
Ritu Arora Editor

Conquering Big
Data with High
Performance
Computing

Conquering Big Data with High Performance
Computing

Ritu Arora
Editor

Conquering Big Data
with High Performance
Computing

123

Editor
Ritu Arora
Texas Advanced Computing Center
Austin, TX, USA

ISBN 978-3-319-33740-1 ISBN 978-3-319-33742-5 (eBook)
DOI 10.1007/978-3-319-33742-5

Library of Congress Control Number: 2016945048

© Springer International Publishing Switzerland 2016

Chapter 7 was created within the capacity of US governmental employment. US copyright protection
does not apply.

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

Scalable solutions for computing and storage are a necessity for the timely process-
ing and management of big data. In the last several decades, High-Performance
Computing (HPC) has already impacted the process of developing innovative
solutions across various scientific and nonscientific domains. There are plenty of
examples of data-intensive applications that take advantage of HPC resources and
techniques for reducing the time-to-results.

This peer-reviewed book is an effort to highlight some of the ways in which HPC
resources and techniques can be used to process and manage big data with speed and
accuracy. Through the chapters included in the book, HPC has been demystified for
the readers. HPC is presented both as an alternative to commodity clusters on which
the Hadoop ecosystem typically runs in mainstream computing and as a platform on
which alternatives to the Hadoop ecosystem can be efficiently run.

The book includes a basic overview of HPC, High-Throughput Computing
(HTC), and big data (in Chap. 1). It introduces the readers to the various types of
HPC and high-end storage resources that can be used for efficiently managing the
entire big data lifecycle (in Chap. 2). Data movement across various systems (from
storage to computing to archival) can be constrained by the available bandwidth
and latency. An overview of the various aspects of moving data across a system
is included in the book (in Chap. 3) to inform the readers about the associated
overheads. A detailed introduction to a tool that can be used to run serial applications
on HPC platforms in HTC mode is also included (in Chap. 4).

In addition to the gentle introduction to HPC resources and techniques, the book
includes chapters on latest research and development efforts that are facilitating the
convergence of HPC and big data (see Chaps. 5, 6, 7, and 8).

The R language is used extensively for data mining and statistical computing. A
description of efficiently using R in parallel mode on HPC resources is included in
the book (in Chap. 9). A chapter in the book (Chap. 10) describes efficient sampling
methods to construct a large data set, which can then be used to address theoretical
questions as well as econometric ones.

v

http://dx.doi.org/10.1007/978-3-319-33742-5_1
http://dx.doi.org/10.1007/978-3-319-33742-5_2
http://dx.doi.org/10.1007/978-3-319-33742-5_3
http://dx.doi.org/10.1007/978-3-319-33742-5_4
http://dx.doi.org/10.1007/978-3-319-33742-5_5
http://dx.doi.org/10.1007/978-3-319-33742-5_6
http://dx.doi.org/10.1007/978-3-319-33742-5_7
http://dx.doi.org/10.1007/978-3-319-33742-5_8
http://dx.doi.org/10.1007/978-3-319-33742-5_9
http://dx.doi.org/10.1007/978-3-319-33742-5_10

vi Preface

Through the multiple test cases from diverse domains like high-frequency
financial trading, archaeology, and eDiscovery, the book demonstrates the process
of conquering big data with HPC (in Chaps. 11, 13, and 14).

The need and advantage of involving humans in the process of data exploration
(as discussed in Chaps. 12 and 14) indicate that the hybrid combination of man and
the machine (HPC resources) can help in achieving astonishing results. The book
also includes a short discussion on using databases on HPC resources (in Chap. 15).
The Wrangler supercomputer at the Texas Advanced Computing Center (TACC) is
a top-notch data-intensive computing platform. Some examples of the projects that
are taking advantage of Wrangler are also included in the book (in Chap. 16).

I hope that the readers of this book will feel encouraged to use HPC resources
for their big data processing and management needs. The researchers in academia
and at government institutions in the United States are encouraged to explore the
possibilities of incorporating HPC in their work through TACC and the Extreme
Science and Engineering Discovery Environment (XSEDE) resources.

I am grateful to all the authors who have contributed toward making this book a
reality. I am grateful to all the reviewers for their timely and valuable feedback in
improving the content of the book. I am grateful to my colleagues at TACC and my
family for their selfless support at all times.

Austin, TX, USA Ritu Arora

http://dx.doi.org/10.1007/978-3-319-33742-5_11
http://dx.doi.org/10.1007/978-3-319-33742-5_13
http://dx.doi.org/10.1007/978-3-319-33742-5_14
http://dx.doi.org/10.1007/978-3-319-33742-5_12
http://dx.doi.org/10.1007/978-3-319-33742-5_14
http://dx.doi.org/10.1007/978-3-319-33742-5_15
http://dx.doi.org/10.1007/978-3-319-33742-5_16

Contents

1 An Introduction to Big Data, High Performance
Computing, High-Throughput Computing, and Hadoop 1
Ritu Arora

2 Using High Performance Computing for Conquering Big Data 13
Antonio Gómez-Iglesias and Ritu Arora

3 Data Movement in Data-Intensive High Performance Computing . . . 31
Pietro Cicotti, Sarp Oral, Gokcen Kestor, Roberto Gioiosa,
Shawn Strande, Michela Taufer, James H. Rogers,
Hasan Abbasi, Jason Hill, and Laura Carrington

4 Using Managed High Performance Computing Systems
for High-Throughput Computing . 61
Lucas A. Wilson

5 Accelerating Big Data Processing on Modern HPC Clusters 81
Xiaoyi Lu, Md. Wasi-ur-Rahman, Nusrat Islam, Dipti
Shankar, and Dhabaleswar K. (DK) Panda

6 dispel4py: Agility and Scalability for Data-Intensive
Methods Using HPC . 109
Rosa Filgueira, Malcolm P. Atkinson, and Amrey Krause

7 Performance Analysis Tool for HPC and Big Data
Applications on Scientific Clusters . 139
Wucherl Yoo, Michelle Koo, Yi Cao, Alex Sim, Peter Nugent,
and Kesheng Wu

8 Big Data Behind Big Data . 163
Elizabeth Bautista, Cary Whitney, and Thomas Davis

vii

viii Contents

9 Empowering R with High Performance Computing
Resources for Big Data Analytics . 191
Weijia Xu, Ruizhu Huang, Hui Zhang, Yaakoub El-Khamra,
and David Walling

10 Big Data Techniques as a Solution to Theory Problems 219
Richard W. Evans, Kenneth L. Judd, and Kramer Quist

11 High-Frequency Financial Statistics Through
High-Performance Computing . 233
Jian Zou and Hui Zhang

12 Large-Scale Multi-Modal Data Exploration with Human
in the Loop . 253
Guangchen Ruan and Hui Zhang

13 Using High Performance Computing for Detecting
Duplicate, Similar and Related Images in a Large Data Collection . . 269
Ritu Arora, Jessica Trelogan, and Trung Nguyen Ba

14 Big Data Processing in the eDiscovery Domain . 287
Sukrit Sondhi and Ritu Arora

15 Databases and High Performance Computing . 309
Ritu Arora and Sukrit Sondhi

16 Conquering Big Data Through the Usage of the Wrangler
Supercomputer . 321
Jorge Salazar

Chapter 10
Big Data Techniques as a Solution to Theory
Problems

Richard W. Evans, Kenneth L. Judd, and Kramer Quist

Abstract This chapter proposes a general approach for solving a broad class of
difficult optimization problems using big data techniques. We provide a general
description of this approach as well as some examples. This approach is ideally
suited for solving nonconvex optimization problems, multiobjective programming
problems, models with a large degree of heterogeneity, rich policy structure, poten-
tial model uncertainty, and potential policy objective uncertainty. In our applications
of this algorithm we use Hierarchical Database Format (HDF5) distributed storage
and I/O as well as message passing interface (MPI) for parallel computation of a
large number of small optimization problems.

10.1 Introduction

Big data refers to any repository of data that is either large enough or complex
enough that distributed and parallel input and output approaches must be used (see
[9, p. 3]). Liran and Levin [6] discuss the new opportunities in economics using big
data, although they focus primarily on searching for important patterns in existing
datasets. Varian [8] describes the tools Google uses to address big data questions and
provides a mapping to the open source analogues of those proprietary tools. This
paper proposes a very different use of big data techniques, using efficient sampling
methods to construct a large data set which can then be used to address theoretical
questions as well as econometric ones. More specifically, we sample the parameter
space of a parametric model and use the large sample to address a research question.

R.W. Evans (�)
Department of Economics, Brigham Young University, 167 FOB, Provo, UT 84602, USA
e-mail: revans@byu.edu

K.L. Judd
Hoover Institution, Stanford University, Stanford, CA 94305, USA
e-mail: kennethjudd@mac.com

K. Quist
Department of Economics, Brigham Young University, 151 FOB, Provo, UT 84602, USA
e-mail: kramer.quist@gmail.com

© Springer International Publishing Switzerland 2016
R. Arora (ed.), Conquering Big Data with High Performance Computing,
DOI 10.1007/978-3-319-33742-5_10

219

mailto:revans@byu.edu
mailto:kennethjudd@mac.com
mailto:kramer.quist@gmail.com

220 R.W. Evans et al.

Furthermore, constructing the data sample is a large but fixed cost which allows one
to use high performance computing to cheaply answer many questions.

Our leading example is an optimal tax application from [2], but we also present
an econometric example. The approach described in this chapter is ideally suited
for solving nonconvex optimization problems,1 multi-objective programming prob-
lems, models with a large degree of heterogeneity, rich policy structure, potential
model uncertainty, and potential policy objective uncertainty.

Our implementation of these methods has used the Python programming lan-
guage with its integration with the Hierarchical Database Format (HDF5) and its
distributed storage and parallel I/O. However, these methods are general across
platforms. We will also detail a technique that is new to this area, which is using
equidistributed sequences both as an approximation-by-simulation technique as well
as an adaptive grid refinement technique by equidistributing a sequence on various
hypercubic subspaces.2

In Sect. 10.2, we give a general description of the big data approach to solving
theoretical problems, a computational description, and a description of our use of
equidistributed sequences. In Sect. 10.3, we describe an optimal taxation example of
this approach. Section 10.4 describes some other applications of this approach, with
a more detailed description of an econometric example. Section 10.5 concludes.

10.2 General Formulation of Big Data Solution Method

In this section, we first formulate a general class of problems that are amenable to
our big data solution method. We then outline the computational steps of the method
and describe some specific techniques that we use in our implementation. We then
describe in more depth one of the key tools we use—equidistributed sequences—to
efficiently find the set of solutions using our method. This method is scalable to a
large number of processors on a supercomputer and to quickly interface with a large
size database of individual behavior.

10.2.1 General Formulation of Class of Models and Solution
Method

We first describe a general class of models that are very amenable to big data
solution techniques. Let a mathematical model be represented by a general system

1Nonconvex optimization problems are problems in which the set of possible solutions is a
nonconvex set. Androulakis et al. [1] provide a nice introduction and references to general
nonconvex optimization problems, as well as common examples. See also [7].
2See [5, Chap. 9] on quasi-Monte Carlo methods for an introduction to the uses of equidistributed
sequences.

10 Big Data Techniques as a Solution to Theory Problems 221

of equations F .x; �/, where x is a vector of endogenous variables, � is a vector of
model parameters, and F is a vector of functions, each of which operates on some
subset of x and � . Let the solution to that system of equations be a particular vector
Ox.�/ such that,

Ox.�/ � argminxF .x; �/ : (10.1)

In other words, Ox.�/ is a solution to the model given a particular set of model
parameters. The specification in (10.1) could also be written as a maximization
problem and is general enough to include the solution Ox being the root of the vector
of equations F.

Optimal policy problems often take the form of choosing a subset of the
parameter vector � to minimize (or maximize) some scalar-valued function W of
a vector of scalar valued functions G of the optimized model equations,

O� � argmin�W

�
G
�

F
�Ox.�/; �

���
(10.2)

where Ox.�/ is defined in (10.1). If G is vector-valued, then the problem is a multi-
objective programming problem. The solution to the policy problem (10.2) is a
particular parameterization of the model O� and the model being solved for that
particular parameterization F

�Ox. O�/; O��.
When both the minimization problem in (10.1) and in (10.2) are convex, the

solution O� is straightforward to find with standard computational methods. However,
when either (10.1) or (10.2) is a nonconvex optimization problem, finding a solution
becomes very difficult and nonstandard computational approaches must be used.
Introducing nonconvex structures into the economic model F in (10.1)—such
as occasionally binding constraints or nonconvex budget sets—will render the
minimization problem in (10.1) nonconvex, thereby making it likely that the min-
imization problem in (10.2) is not convex. But more subtle model characteristics,
such as heterogeneity among the equations in F, can maintain the convexity of the
minimization problem in (10.1), but break it in (10.2).

10.2.2 Computational Steps to Big Data Solution Method

Our big data approach to solving theory problems, such as the one described
in (10.1) and (10.2), is summarized in Table 10.1. The first step is to make a large

database of model solutions and objective realizations Gn

�
Fn
�Ox.�n/; �n

��
, where

�n is the nth realization of the parameter vector � . The total number of parameter
vector realizations N for which the problem is solved is presumably large. One
reason why this is a big data solution technique is that the database of model
objectives and solutions for each N parameter vectors can be so large that it must be
distributed across multiple hard drives. This is step 1 in Table 10.1.

222 R.W. Evans et al.

Table 10.1 General summary of big data approach to theory problems

Step description Output

1. Solve the model for a large number N of parameter Gn

�
Fn

�Ox.�n/; �n

��

vector realizations �n.

2. Delete all realizations of the objectives vector Gn0 Frontier of

that are strictly dominated by at least one other Gn

�
Fn

�Ox.�n/; �n

��

realization of the objectives vector Gn.

3. If the frontier from step (2) is not smooth enough, Gn;p

�
Fn;p

�Ox.�n;p/; �n;p

��

draw P new realizations of the parameter vector

�n;p in the neighborhood of each remaining point

n on the objective vector frontier.

4. Delete all realizations of the objectives vector Frontier of

Gn0 ;p0 that are strictly dominated by at least one Gn;p

�
Fn;p

�Ox.�n;p/; �n;p

��

other realization of the objectives vector Gn;p

5. Repeat refinement steps (3) and (4) until frontier

is smooth.

6. If the objective function W is known, solve for O� D argmin� : : :

optimal parameter vector O� using Eq. (10.2). W

�
Gn;p

�
Fn;p

�Ox.�n;p/; �n;p

���

In generating our database of individual responses Ox.�n/ and the corresponding
vector of objectives Gn for realization of the parameter vector �n, we used the
Python programming language. We also use Python’s MPI (message passing
interface) library mpi4py for simultaneously running computations on multiple
processors. We ran this code on 12 nodes with a total of 96 processors on the
supercomputer at the Fulton Supercomputing Lab at Brigham Young University.3 In
addition to parallel computation, we also exploited Python’s library h5py, which
enables the HDF5 suite of data and file formats and parallel I/O tools.4 The Python
code in Fig. 10.1 shows some of the key operations that generate our database of
responses in the Sales Tax example of [2] described in Sect. 10.3. The code in
Fig. 10.1 is taken from multiple Python scripts that work together to solve many
model solutions simultaneously solve many sets of model equations for carefully
load-balanced sections of policy parameter space.

Lines 2 to 4 in Fig. 10.1 import Python’s implementation of MPI, define an MPI
communicator, and define a barrier that helps in load balancing. The number of
processors to be used as well as the wall time allowed for the computation are

3See https://marylou.byu.edu/ for information about the Fulton Supercomputing Lab at Brigham
Young University.
4See https://www.hdfgroup.org/HDF5/ for a general description of the HDF5 set of tools, and see
http://www.h5py.org/ for a description of the Python library which enables the HDF5 tools.

https://marylou.byu.edu/
https://www.hdfgroup.org/HDF5/
http://www.h5py.org/

10 Big Data Techniques as a Solution to Theory Problems 223

1 ...
2 from mpi4py import MPI
3 comm = MPI.COMM_WORLD
4 comm.Barrier()
5 start = MPI.Wtime()
6 ...
7 import h5py
8 ...
9 def init_database(comm, N, sequence_type, n_policies,

type_space, policy_space, tax_rates_same, filename,
verbose=True):

10 ...
11 with h5py.File(filename, ’w’) as f:
12 ...

Fig. 10.1 Python code importing mpi4py and h5py modules

part of a supercomputer-specific job script which tells the supercomputer to start
running the job. Once MPI has been enabled for use on multiple processors, we
import the HDF5 set of tools with the import h5py call. Line 9 of Fig. 10.1
shows one function init_database() that is run in parallel for as many Python
instances as we have told the supercomputer to create. Each separate instance is
designated by the comm object in the function. This function computes the solutions
to the model Ox.�n/ and Gn and then saves those solutions using the HDF5 parallel
I/O functionality of store commands after the command in line 11 of code with
h5py.File(filename, ’w’) as f:.

An arguably more important reason for using big data techniques has to do with
the manipulation of the database of model objectives and solutions after its creation.

Once the database of Gn

�
Fn
�Ox.�n/; �n

��
exists, note that we still have not solved for

the optimal parameter vector O� . In terms of the database, we want to know what is
the �n that minimizes some function of the objectives W from (10.2). HDF5 parallel
input-output techniques are very efficient at operations across distributed memory
such as weighted averages, nonlinear functions, minima, and maxima.

But now assume that you are not sure what the correct objective aggregating
function W is. In our approach, we search our database of responses and delete all
entries in the database Gn0 that are strictly dominated by another entry Gn. The first
panel in Fig. 10.2 shows the entire database of objective realizations for each �n

where there are two objectives (each Gn has two elements). In other words, each dot
represents G1;n and G2;n for a given vector of parameters �n. The second panel in
Fig. 10.2 shows the points on the frontier in terms of G1;n and G2;n for all n after
deleting all the strictly dominated points.

The execution in our code of this deletion of strictly dominated points, as shown
in the first two panels of Fig. 10.2, is something that we have had success in speeding

224 R.W. Evans et al.

Objectives realizations of Gn for all qn Objectives frontier after deleting
strictly dominated points Gn

Refined objectives frontier Gn,p

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

G1,n

G
2,
n

G
2,
n

G
2,
n,
p

G1,n G1,n,p

Fig. 10.2 General process of finding the objectives Gn frontier

up and optimizing. We use a parallel quicksort routine in which we sort portions of
the points in the first panel along one dimension of objectives G1;n and then delete
data points in which the G2;n objective is dominated.

Often times, the frontier traced out in the first deletion of strictly dominated
points is too coarse. In that case, we do another step of choosing equidistributed
sequences of new realizations of �n in the neighborhood of each point on the
frontier. We then delete all the strictly dominated objectives from those new
realizations to find the refined frontier shown in the third panel of Fig. 10.2.

10.2.3 Virtues of Equidistributed Sequences

In choosing a grid size N of realizations of the parameter vector �n and in refining
around points on the objective vector frontier �n;p, it is important to have an efficient
method to keep track of all the points that are generated and which points get saved
in the database. Using equidistributed sequences provides that efficiency, both in
terms of spreading N points uniformly throughout a particular space and in keeping
track of those points.

Equidistributed sequences are deterministic sequences of real numbers where
the proportion of terms falling in any subinterval is proportional to the length of that
interval. A sequence fxjg1jD1 	 D 	 R

n is equidistributed over D if and only if

10 Big Data Techniques as a Solution to Theory Problems 225

Table 10.2 Equidistributed sequences in R
n

Name of sequence Formula for .x1; x2; : : : ; xn/

Weyl .fnp1=2
1 g; : : : ; fnp1=2

n g/
Haber

�˚ n.nC1/

2
p1=2

1

�
; : : : ;

˚ n.nC1/

2
p1=2

n
��

Niederreiter
�˚

n21=.nC1/
�
; : : : ;

˚
n2n=.nC1/

��

Baker .fner1 g; : : : ; fnerng/, rj rational and distinct

lim
n!1

�.D/

n

nX

jD1

f .xj/ D
Z

D
f .x/dx (10.3)

for all Riemann-integrable f .x/ W Rn ! R, where �.D/ is the Lebesgue measure
of D.

There are a number of equidistributed sequences that possess this property. Let
p1; p2; : : : denote the sequence of prime numbers 2; 3; 5; : : :, and let fxg represent
the fractional part of x, that is fxg D x � bxc. Table 10.2 contains examples of a
number of equidistributed sequences. Figure 10.3 shows the first 10,000 points for
two-dimensional Weyl, Haber, Niederreiter, and Baker sequences.

Baker et al. [2] and Bejarano et al. [3] use a scaled Baker sequence. Quasi-Monte
Carlo integration is used to integrate over the type space for each point in policy
space given the type space distribution. Quasi-Monte Carlo integration is similar to
Monte Carlo integration, but chooses points using equidistributed sequences instead
of pseudorandom numbers. This allows for a faster rate of convergence for a large
number of points. With N points in s dimensions, quasi-Monte Carlo techniques

converge in O
�

.log N/s

N

�
as opposed to O

�
1p
N

�
for Monte Carlo techniques.5

A key distinction between equidistributed sequences and pseudorandom
sequences is that equidistributed sequences do not look like random numbers.
As can be seen in Fig. 10.3, they generally display substantial serial correlation.
From the outset, equidistributed sequences are chosen so as to perform accurate
integration, and are not encumbered by any other requirements of random numbers

Another practical advantages of using equidistributed sequences is that it allows
one to represent the entire multi-dimensional space of parameters � in the minimiza-
tion problem (10.2) as a one-dimensional list, which allows for easy partitioning
across computing nodes. Additionally, using equidistributed sequences makes for
easy expansion of the database. One has merely to append additional points to the
end of the list.

5See [5, Chap. 9] on quasi-Monte Carlo methods for a more thorough discussion of the advantages
of using equidistributed sequences to execute simulation-based methods, Riemann-integrable
functions, and Lebesgue measure.

226 R.W. Evans et al.

1.2

1.0

1.0

0.8

0.8

0.6

0.6

0.4

0.4

0.2

0.2

0.0

0.0
–0.2

–0.2

1.2

1.0

0.8

0.6

0.4

0.2

0.0

–0.2

1.2

1.0

0.8

0.6

0.4

0.2

0.0

–0.2

1.2

1.2 1.00.80.60.40.20.0–0.2 1.2

1.00.80.60.40.20.0–0.2 1.2 1.00.80.60.40.20.0–0.2 1.2

1.0

0.8

0.6

0.4

0.2

0.0

–0.2

weyl haber

niederreiter baker

Fig. 10.3 Four two-dimensional equidistributed sequences with n D 10;000

10.3 Optimal Tax Application

In this section, we highlight an application of the approach presented in Sect. 10.2
to a theory problem related to optimal taxation. This example is described in
[2] and solves for an optimal schedule of sales tax rates given a heterogeneous
population of consumers. In this sales tax problem, each individual’s optimization
problem—analogous to the general problem in (10.1)—is convex. However, because
of the heterogeneity across individuals, the policy maker’s problem in choosing the
optimal tax—analogous to the general problem in (10.2)—is not convex.

Baker et al. [2] set up an economic environment in which a policy maker must
choose a schedule of sales tax rates on the different types of goods consumed by
households and in which the population of households differs in terms of their
wage and their elasticity of substitution among eight different types of consumption
goods. Total consumption by a given household C is a constant elasticity of
substitution (CES) function of all the individual types of consumption ci the
household can choose,

10 Big Data Techniques as a Solution to Theory Problems 227

C �

8X

iD1

˛i.ci � Nci/
��1

�

! �
��1

8� � 1 (10.4)

where � � 1 is the elasticity of substitution among all of the consumption goods,
˛i 2 Œ0; 1	 is the weight on the consumption of each type of good with

P
i ˛i D 1,

and Nci � 0 is a minimum level of consumption for each type of good.
Household’s face a budget constraint in which their total expenditure on con-

sumption goods must be less-than-or-equal-to their income, which in this case is
simply their wage.

8X

iD1

.1 C
i/ci
 w (10.5)

The household’s objective function is a Constant Relative Risk Aversion (CRRA)
utility function defined over total consumption from (10.4),

u.C/ D C1�� � 1

1 � �
(10.6)

where � � 1 is the coefficient of relative risk aversion. The household’s opti-
mization problem is to choose a vector of consumptions c D fc1; c2; : : : c8g that
maximizes total utility (10.6) subject to the budget constraint (10.5).

Let a household’s type be defined by its wage w and its elasticity of substitution
�. The household’s problem is a convex optimization problem where the solution
is a vector of consumption functions c .w; �I �/ that are functions of a household’s
type .w; �/ and the vector of sales tax rates � D f
1;
2; : : :
8g as well as a utility

function u
�

c .w; �I �/
�

that is also a function of household type .w; �/ and the vector

of tax rates �. This problem is analgous to the problem in (10.1) in Sect. 10.2.
For any given sales tax regime �, there are as many different household utility

levels u
�

c .w; �I �/
�

and optimal consumption vectors c .w; �I �/ as there are

different types of individuals. Baker et al. [2] then choose 57,786 different sales
tax policy vectors � with 5,100 different types of individuals resulting in solving
nearly 300 million individual optimization problems.6 They assume that the policy
maker chooses the optimal sale tax schedule � to maximize some combination of the
total utility in the economy (the sum of individual utilities u) and total tax revenue.
Each point along the solid curve in Fig. 10.4 represents a sales tax policy � that is
on the frontier in terms of both total utility (x-axis) and total revenue (y-axis).

Figure 10.5 shows how the optimal sales tax policies � change across the frontier
in Fig. 10.4. That is, sales tax rates at the left-hand-side of Fig. 10.5 correspond to

6Table 3 in [2] details that this computation took 29.5 h of wall time using 96 processors. In serial,
this would have taken nearly 3,000 h (about 120 days), which is not feasible.

228 R.W. Evans et al.

Fig. 10.4 Total utility-revenue frontiers for optimal differentiated tax versus optimal flat tax

Fig. 10.5 Optimal tax rates for good i for different levels of total revenue

points on the frontier in the lower-right side of Fig. 10.4. Figure 10.5 shows which
taxes get increased first in the most optimal sales tax schedule as more total revenue
is required. Figure 10.5 represents the entire set of optimal sales tax schedules O� for
many different possible policy maker objective functions W over the two objectives
of total utility and total revenue.

10 Big Data Techniques as a Solution to Theory Problems 229

Baker et al. [2] use this framework to test the welfare and total revenue effects
of one optimal sales tax rate on all consumption goods instead of a set of optimal
tax rates on each consumption good. They also estimate the loss in revenue from
exempting a class of consumptions goods, such as some services are in the U.S.
economy. They find that there is only a small loss in total revenue from exempting
services from sales taxation. However, that loss is small only because other taxes
are higher in order to make up for the exempted category. Further they find a 30 %
loss in total tax revenue from a sales tax regime with only one optimally chosen tax
rate versus one in which multiple sales tax rates on goods are chosen optimally.

10.4 Other Applications

Multi-objective, nonconvex optimal policy problems abound of the form described
in Sect. 10.2. Optimal insurance contracts, political institutions, problems with
occasionally binding constraints, auction and mechanism design, and maximum
likelihood estimation are a few examples. But the big data approach in this paper is
also well-suited for models in which the individual problem from Eq. (10.1) takes
a long time to run for any given parameter vector �n. The strength of this big data
approach to these problems is that the model can be solved independently and in
parallel for a grid of points in parameter space �n. These solutions can be stored
and used by later researchers. These later researchers can either get their solution by
interpolating between the stored solutions, or by adding to the database in regions in
parameter space �n that are too sparse. To describe this class of problems, we define
a slightly different version of the model from Sect. 10.2.

Let an econometric model F .ˇ; �/ be defined over a vector of exogenous
parameters ˇ, whose values are taken from outside the model, and a vector of
endogenous parameters � , whose values are estimated by the model.

O� � argmin�F .ˇ; �/ (10.7)

The solution to the problem (10.7) is an optimal parameter vector O� .ˇ/ as a

function of exogenous parameters and a model solution F
�
ˇ; O� .ˇ/

�
as a function

of exogenous parameters.
One immediate econometric application of this big data approach is when the

minimization problem (10.7) is nonconvex, given an exogenous parameter vector ˇ.
This is often the case in maximum likelihood estimation. Through a large database
of potential endogenous parameter vector �n and refinements around the objective
function frontier, confidence that O� is the global optimum increases as the size of the
database increases. This is simply a non-derivative optimizer that uses an adaptive
grid search method.

However, this method becomes very valuable when each computation of a
solution O� .ˇ/ for a given exogenous parameter vector ˇ takes a long time. Many

230 R.W. Evans et al.

instances of maximum likelihood estimation fit this criterion. Imagine a model that
estimates region-r specific parameters � r for a given calibration of other parameters
ˇr for that region. Each estimation for a given region r and its calibrated parameters
ˇr might take a long time. If we have stored a database of precomputed solutions
O�r .ˇr/, then one can simply interpolate the estimation of a new region rather than
computing the solution again.

More generally, maximum likelihood estimation of the problem in (10.7) for
one particular realization of the exogenous parameters ˇ might require a long
computational time (sometimes days). If one were to precompute once and store
in a database the solutions to the problem O� .ˇ/ for a grid of potential exogenous
parameter realizations, solutions on the continuous space of potential exogenous
parameter vector realizations ˇ could be quickly computed by interpolating between
points saved in the database. One study for which this technique is currently being
employed is [4], which describes a difficult maximum likelihood estimation of a
quantile regression.

10.5 Conclusion

Computing capability is ever becoming more powerful, less costly, and more
broadly available. At the same time, the techniques to store and interact with large
datasets are also improving. We have described a novel approach to solving complex
minimization problems that combines the tools of MPI for parallel processing the
tools of parallel I/O for using big data techniques. This approach allows researchers
to solve optimal policy problems that are otherwise too complex. A leading example
is the optimal income tax problem from Sect. 10.3. This method has myriad other
applications ranging from optimal insurance contracts to maximum likelihood
estimation.

Acknowledgements We thank the Hoover Institution and the BYU Macroeconomics and Com-
putational Laboratory for research support. We also thank the Mary Lou Fulton Supercomputing
Laboratory at Brigham Young University for use of the supercomputer.

References

1. I.P. Androulakis, C.D. Maranas, C.A. Floudas, ˛BB: a global optimization method for general
constrained nonconvex problems. J. Glob. Optim. 7(4), 337–363 (1995)

2. C. Baker, J. Bejarano, R.W. Evans, K.L. Judd, K.L. Phillips, A big data approach to optimal
sales taxation. NBER Working Paper No. 20130, National Bureau of Economic Research (May
2014)

3. J. Bejarano, R.W. Evans, K.L. Judd, K.L. Phillips, K. Quist, A big data approach to optimal
income taxation. Mimeo (2015)

10 Big Data Techniques as a Solution to Theory Problems 231

4. B.R. Frandsen, Exact nonparametric inference for a binary endogenous regressor. Mimeo (2015)
5. K.L. Judd, Numerical Methods in Economics (MIT, Cambridge, 1998)
6. E. Liran, J.D. Levin, The data revolution and economic analysis. NBER Working Paper

No. 19035, National Bureau of Economic Research (2013)
7. S.K. Mishra (ed.), Topics in Nonconvex Optimization: Theory and Applications. Nonconvex

Optimization and Its Applications (Springer, New York, 2011)
8. H.R. Varian, Big data: new tricks for econometrics. J. Econ. Perspect. 28(2), 3–28 (2014)
9. T. White, Hadoop: The Definitive Guide (O’Reilly Media; Sebastopol, California, 2012)

	Preface
	Contents
	1 An Introduction to Big Data, High Performance Computing, High-Throughput Computing, and Hadoop
	1.1 Big Data
	1.2 High Performance Computing (HPC)
	1.2.1 HPC Platform
	1.2.2 Serial and Parallel Processing on HPC Platform

	1.3 High-Throughput Computing (HTC)
	1.4 Hadoop
	1.4.1 Hadoop-Related Technologies
	1.4.2 Some Limitations of Hadoop and Hadoop-Related Technologies

	1.5 Convergence of Big Data, HPC, HTC, and Hadoop
	1.6 HPC and Big Data Processing in Cloud and at Open-Science Data Centers
	1.7 Conclusion
	References

	2 Using High Performance Computing for Conquering Big Data
	2.1 Introduction
	2.2 The Big Data Life Cycle
	2.3 Technologies and Hardware Platforms for Managing the Big Data Life Cycle
	2.4 Managing Big Data Life Cycle on HPC Platforms at Open-Science Data Centers
	2.4.1 TACC Resources and Usage Policies
	2.4.2 End-to-End Big Data Life Cycle on TACC Resources

	2.5 Use Case: Optimization of Nuclear Fusion Devices
	2.5.1 Optimization
	2.5.2 Computation on HPC
	2.5.3 Visualization Using GPUs
	2.5.4 Permanent Storage of Valuable Data

	2.6 Conclusions
	References

	3 Data Movement in Data-Intensive High Performance Computing
	3.1 Introduction
	3.2 Node-Level Data Movement
	3.2.1 Case Study: ADAMANT
	3.2.2 Case Study: Energy Cost of Data Movement

	3.3 System-Level Data Movement
	3.3.1 Case Study: Graphs
	3.3.2 Case Study: Map Reduce

	3.4 Center-Level Data Movement
	3.4.1 Case Study: Spider
	3.4.2 Case Study: Gordon and Oasis

	3.5 About the Authors
	References

	4 Using Managed High Performance Computing Systems for High-Throughput Computing
	4.1 Introduction
	4.2 What Are We Trying to Do?
	4.2.1 Deductive Computation
	4.2.2 Inductive Computation
	4.2.2.1 High-Throughput Computing

	4.3 Hurdles to Using HPC Systems for HTC
	4.3.1 Runtime Limits
	4.3.2 Jobs-in-Queue Limits
	4.3.3 Dynamic Job Submission Restrictions
	4.3.4 Solutions from Resource Managers and Big Data Research
	4.3.5 A Better Solution for Managed HPC Systems

	4.4 Launcher
	4.4.1 How Launcher Works
	4.4.2 Guided Example: A Simple Launcher Bundle
	4.4.2.1 Step 1: Create a Job File
	4.4.2.2 Step 2: Build a SLURM Batch Script

	4.4.3 Using Various Scheduling Methods
	4.4.3.1 Dynamic Scheduling
	4.4.3.2 Static Scheduling

	4.4.4 Launcher with Intel®Xeon Phi™ Coprocessors
	4.4.4.1 Offload
	4.4.4.2 Independent Workloads for Host and Coprocessor
	4.4.4.3 Symmetric Execution on Host and Phi

	4.4.5 Use Case: Molecular Docking and Virtual Screening

	4.5 Conclusion
	References

	5 Accelerating Big Data Processing on Modern HPC Clusters
	5.1 Introduction
	5.2 Overview of Apache Hadoop and Spark
	5.2.1 Overview of Apache Hadoop Distributed File System
	5.2.2 Overview of Apache Hadoop MapReduce
	5.2.3 Overview of Apache Spark

	5.3 Overview of High-Performance Interconnects and Storage Architecture on Modern HPC Clusters
	5.3.1 Overview of High-Performance Interconnects and Protocols
	5.3.1.1 Overview of High Speed Ethernet
	5.3.1.2 Overview of InfiniBand

	5.3.2 Overview of High-Performance Storage

	5.4 Challenges in Accelerating Big Data Processing on Modern HPC Clusters
	5.5 Case Studies of Accelerating Big Data Processing on Modern HPC Clusters
	5.5.1 Accelerating HDFS with RDMA
	5.5.2 Accelerating HDFS with Heterogeneous Storage
	5.5.3 Accelerating HDFS with Lustre Through Key-Value Store-Based Burst Buffer System
	5.5.4 Accelerating Hadoop MapReduce with RDMA
	5.5.5 Accelerating MapReduce with Lustre
	5.5.6 Accelerating Apache Spark with RDMA

	5.6 High-Performance Big Data (HiBD) Project
	5.7 Conclusion
	References

	6 dispel4py: Agility and Scalability for Data-Intensive Methods Using HPC
	6.1 Introduction
	6.2 Motivation
	6.2.1 Supporting Domain Specialists
	6.2.2 Supporting Data Scientists
	6.2.3 Supporting Data-Intensive Engineers
	6.2.4 Communication Between Experts

	6.3 Background and Related Work
	6.4 Semantics, Examples and Tutorial
	6.5 dispel4py Tools
	6.5.1 Registry
	6.5.2 Provenance Management
	6.5.3 Diagnosis Tool

	6.6 Engineering Effective Mappings
	6.6.1 Apache Storm
	6.6.2 MPI
	6.6.3 Multiprocessing
	6.6.4 Spark
	6.6.5 Sequential Mode

	6.7 Performance
	6.7.1 Experiments
	6.7.2 Experimental Results
	6.7.2.1 Scalability Experiments
	6.7.2.2 Performance Experiments

	6.7.3 Analysis of Measurements

	6.8 Summary and Future Work
	References

	7 Performance Analysis Tool for HPC and Big Data Applications on Scientific Clusters
	7.1 Introduction
	7.2 Related Work
	7.3 Design and Implementation
	7.4 Case Study—PTF Application
	7.4.1 PTF Application
	7.4.2 Execution Time Analysis
	7.4.3 Data Dependency Performance Analysis
	7.4.3.1 Analysis of Saved Objects
	7.4.3.2 Analysis of Galactic Latitude

	7.5 Case Study: Job Log Analysis
	7.5.1 Job Logs
	7.5.2 Test Setup
	7.5.3 Job Log Analysis
	7.5.4 Clustering Analysis

	7.6 Conclusion
	References

	8 Big Data Behind Big Data
	8.1 Background and Goals of the Project
	8.1.1 The Many Faces of Data
	8.1.2 Data Variety and Location
	8.1.3 The Different Consumers of the Data

	8.2 What Big Data Did We Have?
	8.2.1 Collected Data
	8.2.2 Data-in-Flight
	8.2.3 Data-at-Rest
	8.2.4 Data-in-growth
	8.2.5 Event Data
	8.2.6 Data Types to Collect

	8.3 The Old Method Prompts a New Solution
	8.3.1 Environmental Data
	8.3.2 Host Based Data
	8.3.3 Refinement of the Goal

	8.4 Out with the Old, in with the New Design
	8.4.1 Elastic
	8.4.2 Data Collection
	8.4.2.1 Collectd
	8.4.2.2 Custom Scripts
	8.4.2.3 Filebeats

	8.4.3 Data Transport Components
	8.4.3.1 RabbitMQ®
	8.4.3.2 Logstash

	8.4.4 Data Storage
	8.4.4.1 Elasticsearch

	8.4.5 Visualization and Analysis
	8.4.5.1 Kibana

	8.4.6 Future Growth and Enhancements

	8.5 Data Collected
	8.5.1 Environmental
	8.5.2 Computational
	8.5.3 Event

	8.6 The Analytics of It All: It Just Works!
	8.7 Conclusion
	References

	9 Empowering R with High Performance Computing Resources for Big Data Analytics
	9.1 Introduction
	9.1.1 Introduction of R
	9.1.2 Motivation of Empowering R with HPC

	9.2 Opportunities in High Performance Computing to Empower R
	9.2.1 Parallel Computation Within a Single Compute Node
	9.2.2 Multi-Node Parallelism Support

	9.3 Support for Parallelism in R
	9.3.1 Support for Parallel Execution Within a Single Node in R
	9.3.2 Support for Parallel Execution Over Multiple Nodes with MPI
	9.3.3 Packages Utilizing Other Distributed Systems

	9.4 Parallel Performance Comparison of Selected Packages
	9.4.1 Performance of Using Intel® Xeon Phi Coprocessor
	9.4.1.1 Testing Workloads
	9.4.1.2 System Specification
	9.4.1.3 Results and Discussion

	9.4.2 Comparison of Parallel Packages in R

	9.5 Use Case Examples
	9.5.1 Enabling JAGS (Just Another Gibbs Sampler) on Multiple Nodes
	9.5.2 Exemplar Application Using Coprocessors

	9.6 Discussions and Conclusion
	References

	10 Big Data Techniques as a Solution to Theory Problems
	10.1 Introduction
	10.2 General Formulation of Big Data Solution Method
	10.2.1 General Formulation of Class of Models and Solution Method
	10.2.2 Computational Steps to Big Data Solution Method
	10.2.3 Virtues of Equidistributed Sequences

	10.3 Optimal Tax Application
	10.4 Other Applications
	10.5 Conclusion
	References

	11 High-Frequency Financial Statistics Through High-Performance Computing
	11.1 Introduction
	11.2 Large Portfolio Allocation for High-Frequency Financial Data
	11.2.1 Background
	11.2.2 Our Methods

	11.3 Parallelism Considerations
	11.3.1 Parallel R
	11.3.2 Intel"472 MKL
	11.3.3 Offloading to Phi Coprocessor
	11.3.4 Our Computing Environment

	11.4 Numerical Studies
	11.4.1 Portfolio Optimization with High-Frequency Data
	11.4.1.1 LASSO Approximation for Risk Minimization Problem
	11.4.1.2 Parallelization

	11.4.2 Bayesian Large-Scale Multiple Testing for Time Series Data
	11.4.2.1 Hidden Markov Model and Multiple Hypothesis Testing
	11.4.2.2 Parallelization

	11.5 Discussion and Conclusions
	References

	12 Large-Scale Multi-Modal Data Exploration with Human in the Loop
	12.1 Background
	12.2 Details of Implementation Models
	12.2.1 Developing Top-Down Knowledge Hypotheses From Visual Analysis of Multi-Modal Data Streams
	12.2.1.1 Color-Based Representation of Temporal Events
	12.2.1.2 Generating Logical Conjunctions
	12.2.1.3 Developing Hypotheses From Visual Analysis

	12.2.2 Complementing Hypotheses with Bottom-Up Quantitative Measures
	12.2.2.1 Clustering in 2D Event Space
	12.2.2.2 Apriori-Like Pattern Searching
	12.2.2.3 Integrating Bottom-Up Machine Computation and Top-Down Domain Knowledge

	12.2.3 Large-Scale Multi-Modal Data Analytics with Iterative MapReduce Tasks
	12.2.3.1 Parallelization Choices
	12.2.3.2 Parallel Temporal Pattern Mining Using Twister MapReduce Tasks

	12.3 Preliminary Results
	12.4 Conclusion and Future Work
	References

	13 Using High Performance Computing for Detecting Duplicate, Similar and Related Images in a Large Data Collection
	13.1 Introduction
	13.2 Challenges in Using Existing Solutions
	13.3 New Solution for Large-Scale Image Comparison
	13.3.1 Pre-processing Stage
	13.3.2 Processing Stage
	13.3.3 Post-processing Stage

	13.4 Test Collection from the Institute of Classical Archaeology (ICA)
	13.5 Testing the Solution on Stampede: Early Results and Current Limitations
	13.6 Future Work
	13.7 Conclusion
	References

	14 Big Data Processing in the eDiscovery Domain
	14.1 Introduction to eDiscovery
	14.2 Big Data Challenges in eDiscovery
	14.3 Key Techniques Used to Process Big Data in eDiscovery
	14.3.1 Culling to Reduce Dataset Size
	14.3.2 Metadata Extraction
	14.3.3 Dataset Partitioning and Archival
	14.3.4 Sampling and Workload Profiling
	14.3.5 Multi-Pass (Iterative) Processing and Interactive Analysis
	14.3.6 Search and Review Methods
	14.3.7 Visual Analytics
	14.3.8 Software Refactoring and Parallelization

	14.4 Limitations of Existing eDiscovery Solutions
	14.5 Using HPC for eDiscovery
	14.5.1 Data Collection and Data Ingestion
	14.5.2 Pre-processing
	14.5.3 Processing
	14.5.4 Review and Analysis
	14.5.5 Archival

	14.6 Accelerating the Rate of eDiscovery Using HPC: A Case Study
	14.7 Conclusions and Future Direction
	References

	15 Databases and High Performance Computing
	15.1 Introduction
	15.2 Databases on Supercomputing Resources
	15.2.1 Relational Databases
	15.2.2 NoSQL or Non-relational and Hadoop Databases
	15.2.3 Graph Databases
	15.2.4 Scientific and Specialized Databases

	15.3 Installing a Database on a Supercomputing Resource
	15.4 Accessing a Database on Supercomputing Resources
	15.5 Optimizing Database Access on Supercomputing Resources
	15.6 Examples of Applications Using Databases on Supercomputing Resources
	15.7 Conclusion
	References

	16 Conquering Big Data Through the Usage of the Wrangler Supercomputer
	16.1 Introduction
	16.1.1 Wrangler System Overview
	16.1.2 A New User Community for Supercomputers

	16.2 First Use-Case: Evolution of Monogamy
	16.3 Second Use-Case: Save Money, Save Energy with Supercomputers
	16.4 Third Use-Case: Human Origins in Fossil Data
	16.5 Fourth Use-Case: Dark Energy of a Million Galaxies
	16.6 Conclusion
	References

