : V ∗(x) > V̂ (x)

}
.

We know that � is nonempty and has a nonzero measurement from the openness
of X and the assumption of continuity of V ∗ and V̂ . Let

ã(x) =
{

a∗(x), if x ∈ �,

â(x), otherwise,

and

Ṽ (x) =
{

V ∗(x), if x ∈ �,

V̂ (x), otherwise.

From (7) and (9), we know that Ṽ and ã are feasible in (6). Moreover,∫
X

Ṽ (x)dx >

∫
X

V̂ (x)dx,

as � has a nonzero measurement. This contradicts the assumption that V̂ (x) and
â(x) are the optimal solution of (6).

Therefore, we have shown that V ∗(x) = V̂ (x) for all x ∈ X. Thus, from (8)
and (10), we know that â(x) is also an optimal policy function for the problem
(3), and thus â(x) is also an optimal policy function for (4).

In the preceding theorem, we assume that X ⊂ Rd is an open and bounded
domain, but it is easy to see that the theorem can also hold on its corresponding
closed domain X ∪ ∂X, where ∂X is the boundary of X. Moreover, under the
assumptions of the theorem, if a∗(x) is the unique optimal policy function of the
problem (4), then we have â(x) = a∗(x) for all x ∈ X.

The problem defined in (6) is an infinite-dimensional problem with an infinite
number of constraints. Any numerical method for solving (6) must use a param-
eterized approximation of V (x). When we replace V (x) in (6) with the finitely
parameterized V̂ (x; b), we arrive at

max
b,a(x)

∫
X

V̂ (x; b)dx, (11)

s.t. V̂ (x; b) ≤ u(x, a(x)) + βV̂ (g(x, a(x)); b), ∀x ∈ X.

The only difference between (11) and (6) is the smaller choice set for value
functions in (11). The solution to (11) will be our approximation to the solution of
(6), and will be the solution to (6) if the set of functions defined by the functional
form V̂ (x; b) includes the solution of (6).

The DPNLP method focuses on solving the problem (11). A standard approach
for solving it is to discretize the constraints; see Polak (1997). In the remainder
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8 YONGYANG CAI ET AL.

of this paper we will describe an efficient strategy that allows us to solve concave
dynamic programming problems.

3.3. The Basic Concepts behind DPNLP

The problem in (11) uses a finite-dimensional representation of V (x). We next
need to replace the infinite set of constraints in (11) with a finite subset. The
key discretization is to choose a finite number of points, xi, i = 1, . . . m,

in the domain X. We call them the approximation nodes. In (11), for each
x ∈ X, all action choices are examined, creating a new constraint for each
a ∈ D(x). In DPNLP, we will choose the best feasible action at each approximation
node.

This leads to the following finite-dimensional nonlinear optimization
problem:

max
ai∈D(xi ),x

+
i ,vi ,b

m∑
i=1

vi, (12)

s.t. vi ≤ u(xi, ai) + βV̂ (x+
i ; b), i = 1, . . . , m,

x+
i = g(xi, ai), i = 1, . . . , m,

vi = V̂ (xi; b), i = 1, . . . , m,

where xi, i = 1, . . . m, are the approximation nodes in the domain X. For each ap-
proximation node xi , we need to specify a continuous action choice, ai , a successor
state, x+

i , and a value, vi . The coefficients of the value function approximation, b,
are also chosen in the optimization problem.

The idea in (12) is to solve the DP problem at each approximation node and
construct a value function that is a valid global representation of the resulting
data. Unfortunately, the formulation in (12) may fail, as the interpolation at the
approximation nodes might not produce acceptable value function approximations
V̂ . For example, if the dynamic programming problem is concave, the solution
for the coefficients b in (12) may imply a V̂ (x; b) that is not concave in x ∈ X.
Shape preservation is a critical feature of stable DP solution methods; see Cai
and Judd (2010, 2012, 2013) for a discussion of the problems when shape is not
preserved and examples of shape preservation in dynamic programming. In this
paper, we are concerned with solving problems with a concave value function.
Therefore, we next add the requirement that the b coefficients imply a concave
V̂ (x; b). This produces an infinite number of constraints, but again we replace it
with a finite subset of constraints. Specifically, we choose a set of shape nodes
{yi ′ : i ′ = 1, . . . , m′} ⊂ X and impose concavity and monotonicity at those
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NONLINEAR METHOD FOR DYNAMIC PROGRAMMING 9

points. This leads to the basic DPNLP problem:

max
ai∈D(xi ),x

+
i ,vi ,b

m∑
i=1

vi, (13)

s.t. vi ≤ u(xi, ai) + βV̂ (x+
i ; b), i = 1, . . . , m, (14)

x+
i = g(xi, ai), i = 1, . . . , m,

vi = V̂ (xi; b), i = 1, . . . , m,

V̂ ′(yi ′ ; b) ≥ 0, i ′ = 1, . . . , m′,

V̂ ′′(yi ′ ; b) ≤ 0, i ′ = 1, . . . , m′.

All of this assumes that there are polynomials with the desired shape prop-
erties for V̂ and sets of approximation and shape nodes that will impose the
interpolation and shape requirements. Approximation theory provides us with this
justification. If we use a polynomial approximation, then the Stone–Weierstrass
theorem tells us that there is a finite-degree polynomial that is close to V (x).
Moreover, Bernstein polynomials can be constructed to create shape-preserving
approximations for a sufficiently dense collection of approximation nodes [see
Bojanic and Cheng (1989); Goodman (1989); Carnicer and Pena (1993); Farouki
(2012); etc.). Therefore, there do exist settings for m and m′ and values for the
coefficients b such that (13) will succeed at finding a good approximation to the
true value function. We use only the existence results, not the inefficient Bernstein
polynomial construction.

There are many considerations in choosing the approximation and shape nodes
so that (13) will produce a good approximation to the true value function. One
conservative approach would be to choose m and m′ sufficiently large and b
sufficiently flexible so that shape is surely satisfied, V̂ interpolates the vi data at
each xi , and the optimization inequality, vi ≤ u(xi, ai)+βV̂ (x+

i ; b), holds at each
xi . To ensure shape, m′ will generally need to exceed m. If no shape constraint
is binding (as will be the case in our applications to strictly concave increasing
value functions) the optimization inequality (14) will be binding from the proof
of Theorem 1. This implies that, for any ai , a solver will jointly adjust vi and b
to maintain the interpolation constraint (which is possible if no shape constraint
is binding) and increase vi until vi = u(xi, ai) + βV̂ (x+

i ; b). The solver will also
change ai and x+

i to allow for further increase in vi if possible. Therefore, the ai

choice will maximize u(xi, ai) + βV̂ (x+
i ; b).

Although this conservative approach is a reliable strategy, it is not necessary. The
objective of DPNLP is to solve infinite-horizon problems quickly and accurately.
(13) may produce an excellent answer even if we delete the shape constraints. In
fact, we aim to increase the flexibility of V̂ until no shape constraint is binding,
raising the question of why we include them. Without the shape constraints, there
may be V̂ functions that solve (13), even yielding greater values for the objective,
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10 YONGYANG CAI ET AL.

but that are not close to the true value function. This problem is discussed in Cai
and Judd (2013). The role of the shape constraints is to define an optimization
problem with convex constraints that rule out values of b implying V̂ functions
that cannot be close to the true value function. Therefore, in practice, we could take
an aggressive approach that initially imposed few shape constraints, but gradually
increased the flexibility of the V̂ specification and the number of shape constraints
until the result passed an error bound test. Subsection 3.4 will discuss that error
bound test and Subsection 3.5 will present the full DPNLP algorithm.

We immediately see a major advantage of DPNLP over the LP approach [Trick
and Zin (1997); De Farias and Van Roy (2003)]. The LP approach is limited by
a curse of dimensionality arising from the need to keep an inequality for every
possible action choice for each state point. In DPNLP, the number of action
choices grows only at the rate of the number of xi points, which does not grow
exponentially if the choice for V̂ (x; b) is an efficient method of approximating
V (x). Furthermore, any method that approximates a continuous-state problem
with a discrete-state problem [as in Trick and Zin (1997); De Farias and Van
Roy (2003)] will have to use a large number of discrete states to achieve high
accuracy. The DPNLP approach allows us to use efficient approximation methods
for continuous-state problems.

Solving the stochastic Bellman equation (2) where θ ∈ 	 = {ϑj : j =
1, . . . , J } is a straightforward extension. In this case, the basic DPNLP model
becomes

min
ai,j ∈D(xi ,ϑj ),x

+
i ,vi ,b

J∑
j=1

m∑
i=1

vi,j , (15)

s.t. vi,j ≤ u(xi, ai,j ) + β

J∑
j ′=1

Pj,j ′ V̂ (x+
i,j , ϑj ′ ; b),

x+
i,j = g(xi, ϑj , ai,j ),

vi,j = V̂ (xi, ϑj ; b),

V̂ ′(yi ′ , ϑj ; b) ≥ 0, i ′ = 1, . . . , m′,

V̂ ′′(yi ′ , ϑj ; b) ≤ 0, i ′ = 1, . . . , m′,

i = 1, . . . , m, j = 1, . . . , J,

where Pj,j ′ is the conditional probability of θ+ = ϑj ′ given θ = ϑj , i.e., Pj,j ′ =
Pr

(
θ+ = ϑj ′ | θ = ϑj

)
, for any j, j ′ = 1, . . . , J . For a case with continuous θ ,

the expectation over θ+ is replaced by a numerical quadrature formula; then we
have a model of the form (15).
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NONLINEAR METHOD FOR DYNAMIC PROGRAMMING 11

3.4. Error Estimation

In any dynamic programming solution algorithm for infinite-horizon problems,
it is important to estimate the error of a value function approximation V̂ (x; b).
According to the Bellman equation (4), we know that the true value function is
the fixed point of the Bellman operator �. The contraction mapping property of
the Bellman operator [Blackwell (1965)] and the triangle inequality imply the
following upper bound on a value function approximation:1

∥∥V̂ − V
∥∥

∞ ≤
∥∥V̂ − �

(
V̂

)∥∥
∞

1 − β
. (16)

We will use this property to estimate the approximation error of a possible solution,
V̂ (x; b).

The idea is to evaluate the error at a random sample of points in the state space,
and take the maximum to approximate the upper bound in (16). More specifically,
we draw a random set of points in the domain X, denoted by z1, . . . , zN , and solve
the optimization problem

ṽj = �
(
V̂

)
(zj ) = max

aj ∈D(zj ),z
+
j

u(zj , aj ) + βV̂ (z+
j ; b), (17)

s.t. z+
j = g(zj , aj ),

for each point zj , j = 1, . . . , N . Letting ṽ = [̃v1, . . . , ṽN ], z = [z1, . . . , zN ], and
V̂ (z; b) = [

V̂ (z1; b), . . . , V̂ (zN ; b)
]
, we could use∥∥ṽ − V̂ (z; b)

∥∥
∞

1 − β
(18)

to approximate the error upper bound on the right-hand side of (16).
The inequality expressed in (16) is always valid, but the actual magnitude of

this upper bound is sensitive to the choice of units. To make a reliable judgment
concerning the quality of a value function approximation, we need to rescale
the error estimation (18) in some way that will indicate whether the error is
important for the economic analysis. The first key step is to get rid of units. The
unit of V̂ is “utils,” the magnitude of which has no economic value. In fact, any
affine transformation of the utility function will lead to a different value function.
V̂ ′(x; b) has the unit “utils per x,” so x ·V̂ ′(x; b) has the same unit as V̂ , where x is
a reference state point in the state space X. We therefore get rid of the utility units
by division with respect to x · V̂ ′(x; b), and this gives us a unit-free expression
describing the error with the scaled error norm∥∥∥∥∥ ṽ − V̂ (z; b)

x · V̂ ′(x; b)(1 − β)

∥∥∥∥∥
∞

, (19)
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12 YONGYANG CAI ET AL.

where x should be representative of the states that are relevant to the problem, such
as the steady state. Expression (19) is a unit-free measure of the percentage change
in x that is (approximately) x-equivalent to the value function error. For example,
if the state variable is wealth, then our unit-free error norm expresses the difference
between ṽ and V̂ at z in terms of an equivalent relative change in wealth. The error
measure is, of course, not an exact measure of a wealth equivalent change, but it
is fine for our purposes, because we are concerned with the order of magnitude of
the errors, not with their precise value.

For a stochastic problem (2), we use the normed error measure∥∥∥∥∥ ṽ − V̂ (z, θ; b)

x · V ′(x, θ; b)(1 − β)

∥∥∥∥∥
∞

, (20)

where the ith elements of ṽ and V̂ (z, θ; b) correspond to the ith sample point
(zi, θi), θ is the median of θ , and x is a reference point, such as the steady state
of the related deterministic problem. In a multidimensional problem, x · V̂ ′ is the
inner product of x and the gradient vector of V̂ at x.

3.5. The DPNLP Algorithm

We now describe the steps in the DPNLP algorithm. As noted earlier, the Stone–
Weierstrass theorem and Bernstein approximation theory tell us that (13) will
work for a sufficiently flexible approximation V̂ and sufficiently large sets of
approximation and shape nodes. We do not know how much flexibility is needed.
There may be approximation theorems that will give us specifications that will
work, but they will tend to be far in excess of what will work. We therefore take a
guess-and-adjust approach to DPNLP; that is, we take small grids and low-order
approximations, solve (13), and check the shape of the result. If the shape is bad,
we then try again with a more flexible strategy.

If the approximation method is not sufficiently flexible (for example, if the
polynomial approximation is of too low a degree), the solution to (13) will imply
a solution where the inequality in (21) is not binding, as it would be if we had
the true solution for V (x). It is also the case that some of the shape constraints,
V̂ ′(yi ′ ; b) ≥ 0 or V̂ ′′(yi ′ ; b) ≤ 0, are binding at some shape nodes, which also
should not be the case for the true V (x). That is, the true solution of the basic
DPNLP model (13) should let the inequality constraints,

vi ≤ u(xi, ai) + βV̂ (x+
i ; b), (21)

be binding for all i = 1, . . . , m, and V̂ (yi ′ ; b) should be strictly increasing and
concave at all the shape nodes.

In this paper, we use the Chebyshev polynomial approximation in V̂ . For
a smooth function, we know that the Chebyshev polynomial approximation
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NONLINEAR METHOD FOR DYNAMIC PROGRAMMING 13

usually has smaller coefficients for higher-degree terms. This tells us that a
small-degree Chebyshev polynomial approximation in V̂ is a good initial guess
for a higher-degree Chebyshev polynomial approximation. Therefore, we use the
following DPNLP algorithm with stepwise construction of value functions to solve
the infinite-horizon deterministic optimal decision-making problems by stepwise
construction of value functions.

Algorithm 1. DPNLP algorithm for infinite-horizon deterministic optimal decision-
making problems

Initialization. Choose a lexicographically ordered sequence of integer vectors
(nJ , mJ ,m′

J ). For each J = 1, 2, 3, . . ., choose mJ approximation nodes
{xJ

i : 1 ≤ i ≤ mJ } and m′
J shape nodes {yJ

i : 1 ≤ i ≤ m′
J } in X. Set J = 1.

Step 1. Solve the basic DPNLP model (13) with degree-nJ Chebyshev polynomial
approximation V̂ (x; bJ ) over the approximation nodes {xJ

i : 1 ≤ i ≤ mJ }
and the shape nodes {yJ

i : 1 ≤ i ≤ m′
J } (by using the previous step’s

solutions as an initial guess when J > 1).
Step 2. Check shape constraints; if there is a violation, increase J , and go to Step

1. Else go to Step 3.
Step 3. Draw N random points zj ∈ X, compute ṽj = �

(
V̂

)
(zj ) in (17) for

j = 1, . . . , N , and then estimate the error norm (19). If the error is too
large, increase J and go to step 1; otherwise exit.

The choices of (nJ ,mJ ,m′
J ) and corresponding approximation nodes and shape

nodes depend on experience. Because a quadratic Chebyshev polynomial approx-
imation to V (x) is a good shape-preserving approximation with increasing and
concave properties, it is usually good to choose n1 = 2 in the initialization step
of Algorithm 1. In our examples, we just choose fixed mJ = m and m′

J = m′ for
simplicity and let nJ = J + 1 for J = 1, 2, . . . , m − 1, and the approximation
nodes are the expanded Chebyshev nodes in X = [xmin, xmax].

4. APPLICATIONS TO DETERMINISTIC OPTIMAL GROWTH PROBLEMS

An infinite-horizon economic problem is the discrete-time optimal growth model
with one good and one capital stock, which is a deterministic model.2 The aim is
to find the value function defined by

V (k0) = max
c,l

∞∑
t=0

βtu(ct , lt ), (22)

s.t. kt+1 = F(kt , lt ) − ct ,

where kt is the capital stock at time t with k0 in [0.3, 2], ct is consumption, lt is the
labor supply, β is the discount factor, F(k, l) is the aggregate production function,
and u(ct , lt ) is the utility function. In the examples, the aggregate production
function is F(k, l) = k + Akψl1−ψ with ψ = 0.25 and A = (1 − β)/(ψβ). The
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14 YONGYANG CAI ET AL.

utility function is

u(c, l) = (c/A)1−γ − 1

1 − γ
− (1 − ψ)

l1+η − 1

1 + η
. (23)

The functional forms for utility and production imply that the steady state of the
infinite-horizon deterministic optimal growth problems is kss = 1, and the optimal
consumption and the optimal labor supply at kss are, respectively, css = A and
lss = 1. The code for DPNLP is written in GAMS [McCarl et al. (2015)], and the
optimization solver is CONOPT (in the GAMS environment).

4.1. True Solution

To estimate the accuracy of the solution given by DPNLP, we compute the “true”
optimal solution on a large set of test points for initial capital k0 ∈ [0.3, 2] and
then compare those results with the computed optimal solution from DPNLP. To
get the “true” optimal solution, we discretize the range of capital, [0.3, 2], with
one million equally spaced capital nodes, and also discretize the range of labor
supply, [0.4, 2.5], with another one million equally spaced labor supply nodes. For
any discretized capital node k and labor supply node l, we choose consumption
c = F(k, l) − k+ such that k+ is also one of the discretized capital nodes. Using
the discretized capital nodes as discrete states, we apply the alternating sweep
Gauss–Seidel algorithm [Judd (1998)] to compute the optimal value function until
it converges under the stopping criterion 10−7.

4.2. DPNLP Solution

We use the DPNLP algorithm (Algorithm 1) to solve the deterministic optimal
growth problem. The basic DPNLP model is

max
c,l,k+,v,b

m∑
i=1

vi, (24)

s.t. vi ≤ u(ci, li) + βV̂ (k+
i ; b), i = 1, . . . , m,

k+
i ≤ F(ki,, li) − ci, i = 1, . . . , m,

vi = V̂ (ki; b), i = 1, . . . , m,

V̂ ′(yi ′ ; b) ≥ 0, i ′ = 1, . . . , m′,

V̂ ′′(yi ′ ; b) ≤ 0, i ′ = 1, . . . , m′.

For our examples in this section, we always choose m = 19 expanded Cheby-
shev nodes, ki , in [0.3, 2] as the approximation nodes; the approximation method,
V̂ , is the expanded Chebyshev polynomial up to the maximal degree 18; and we
choose m′ = 100 expanded Chebyshev nodes, yi ′ , in [0.3, 2] as the shape nodes.
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NONLINEAR METHOD FOR DYNAMIC PROGRAMMING 15

TABLE 1. Errors of DPNLP for deterministic optimal growth problems

Error to truth
Error norm (19) Time

β γ η c∗
DPNLP l∗DPNLP for V̂ (seconds)

0.9 0.5 0.2 1.5(−6) 1.8(−6) 5.7(−8) 3.6
1 3.1(−6) 1.5(−6) 5.7(−8) 3.5
5 3.0(−6) 1.1(−6) 5.6(−8) 3.6

2 0.2 1.1(−6) 3.6(−6) 1.6(−7) 4.0
1 1.4(−6) 2.3(−6) 1.9(−7) 4.0
5 2.2(−6) 1.2(−6) 2.4(−7) 3.5

8 0.2 9.7(−6) 3.7(−6) 2.7(−7) 4.6
1 1.0(−6) 2.6(−6) 4.9(−7) 3.8
5 1.5(−6) 3.5(−6) 2.2(−6) 3.8

0.95 0.5 0.2 3.1(−6) 3.7(−6) 7.5(−8) 3.9
1 4.7(−6) 1.9(−6) 7.2(−8) 3.7
5 4.8(−6) 1.2(−6) 7.0(−8) 3.5

2 0.2 1.6(−6) 5.8(−6) 2.0(−7) 4.1
1 2.2(−6) 3.4(−6) 2.3(−7) 4.0
5 3.5(−6) 1.9(−6) 2.8(−7) 3.8

8 0.2 1.2(−6) 6.7(−6) 3.3(−7) 4.5
1 1.2(−6) 5.2(−6) 5.8(−7) 4.3
5 2.8(−6) 4.8(−6) 2.5(−6) 4.1

0.99 0.5 0.2 1.2(−5) 1.3(−5) 1.1(−7) 4.5
1 3.0(−5) 1.1(−5) 9.7(−8) 4.0
5 4.2(−5) 4.3(−6) 9.1(−8) 3.7

2 0.2 6.1(−6) 2.4(−5) 2.7(−7) 5.4
1 1.0(−5) 1.6(−5) 2.7(−7) 5.2
5 1.8(−5) 7.7(−6) 3.2(−7) 5.5

8 0.2 2.0(−6) 3.2(−5) 4.2(−7) 7.0
1 3.9(−6) 2.2(−5) 6.6(−7) 6.0
5 1.1(−5) 1.6(−5) 2.8(−6) 6.6

Note: a(k) means a × 10k .

In fact, in some cases among our examples, we could use fewer numbers to save
computational time, but with almost the same accuracy.

4.3. Error Analysis of DPNLP Solution

We next use some basic examples of the deterministic optimal growth problem
to test DPNLP. We try β = 0.9, 0.95, 0.99, γ = 0.5, 2, 8, and η = 0.2, 1, 5; all
these examples give us good solutions.

Table 1 lists relative errors of optimal solutions computed by DPNLP for
these cases in comparison with the “true” solution given by the high-precision
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16 YONGYANG CAI ET AL.

discretization method. The errors for optimal consumptions are computed by

max
k∈[0.3,2]

|c∗
DPNLP(k) − c∗(k)|

|c∗(k)| ,

where c∗
DPNLP(k) is the optimal consumption computed by DPNLP, and c∗(k)

is the “true” optimal consumption, for k ∈ [0.3, 2]. The errors for optimal
labor supply, l∗DPNLP, have a similar computation formula. The last column of
Table 1 lists the running time of the DPNLP algorithm for various cases in
the GAMS environment, on a single core of a Mac laptop with a 2.5 GHz
processor.

Table 1 shows that DPNLP solves the examples with accuracy up to five digits
or higher for optimal control policy functions in all cases. Moreover, the DPNLP
algorithm is fast and takes only a few seconds for each case. For example, row
1 in Table 1 assumes β = 0.9, γ = 0.5, and η = 0.2. For this case, the error
relative to the “true” solution in consumption is 1.5 × 10−6, the error relative
to the “true” solution in labor supply is 1.8 × 10−6, and the running time is
only 3.6 seconds. We also use the measure (19) to estimate the upper bounds
of errors of the value function approximation V̂ (x; b) using N = 1, 000 sample
points and find that the errors are from O

(
10−6

)
to O

(
10−8

)
for all cases; e.g.,

the estimated error upper bound for the value function approximation in row
1 of Table 1 is 5.7 × 10−8 [whereas V̂ ′(x; b) = 2.5 with x = kss = 1 in
(19)].

5. APPLICATIONS TO STOCHASTIC OPTIMAL GROWTH PROBLEMS

When the capital stock is dependent on a random economic shock θt , the op-
timal growth problem (22) becomes a stochastic dynamic optimization prob-
lem. Assume that the random economic shock θt is a stochastic process fol-
lowing θt+1 = h(θt , εt ), where εt is a serially uncorrelated random pro-
cess. Let f (k, l, θ) denote the net production function, and F(k, l, θ) = k +
f (k, l, θ). Then the infinite-horizon discrete-time stochastic optimization problem
becomes

V (k0, θ0) = max
k,c,l

E

{ ∞∑
t=0

βtu(ct , lt )

}
, (25)

s.t. kt+1 = F(kt , lt , θt ) − ct ,

θt+1 = h(θt , εt ),

where k0 ∈ [0.3, 2] and θ0 are given. The parameter θ has many economic
interpretations. In the life-cycle interpretation, θ is a state variable that may affect

to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1365100515000528
Downloaded from https:/www.cambridge.org/core. Lane Medical Library / Stanford University Medical Center, on 16 Feb 2017 at 23:22:54, subject

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1365100515000528
https:/www.cambridge.org/core


NONLINEAR METHOD FOR DYNAMIC PROGRAMMING 17

asset income, labor income, or both. In the monopolist interpretation, θ may reflect
shocks to costs, demand, or both.

We use the same utility function (23), but the production function is changed to

F(k, l, θ) = k + θAkψl1−ψ,

where θ is the stochastic state, ψ = 0.25, and A = (1−β)/(ψβ). In the examples,
θt is assumed to be a Markov chain with three possible values,

ϑ1 = 0.95, ϑ2 = 1.0, ϑ3 = 1.05,

and the probability transition matrix from θt to θt+1 is

P =
⎡⎣ 0.75 0.25 0

0.25 0.5 0.25
0 0.25 0.75

⎤⎦ .

The code for DPNLP is written in GAMS [McCarl et al. (2015)], and the opti-
mization solver is CONOPT (in the GAMS environment).

5.1. True Solution

For the deterministic optimal growth problem (22), we use the discretized method
and the alternating sweep Gauss–Seidel algorithm to get the “true” solution. But
the DP method with high-precision discretization will be too time-consuming for
solving the stochastic optimal growth problem (25). However, Cai and Judd (2012)
introduce a value function iteration method using a shape-preserving rational
spline interpolation and show that it is very accurate for solving multiperiod
portfolio optimization problems. For the deterministic optimal growth problem,
because the value function is smooth, increasing, and concave over the continuous
state, capital k, we can also apply this shape-preserving DP algorithm to solve the
deterministic optimal growth problem and realize that it is also very accurate (by
comparing its solution with those given by the alternating sweep Gauss–Seidel
algorithm).

For the stochastic optimal growth problem, the value function for each discrete
state is also smooth, increasing, and concave over the continuous state, capital
k. Therefore, we can again choose the shape-preserving value function iteration
method to solve the stochastic optimal growth problem and iterate until it converges
under the stopping criterion 10−7. We use 1,000 equally spaced interpolation nodes
on the range of the continuous state, [0.3, 2], for each discrete state θ .

to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1365100515000528
Downloaded from https:/www.cambridge.org/core. Lane Medical Library / Stanford University Medical Center, on 16 Feb 2017 at 23:22:54, subject

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1365100515000528
https:/www.cambridge.org/core


18 YONGYANG CAI ET AL.

5.2. DPNLP Solution

We use the DPNLP algorithm (the stochastic version of Algorithm 1) to solve the
stochastic optimal growth problem. The basic DPNLP model is

max
c,l,k+,v,b

J∑
j=1

m∑
i=1

vi,j , (26)

s.t. vi,j ≤ u(ci,j , li,j ) + β

J∑
j ′=1

Pj,j ′ V̂ (k+
i,j , ϑj ′ ; b),

k+
i,j ≤ F(ki,, li,j , ϑj ) − ci,j ,

vi,j = V̂ (ki, ϑj ; b),

V̂ ′(yi ′ , ϑj ; b) ≥ 0,

V̂ ′′(yi ′ , ϑj ; b) ≤ 0,

i = 1, . . . , m, j = 1, . . . , J, i ′ = 1, . . . , m′,

where J = 3, m = 19, m′ = 100, ki are expanded Chebyshev nodes in [0.3, 2], V̂
is the expanded Chebyshev polynomial up to the maximal degree 18, and yi ′ are
expanded Chebyshev nodes in [0.3, 2] as the shape nodes.

5.3. Error Analysis of the DPNLP Solution

We examine the errors for the stochastic model in a manner similar to that for the
deterministic optimal growth problems: We apply high-precision value function
iteration to get the “true” optimal solution for every test point of initial capital k0

and every possible initial discrete state θ0 and then use them to check the accuracy
of the computed optimal solution from the DPNLP model (26).

Table 2 lists relative errors of optimal solutions computed by DPNLP for the
stochastic optimal growth problem with the following cases: β = 0.9, 0.95, 0.99,
γ = 0.5, 2, 8, and η = 0.2, 1, 5. The errors for optimal consumptions at time 0
are computed by

max
k∈[0.3,2],θ∈{0.95,1.0,1.05}

|c∗
DPNLP(k, θ) − c∗(k, θ)|

|c∗(k, θ)| ,

where c∗
DPNLP is the optimal consumption computed by DPNLP on the model (26),

and c∗ is the “true” optimal consumption computed by the high-precision value
function iteration method. A similar formula applies to compute errors for optimal
labor supply. The last column of Table 2 lists the running time of the DPNLP
algorithm for various cases in the GAMS environment, on a single core of a Mac
laptop with a 2.5 GHz processor.

to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1365100515000528
Downloaded from https:/www.cambridge.org/core. Lane Medical Library / Stanford University Medical Center, on 16 Feb 2017 at 23:22:54, subject

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1365100515000528
https:/www.cambridge.org/core


NONLINEAR METHOD FOR DYNAMIC PROGRAMMING 19

TABLE 2. Errors of DPNLP for stochastic optimal growth problems

Error to truth
Error norm (19) Time

β γ η c∗
DPNLP l∗DPNLP for V̂ (seconds)

0.9 0.5 0.2 1.9(−7) 5.2(−7) 5.8(−8) 10
1 2.5(−7) 4.5(−7) 5.8(−8) 9
5 2.5(−7) 4.7(−7) 5.8(−8) 9

2 0.2 1.4(−7) 5.0(−7) 1.7(−7) 15
1 2.0(−7) 5.9(−7) 1.9(−7) 12
5 3.0(−7) 4.4(−7) 2.4(−7) 11

8 0.2 1.1(−7) 8.4(−7) 2.8(−7) 21
1 1.6(−7) 8.8(−7) 5.3(−7) 18
5 8.5(−7) 1.2(−6) 2.5(−6) 15

0.95 0.5 0.2 3.7(−7) 4.8(−7) 7.9(−8) 15
1 3.9(−7) 4.2(−7) 7.5(−8) 11
5 4.4(−7) 4.4(−7) 7.2(−8) 9

2 0.2 2.9(−7) 6.6(−7) 2.0(−7) 22
1 3.2(−7) 5.9(−7) 2.3(−7) 18
5 4.4(−7) 4.4(−7) 2.8(−7) 13

8 0.2 2.3(−7) 9.6(−7) 3.4(−7) 25
1 3.0(−7) 8.7(−7) 6.0(−7) 21
5 9.7(−7) 1.3(−6) 2.6(−6) 22

0.99 0.5 0.2 4.1(−7) 6.1(−7) 1.2(−7) 31
1 4.5(−7) 4.6(−7) 1.0(−7) 22
5 4.1(−7) 4.6(−7) 9.6(−8) 17

2 0.2 3.0(−7) 1.1(−6) 2.9(−7) 49
1 3.4(−7) 7.4(−7) 3.0(−7) 40
5 5.9(−7) 5.4(−7) 3.4(−7) 45

8 0.2 1.5(−7) 1.5(−6) 4.5(−7) 54
1 1.8(−7) 1.3(−6) 7.0(−7) 57
5 2.2(−6) 3.1(−6) 2.9(−6) 55

Note: a(k) means a × 10k .

From Table 2, we can also see a pattern similar to that shown in Table 1. That
is, DPNLP solves the examples with accuracy up to six or more digits for optimal
control policy functions in all cases. Moreover, for these stochastic examples,
DPNLP is also fast, and takes less than one minute to solve any one case. For
example, row 1 in Table 2 assumes β = 0.9, γ = 0.5, and η = 0.2. For this case,
the error in the “true” solution in consumption is 1.9×10−7, the error in the “true”
solution in labor supply is 5.2×10−7, and the running time is only 10 seconds. We
also use the stochastic variant of the measure (19) to estimate the upper bounds
of errors of the value function approximation V̂ (x; b) using N = 1, 000 sample
points and find that the errors are from O

(
10−6

)
to O

(
10−8

)
for all cases; e.g.,

the estimated error upper bound of the value function approximation in row 1
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of Table 2 is 5.8 × 10−8 [whereas V̂ ′(x, θ; b) = 2.5 with x = 1 and θ = 1 in
(20)].

6. APPLICATIONS TO TWO-DIMENSIONAL OPTIMAL
GROWTH PROBLEMS

The key DPNLP idea is clearly applicable to multidimensional problems. Of
course, multidimensional problems are more demanding. Our next example il-
lustrates DPNLP applied to two-dimensional extensions of our earlier models.
The results indicate that DPNLP is a reasonable method for low-dimensional
problems.

We assume that there are two countries, and let kt = (kt,1, kt,2), which is a
two-dimensional continuous state vector at time t , denote their capital stocks. Let
lt = (

lt,1, lt,2
)
, which is a two-dimensional continuous control vector variable at

time t ,denote the elastic labor supply levels of the countries. Assume that the net
production of country i at time t is

fi(kt,i , lt,i ) = Ak
ψ
t,i l

1−ψ
t,i ,

with A = (1 −β)/(ψβ), for i = 1, 2. Let ct = (
ct,1, ct,2

)
denote the consumption

of the countries, which is another two-dimensional continuous control vector
variable at time t . The utility function is

u(c, l) =
2∑

i=1

[
(ci/A)1−γ − 1

1 − γ
− (1 − ψ)

l
1+η
i − 1

1 + η

]
.

We want to find optimal consumption and labor supply decisions such that expected
total utility over the infinite-horizon time is maximized. That is,

V (k0) = max
kt ,It ,ct ,lt

∞∑
t=0

βtu(ct , lt ), (27)

s.t. kt+1,i = (1 − δ)kt,i + It,i ,

Gt,i = ζ

2
kt,i

(
It,i

kt,i

− δ

)2

,

2∑
i=1

(
ct,i + It,i − δkt,i

) =
2∑

i=1

(
fi(kt,i , lt,i ) − Gt,i

)
,

where δ is the depreciation rate of capital, It,i is the investment of country i,
Gt,i is the investment adjustment cost of country i, and ζ governs the intensity
of the friction. Detailed discussions of multicountry growth models with infinite
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horizon can be seen in Den Haan et al. (2011) and Juillard and Villemot (2011).
Multicountry growth models with finite horizon can be solved efficiently using
dynamic programming with Hermite approximation; see Cai and Judd (2015). In
our examples, we let ψ = 0.36, δ = 0.025, and ζ = 0.5.

The functional forms for utility and production imply that the steady state of
the infinite-horizon deterministic optimal growth problems is kss,1 = kss,2 = 1,
and the optimal consumption, labor supply, and investment in the steady state are,
respectively, css,1 = css,2 = A, lss,1 = lss,2 = 1, and Iss,1 = Iss,2 = δ. The code
for DPNLP is written in GAMS [McCarl et al. (2015)], and the optimization solver
is CONOPT (in the GAMS environment).

6.1. True Solution

The discretization method of solving the two-country optimal growth problem
with two continuous state variables (kt,1, kt,2) and six continuous control variables
(ct,1, ct,2, lt,1, lt,2, It,1, It,2) will be too time-consuming. To get the “true” solution,
we use value function iteration with high-degree complete Chebyshev polynomials
and iterate until it converges under the stopping criterion 10−7 (i.e., the difference
between two consecutive value functions is less than 10−7). We use 512 tensor
Chebyshev nodes on the state space [0.5, 1.5]2, and the degree of the complete
Chebyshev polynomials is 30.

6.2. DPNLP Solution

Using the DPNLP algorithm for multidimensional problems requires a strategy
for imposing concavity and monotonicity of multidimensional functions. In the
one-dimensional case, we just need to impose inequality constraints on derivatives,
constraints that are linear in the unknowns b, as we use the polynomial approxi-
mation V̂ . For multidimensional functions, concavity is usually expressed in terms
of the definiteness of the Hessian. Any inequality constraint regarding the Hessian
at shape points will be highly nonlinear. The DPNLP method utilizes a more
fundamental definition of concavity: a function is concave in Rd if it is concave
in all directions r ∈ Rd . Therefore, the DPNLP algorithm imposes a collection
of directional derivative conditions, which are linear in the b unknowns. In the
two-dimensional examples of this paper, we only needed to impose concavity in
the coordinate directions [i.e., r = (1, 0)� and r = (0, 1)�] . More generally, one
will need to be ready to use a greater variety of directions, such as r = (1, 1)�

and r = (1,−1)�. The key fact is that the Stone–Weierstrass and related theorems
tell us that this will work for sufficiently numerous choices of directional shape
constraints.

The basic DPNLP model is the multidimensional extension of the model (24)
with a set of directions {r1, . . . , rm′′ } for the concavity constraints, i.e.,
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max
c,l,I,k+,v,b

m∑
i=1

vi, (28)

s.t. vi ≤ u(ci, li) + βV̂ (k+
i ; b), i = 1, . . . , m,

k+
i,j ≤ (1 − δ)ki,j + Ii,j , i = 1, . . . , m, j = 1, 2,

Gi,j = ζ

2
ki,j

(
Ii,j

ki,j

− δ

)2

, i = 1, . . . , m, j = 1, 2,

2∑
j=1

(
ci,j + Ii,j − δki,j

) =
2∑

j=1

(
fj (ki,j , li,j ) − Gi,j

)
, i = 1, . . . , m,

vi = V̂ (ki; b), i = 1, . . . , m,

V̂ ′(yi ′ ; b) ≥ 0, i ′ = 1, . . . , m′,

r�
j V̂ ′′(yi ′ ; b)rj ≤ 0, i ′ = 1, . . . , m′, j = 1, . . . , m′′,

where ki = (ki,1, ki,2), ci = (ci,1, ci,2), li = (li,1, li,2), k+
i = (k+

i,1, k
+
i,2), yi ′ =

(yi ′,1, yi ′,2), V̂ ′ is the 2-dimensional gradient of V̂ , and V̂ ′′ is the Hessian matrix
of V̂ .

For our examples in this section, we choose m = 112 tensor Chebyshev nodes in
the state space [0.5, 1.5]2 as the approximation nodes. The approximation method,
V̂ , is the complete Chebyshev polynomial up to the maximal degree 10. We choose
m′ = 100 tensor Chebyshev nodes, yi ′ , in the state space [0.5, 1.5]2 as the shape
nodes.

6.3. Error Analysis of the DPNLP Solution

We examine the errors for the multidimensional model in a manner similar to that
for the unidimensional optimal growth problems: We apply high-precision value
function iteration to get the “true” optimal solution for every test point of initial
capitals, and then use them to check the accuracy of the computed optimal solution
from the DPNLP model (28).

Table 3 lists relative errors of optimal solutions computed by DPNLP for the
two-dimensional optimal growth problem with the following cases: β = 0.95,
γ = 0.5, 2, 8, and η = 0.2, 1, 5. The last column of Table 3 lists the running time
of the DPNLP algorithm for various cases in the GAMS environment, on a single
core of a Mac laptop with a 2.5 GHz processor.

Table 3 shows that DPNLP solves the examples with accuracy up to four digits
or higher for optimal control policy functions in all the cases except one case
having three digits. Moreover, the DPNLP algorithm is not slow and takes only
several minutes for each case. For example, row 1 in Table 3 assumes γ = 0.5
and η = 0.2. For this case, the error to the “true” solution in consumption is

to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1365100515000528
Downloaded from https:/www.cambridge.org/core. Lane Medical Library / Stanford University Medical Center, on 16 Feb 2017 at 23:22:54, subject

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1365100515000528
https:/www.cambridge.org/core


NONLINEAR METHOD FOR DYNAMIC PROGRAMMING 23

TABLE 3. Errors of DPNLP for two-country optimal growth
problems

Error to truth
Error norm (19) Time

γ η c∗
DPNLP l∗DPNLP for V̂ (minutes)

0.5 0.2 6.4(−5) 1.5(−4) 4.3(−5) 3.7
1 9.0(−6) 3.0(−5) 8.1(−6) 2.5
5 8.0(−6) 8.0(−7) 2.5(−6) 1.4

2 0.2 6.2(−5) 2.3(−4) 8.5(−5) 3.6
1 4.5(−5) 6.5(−5) 4.3(−5) 3.0
5 8.5(−5) 3.2(−5) 2.2(−5) 2.2

8 0.2 8.4(−5) 1.2(−3) 2.3(−4) 4.9
1 2.1(−5) 1.1(−4) 8.1(−5) 6.6
5 1.3(−4) 2.0(−4) 6.3(−5) 5.6

Note: a(k) means a × 10k .

6.4 × 10−5, the error to the “true” solution in labor supply is 1.5 × 10−4, and
the running time is 3.7 minutes. We also use the multidimensional variant of the
measure (19) to estimate the upper bounds of the errors of the value function
approximation V̂ (x; b) using N = 1, 000 sample points, and find that the errors
are from O

(
10−4

)
to O

(
10−6

)
for all cases; e.g., the estimated error upper bound

of the value function approximation in row 1 of Table 3 is 4.3 × 10−5 [whereas
V̂ ′(x; b) = (0.36, 0.36) with x = kss = (1, 1) in (19)].

7. CONCLUSION

This paper presents a nonlinear programming formulation of dynamic program-
ming problems common in economic decision making. We have applied it to a
variety of optimal accumulation problems, showing that our DPNLP algorithm
performs very well, with high accuracy, reliability, and efficiency for those prob-
lems. A variety of example problems indicate that our algorithm could be applied
to many problems.

NOTES

1. From the contraction mapping property of � and �(V ) = V , as V is the fixed point of �, we
have ∥∥�

(
V̂

) − V
∥∥∞ = ∥∥�

(
V̂

) − � (V )
∥∥∞ ≤ β

∥∥V̂ − V
∥∥∞ ;

thus, from the triangle inequality, we get∥∥V̂ − V
∥∥∞ ≤ ∥∥V̂ − �

(
V̂

)∥∥∞ + ∥∥�
(
V̂

) − V
∥∥∞ ≤ ∥∥V̂ − �

(
V̂

)∥∥∞ + β
∥∥V̂ − V

∥∥∞ .

This implies the inequality (16).
2. See Judd (1998) for a detailed description of this.
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APPENDIX A: CHEBYSHEV POLYNOMIAL
APPROXIMATION

Chebyshev polynomials on [−1, 1] are defined as Tj (z) = cos(j cos−1(z)). Economics
problems typically live on an interval [xmin, xmax]; if we let

Z (x) = 2x − xmin − xmax

xmax − xmin
,

then Tj (Z (x)) are Chebyshev polynomials adapted to [xmin, xmax] for j = 0, 1, 2, . . .. A
degree-n Chebyshev polynomial approximation for V (x) on [xmin, xmax] is

V̂ (x; b) =
n∑

j=0

bjTj (Z (x)), (A.1)

where b = {
bj

}
are the Chebyshev coefficients. It is often more stable to use the expanded

Chebyshev polynomial interpolation [Cai (2010)], as the standard Chebyshev polynomial
interpolation gives poor approximation in the neighborhood of endpoints.

In this section we describe the Chebyshev polynomial approximation because it is
the approximation scheme used in our examples. Although other approximation schemes
may also be adequate with good performances, the Chebyshev polynomial approximation
presents advantages in terms of coding simplicity and reliability and easy extension to
multidimensional approximation.

APPENDIX B: MULTIDIMENSIONAL COMPLETE
CHEBYSHEV APPROXIMATION

In a d-dimensional approximation problem, let the domain of the approximation function
be {

x = (x1, . . . , xd) : xmin
i ≤ xi ≤ xmax

i , i = 1, . . . d
}
,

for some real numbers xmin
i and xmax

i with xmax
i > xmin

i for i = 1, . . . , d. Let xmin =
(xmin

1 , . . . , xmin
d ) and xmax = (xmax

1 , . . . , xmax
d ). Then we denote [xmin, xmax] as the domain.

Let α = (α1, . . . , αd) be a vector of nonnegative integers. Let Tα(z) denote the product
Tα1(z1) · · · Tαd

(zd) for z = (z1, . . . , zd) ∈ [−1, 1]d . Let

Z(x) =
(

2x1 − xmin
1 − xmax

1

xmax
1 − xmin

1

, . . . ,
2xd − xmin

d − xmax
d

xmax
d − xmin

d

)
,

for any x = (x1, . . . , xd) ∈ [xmin, xmax].
Using these notations, the degree-n complete Chebyshev approximation for V (x) is

V̂n(x; b) =
∑

0≤|α|≤n

bαTα (Z(x)) , (B.1)
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where |α| = ∑d
i=1 αi for the nonnegative integer vector α = (α1, . . . , αd). So the number

of terms with 0 ≤ |α| = ∑d
i=1 αi ≤ n is

(
n+d

d

)
for the degree-n complete Chebyshev

approximation in Rd .
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