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Abstract We implement a dynamic programming algorithm on a computational grid
consisting of loosely coupled processors, possibly including clusters and individual
workstations. The grid changes dynamically during the computation, as processors
enter and leave the pool of workstations. The algorithm is implemented using the
Master–Worker library running on the HTCondor grid computing platform, which
can be deployed on many networks. We implement value function iteration for large
dynamic programming problems of two kinds: optimal growth problems and dynamic
portfolio problems. We present examples that solve in hours on HTCondor but would
take weeks if executed on a single workstation. The cost of using HTCondor is small
because it uses CPU resources that otherwise would be idle. The use of HTCondor can
increase a researcher’s computational productivity by at least two orders of magnitude.
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1 Introduction: Motivation and Model

Many dynamic optimization problems in economics can be expressed as dynamic pro-
gramming problems, but solving them numerically would require weeks or months of
CPU time on personal computers. This constraint has limited the range of applications
of dynamic programming in economics. Fortunately, many dynamic programming
problems can be broken down into a large number of smaller problems that can be
solved simultaneously. This structure allows one to use the massively parallel archi-
tectures that have been developed in the recent past. When applicable, parallelization
can drastically reduce the “wall clock time”, the time a user waits for the results. For
example, if you have access to one hundred CPUs and can keep each one working
on computations necessary for a solution, then the wall clock time can be reduced
from 100 h to about 1 h.1 Massive parallelism was initially used in supercomputers.
Unfortunately, supercomputers are not used extensively in economics due to difficul-
ties in access and the technical demands on users. HTCondor is a form of massive
parallelism that avoids the access problems of supercomputers. This paper shows how
economists can use HTCondor to solve large dynamic programming problems with
their existing software, with only a few basic system commands, and at little cost in
terms of money and bureaucratic processes.

Dynamic programming (DP) is an essential tool in solving problems of dynamic
and stochastic controls in economic analysis, and often has a structure that can exploit
parallelism. For example, in value function iteration, the period t iteration first solves
the period t Bellman optimization problem at many distinct states, where each of these
optimization problems use the period t + 1 value function. The results are then used
to construct an approximation of the period t value function. If the computational
burden of the approximation step is small relative to the collection of state-specific
and independent Bellman optimization problems, then there is substantial potential
for parallelization to reduce the wall clock time of DP computations.

In theory, this is obvious. However, achieving significant gains from parallelism
requires the creation of sophisticated software to manage communications among
the CPUs being used. Increasing the number of CPUs raises the potential gain from
parallelism but increases the amount of communication that needs to be managed by
the network software. Furthermore, it is difficult for economists to obtain time on
supercomputers.2 These barriers have made it impractical for the average economist
to use massively parallel architectures.

Fortunately for economists, the economic principle of specialization has been at
work and computer scientists have developed tools that make it easy for economists

1 Parallelization does not reduce total CPU time. In fact, parallelization will create overhead costs that do
not arise with serial computation. The benefit of parallelization is that the user will receive results sooner.
The focus in parallel computing is to economize on human time and other resources, not on total CPU time.
2 After this work was completed, the NSF launched the XSEDE project (https://www.xsede.org/), which
makes it far easier to access high power computing resources. Some of the machines available through
XSEDE use HTCondor, making the software we describe in this paper useful in XSEDE projects.
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to harness the potential power of parallel computing. The first key concept is “high
throughput computing”, HTC, where software organizes a cluster so that when a
computer is not being used for another purpose, it will be given tasks that are part
of someone’s parallel algorithm. In this paper, we use HTCondor.3 The second key
tool presented in this paper is Master–Worker (MW), a user-friendly parallelization
tool deployed on HTCondor. We use these tools to show that dynamic programming
problems can fully utilize the potential value of parallelism on existing networks of
computers that currently exist in department and college networks. HTCondor acts
as a management tool for identifying, allocating and managing available resources to
solve large distributed computations. For example, if a workstation on a network is
currently unused, HTCondor will detect that fact, and send it a task. HTCondor will
continue to use that workstation until a higher-priority user (such as a student sitting
at the keyboard) appears, at which time HTCondor ends its use of the workstation.
This is called “cycle scavenging” and allows a system to take advantage of otherwise
idle CPU time. In this paper, we show that HTCondor plus MW makes it possible to
exploit massive parallelism to solve dynamic programming problems.

This paper is constructed as follows. Section 2 discusses the potential use of paral-
lelism for dynamic programming. Section 3 gives an introduction of HTCondor-MW
system. Section 4 describes numerical algorithms for solving DP problems. Section 5
introduces two types of parallel DP algorithms in the HTCondor-MW system. Sec-
tions 6 and 7, respectively, give computational results of the parallel DP algorithms
in the HTCondor-MW system for solving multidimensional optimal growth problems
and dynamic portfolio optimization problems. Section 8 concludes.

2 Dynamic Programming and Parallelism

Some economists have expressed substantial skepticism about the ability to solve
interesting multidimensional dynamic programming problems, arguing that the curse
of dimensionality creates unavoidable limits on what can be solved. Rust (1997) and
Rust et al. (2002) prove that the curse of dimensionality is a problem for large classes
of dynamic programming problems. However, a closer examination of these analyses
shows that this pessimism is exaggerated. The curse of dimensionality is based on the
worst-case analysis, saying nothing about the average cost of using an algorithm to
solve a problem. The claims about the curse of dimensionality are made for arbitrary
dynamic programming problems, and ignore mathematical properties that are often
present in dynamic programming problems solved in economics. The mathematics
literature has shown that many multidimensional problems do not display a curse of
dimensionality. For example, Griebel and Wozniakowski (2006) show that as long as
an unknown function has sufficient smoothness then there is no curse of dimensionality
in approximation based on a finite number of samples of its values, nor on computing
its integral. Therefore, problems with smooth payoffs, smooth transitions, and smooth
value functions can avoid the curse of dimensionality. Many problems in economics
can be formulated in ways that satisfy these requirements without losing the essential

3 The previous name was Condor.
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economics being studied. This paper uses the smooth function approximation in the
dynamic programming algorithm so that there is no curse of dimensionality in the
approximation method.

Even if one formulates a dynamic programming problem that can use effective
approximation and quadrature methods to avoid the curse of dimensionality, multidi-
mensional dynamic programming problems are still expensive to solve. Fortunately,
the structure of DP problems allows one to use massive parallelism on many networks,
clusters, and supercomputers. Many modern computer systems now offer researchers
parallel computing tools. If parallelization can be used, it is the natural way to make
otherwise intractable problems tractable. This paper shows that dynamic programming
problems do have a structure that facilitates the use of parallelization on modern paral-
lel systems, and in a flexible manner that allows for efficient use of even heterogeneous
computing environments with high latency.

Parallel computing methods have been developed for some dynamic programming
problems. This paper focuses on the synergies between efficient approximation meth-
ods and parallelism in high-latency systems not examined before.

Pflug and Swietanowski (2000) and Zenios (1999) use parallel stochastic program-
ming methods to solve asset management problems. Stochastic programming methods
have difficulty solving problems beyond ten periods (and often just assume a few peri-
ods), whereas the value function approach can handle arbitrary time horizons due to
its use of function approximation methods.

Many have used discretization methods to solve DP problems. Chung et al. (1992)
use a parallel dynamic programming algorithm based on finite difference methods to
solve partial differential equations that arise in continuous-time stochastic dynamic
programming. However, finite difference methods suffer from a curse of dimension-
ality problem as the dimension increases. Also, finite difference methods are suitable
only for low latency data parallel structures. Abdelkhalek et al. (2001) uses a 64-
processor low latency system to solve life-cycle problems, but discretizes the state
space. Approximating continuous states with discrete-state problems will, like finite-
difference methods, be limited by a curse of dimensionality.

Coleman (1992) approximates the consumption function in a growth problem, but
uses local interpolation methods which are difficult to efficiently extend to higher
dimensions. With local interpolation, the Euler equations are not smooth, which pre-
cludes the use of Newton’s method and other fast solvers.

Recent innovations in graphical processing units (GPU) hardware have opened up
the possibility of applying GPUs to economics problems. For example, Aldrich et al.
(2011) give numerical examples using value function iteration with a discretization
method to solve a basic RBC model with two state variables and one control variable.
Also Morozov and Mathur (2012) give three numerical examples of using GPUs to
solve dynamic programming problems with three state variables. GPUs have substan-
tial potential but are also low latency systems and communicate only with one CPU.
Future work will exploit the synergies between parallelism on GPUs at the processor
level with parallelism across CPUs in both high- and low-latency systems.

In this paper we show that our method can solve high-dimensional dynamic
programming problems rapidly with high parallel efficiency across many comput-
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ers/workstations, using fast Newton-type optimizers and efficient multi-dimensional
approximation methods.

3 HTCondor: A Grid Platform

The idea to connect multiple computers to create a cluster for parallel computing is
not new. For example, Creel (2005) uses distributed parallel computing on available
computers to solve some econometric problems in parallel. However, as Creel notes

While it is well-known that such speedups in computations are possible, and
while the use of parallel computation within economics in general and econo-
metrics in particular has a long history, it is also clear that only a small part
of the computational work done in economics makes use of parallel computing.
Two factors may explain this. Parallel programming has traditionally had a steep
learning curve, at least compared to that of the popular high-level matrix pro-
gramming languages. In the best of cases, programmers had to learn FORTRAN
or C, and then how to use libraries of functions for parallelization. Next, paral-
lel computing has traditionally been done on expensive mainframe computers
that require generous budgets for their purchase, and skilled support person-
nel. More recently, clusters of commodity or workstation-class computers have
become widely used. This solution is considerably less expensive in terms of
hardware costs, but a dedicated cluster of computers for use by multiple users
requires enough time and effort to construct and maintain that is out of the reach
of most research groups that do not have a good budget for support personnel.

Many of these difficulties are solved by the HTCondor system. HTCondor is a high-
throughput computing (HTC), open-source software framework for distributed paral-
lelization of computationally intensive tasks on a cluster of computers. The HTCondor
software is freely available to all; see http://research.cs.wisc.edu/htcondor/index.html
for details. HTCondor can either be set up in advance by the cluster administrator, or, if
you have another cluster system, it can be setup by an unprivileged user, by running the
HTCondor processes as jobs in the underlying batch system. For those who do not want
to set up HTCondor, XSEDE makes it possible for any researcher to access HTCondor
systems around the US (see https://www.xsede.org/high-throughput-computing).

HTCondor MW systems can utilize code written in many languages. The interface
between master and workers uses a C++ class, but the workers can use executables
generated from other languages such as FORTRAN, MATLAB, R, etc. This flexibility
provides a user with the ability to use that software that is best for his problem. For
example, our dynamic programming algorithms generate vast numbers of smooth
constrained optimization problems which we solve with NPSOL (Gill et al. 1994), an
optimization package written in FORTRAN to solve those kinds of problems. In many
econometric problems, people would like to call some R or MATLAB subroutines.

Supercomputing, often called high performance computing (HPC), uses MPI (mes-
sage passing interface) for communication among processes and/or OpenMP for
shared memory multiprocessing programming. The advantage of supercomputers is
the specialized communication hardware that allows for rapid communication among
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processors. However, on a supercomputer, a user is assigned a fixed number of proces-
sors. Algorithms that need different numbers of processors at different stages cannot be
implemented efficiently on HPC architectures. Due to the necessity of having a block
of processors, users must reserve time, and the lag time between requesting time and
getting access increases with the number of desired processors and requested time.
Moreover, economists face substantial bureaucratic hurdles in getting access to super-
computer time because the people who control supercomputers impose requirements
that are met by few economists.

There are many developments in software and hardware that have created tools for
parallelism.4 HTCondor is a very flexible set of software tools, is open source, and
can use existing state-of-the-art solvers and software without changes in the code.
For these reasons, this paper focuses on implementing parallel dynamic programming
methods in clusters with high latency.

The HTCondor team at the University of Wisconsin-Madison has developed several
“flavors” of HTCondor, each fine-tuned for some specific type of parallel computing.
Creel and Goffe (2008) describe a variety of approaches to parallel computing, includ-
ing HTCondor. They expand on several of these points, and compare HTCondor to
some alternatives. In this paper we use the HTCondor Master–Worker (MW) system
for parallel algorithms to solve DP problems. The HTCondor MW system consists of
two entities: a master process and a cluster of worker processes. The master process
decomposes a problem into small tasks and puts those tasks in a queue. Each worker
process first examines the queue, takes the “top” problem off the queue and solves
it. The worker then sends the results to the master, examines the queue of unfinished
tasks, and repeats this process until the queue is empty. The workers’ execution is a
simple cycle: take a task off master’s queue, do the task, and then send the results to
the master. While the workers are solving the tasks, the master collects the results and
puts new tasks on the queue. This is a file-based, remote I/O scheme that serves as
the message-passing mechanism between the master and the workers. See Thain et al.
(2005) for more detailed discussion.

The MW paradigm helps the user circumvent the parallel computing challenges,
such as load balancing, termination detection, and distribution of information across
compute nodes. Moreover, computation in the MW paradigm is fault-tolerant: if a
worker cannot complete a task, due to machine failure or interruption by another user,
the master can detect this and put that task back on the queue for another worker to
execute. Sometimes a task is very time-consuming, it will be worthy to let the another
worker to continue the terminated job instead of restarting it. This can be supported by
a checkpoint mechanism in HTCondor on a number of Unix platforms5: the state of
a program will be snapshotted periodically so that the terminated job can be resumed
later from the most recent snapshot when the scheduler allocates it a new machine.

4 The ideas presented in this paper can be implemented using other tools. For example, Matlab has a
Parallel Computing Toolbox. While this permits some parallel computing, its value is limited because most
machines using this toolbox have a small number of cores. We will provide examples where we use up to
200 CPUs.
5 Since checkpointing services have not been supported on Windows platforms, it will usually have better
performance during the night than during the day.
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The user can request any number of workers, independent of the number of tasks.
HTCondor can make use of a heterogeneous collection of computers, where the fast
computers will solve more tasks but slower computers can still contribute. You can also
run a program using MPI on top of HTCondor, but we prefer not to, as MPI programs
are less reliable in grid computing, because they require all nodes to be running at the
same time—if one node crashes, the whole computation stops. With HTCondor and
the MW paradigm, if one worker crashes, the whole computation can continue. This
is very important if you want to scale to large computations.

HTCondor is a valuable alternative to HPC. In contrast to HPC, HTC is a paradigm
with much greater flexibility and lower cost. The marginal cost of CPU time used in
HTCondor is nearly zero (other than marginal electricity use) because HTCondor is
using a computational resource that otherwise would go unused. HTCondor manages
the number of processors being used in response to processor availability and the needs
of the computational procedure. If HTCondor sees that a computation needs hundreds
of processors, it will give the computation what it needs if the resources are available,
but if it later sees that a computation needs only a dozen processors, it can free up
unused processors and allocate them to other computations. HTC is opportunistic,
utilizing any resource that becomes available and not forcing the user to make reser-
vations. The disadvantage of HTC is that interprocessor communication will generally
be slower. While this does limit the amount of parallelization that can be exploited,
HTC environments can still efficiently use hundreds of processors for many problems,
e.g., dynamic programming problems in this paper. For high-dimensional dynamic
programming problems, each parallelized task can be computationally expensive and
time-consuming on the order of minutes or more, so the network latency should not
matter much.

There are other forms of parallel computing, such as grid computing which spreads
work across computers connected only by the internet. These “clouds” are other
examples of high latency parallel computing and could also implement the methods
described below. We focus on HTCondor because it is a well-developed, user-friendly
and free tool for high-latency parallelism.

4 Dynamic Programming

In economics and finance, we often encounter a finite horizon optimal decision-making
problem that can be expressed in the following general model:

V0(x0, θ0) = max
at ∈D(xt ,θt ,t)

E
{

T −1∑

t=0

β t ut (xt , at ) + βT VT (xT , θT )

}

,

where xt is a continuous state process with an initial state x0, θt is a discrete state
process with an initial state θ0, and at is an action variable (xt , θt and at can be
vectors), ut (x, a) is a utility function at time t < T and VT (x, θ) is a given terminal
value function, β is the discount factor (0 < β ≤ 1), D(xt , θt , t) is a feasible set of
at , and E{·} is the expectation operator.
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The DP model for the finite horizon problems is the basic Bellman equation,

Vt (x, θ) = max
a∈D(x,θ,t)

ut (x, a) + βE{Vt+1(x+, θ+)},

for t = 0, 1, . . . , T − 1, where (x+, θ+) is the next-stage state conditional on the
current-stage state (x, θ) and action a, and Vt (x, θ) is called the value function at
stage t while the terminal value function VT (x, θ) is given.

4.1 Numerical DP Algorithms

In DP problems, if state variables and control variables are continuous, then value func-
tions must be approximated in some computationally tractable manner. It is common
to approximate value functions with a finitely parameterized collection of functions;
that is, V (x, θ) ≈ V̂ (x, θ; b), where b is a vector of parameters. The functional form
V̂ may be a linear combination of polynomials, or it may represent a rational function
or neural network representation, or it may be some other parameterization specially
designed for the problem. After the functional form is fixed, we focus on finding
the vector of parameters, b, such that V̂ (x, θ; b) approximately satisfies the Bellman
equation (Bellman 1957). Algorithm 1 is the parametric DP method with value func-
tion iteration for finite horizon problems with both multidimensional continuous and
discrete states. More detailed discussion of numerical DP can be found in Cai (2010),
Judd (1998), Cai and Judd (2010), and Rust (2008). In the algorithm, n is the dimension
for the continuous states x , and d is the dimension for discrete states θ ∈ # = {θ j :
1 ≤ j ≤ D} ⊂ Rd , where D is the number of different discrete state vectors. The
transition probabilities from θ j to θ j ′ for 1 ≤ j, j ′ ≤ D are given.

4.2 Approximation

An approximation scheme has two ingredients: basis functions and approximation
nodes. Approximation nodes can be chosen as uniformly spaced nodes, Chebyshev
nodes, or some other specified nodes. From the viewpoint of basis functions, approxi-
mation methods can be classified as either spectral methods or finite element methods.
A spectral method uses globally nonzero basis functions φ j (x) such that V̂ (x; b) =∑m

j=0 b jφ j (x). Examples of spectral methods include ordinary polynomial approxi-
mation, ordinary Chebyshev polynomial approximation, shape-preserving Chebyshev
polynomial approximation (Cai and Judd 2013), and Chebyshev–Hermite approxi-
mation (Cai and Judd 2012b). In contrast, a finite element method uses local basis
functions φ j (x) that are nonzero over sub-domains of the approximation domain.
Examples of finite element methods include piecewise linear interpolation, shape-
preserving rational function spline interpolation (Cai and Judd 2012a), cubic splines,
and B-splines.

4.2.1 Chebyshev Polynomial Approximation

Chebyshev polynomials on [−1, 1] are defined as T j (x) = cos( j cos−1(x)), while
general Chebyshev polynomials on [xmin, xmax] are defined as T j ((2x − xmin −
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Algorithm 1 Parametric dynamic programming with value function iteration for prob-
lems with multidimensional continuous and discrete states
Initialization. Given a finite set of θ ∈ # = {θ j : 1 ≤ j ≤ D} ⊂ Rd and the probability transition

matrix P =
(

p j, j ′
)

D×D
where p j, j ′ is the transition probability from θ j ∈ # to θ j ′ ∈ # for

1 ≤ j, j ′ ≤ D. Choose a functional form for V̂ (x, θ; b) for all θ ∈ #, and choose the approximation
grid, Xt = {xi

t : 1 ≤ i ≤ Nt } ⊂ Rn . Let V̂ (x, θ; bT ) = VT (x, θ). Then for t = T −1, T −2, . . . , 0,
iterate through steps 1 and 2.

Step 1. Maximization step. Compute

vi, j = max
a∈D(xi ,θ j ,t)

ut (xi , θ j , a) + βE{V̂ (x+, θ+; bt+1)}, (1)

for each xi ∈ Xt and θ j ∈ #, 1 ≤ i ≤ Nt , 1 ≤ j ≤ D, where the next-stage discrete state θ+ is
random with probability mass function Pr(θ+ = θ j ′ | θ j ) = p j, j ′ for each θ j ′ ∈ #, and x+ is

the next-stage state transition from xi and may be also random.
Step 2. Fitting step. Using an appropriate approximation method, for each 1 ≤ j ≤ D, compute bt

j , such

that V̂ (x, θ j ; bt
j ) approximates {(xi , vi, j ): 1 ≤ i ≤ Nt } data, i.e., vi, j ≈ V̂ (xi , θ j ; bt

j ) for all

xi ∈ Xt . Let bt =
{

bt
j : 1 ≤ j ≤ D

}
.

xmax)/(xmax − xmin)) for j = 0, 1, 2, . . . These polynomials are orthogonal under the
weighted inner product: ⟨ f, g⟩ =

∫ xmax
xmin

f (x)g(x)w(x)dx with the weighting func-

tion w(x) =
(
1 − ((2x − xmin − xmax)/(xmax − xmin))

2)−1/2
. A degree m Cheby-

shev polynomial approximation for V (x) on [xmin, xmax] is

V̂ (x; b) =
m∑

j=0

b jT j

(
2x − xmin − xmax

xmax − xmin

)
, (2)

where b =
{
b j

}
are the Chebyshev coefficients.

If we choose the Chebyshev nodes on [xmin, xmax]: xi = (zi +1)(xmax − xmin)/2+
xmin with zi = − cos

(
(2i − 1)π/(2m′)

)
for i = 1, . . . , m′ with m′ > m, and

Lagrange data {(xi , vi ) : i = 1, . . . , m′} are given (where vi = V (xi )), then the
coefficients b j in (2) can be easily computed by the Chebyshev regression algorithm
(see Judd 1998).

4.2.2 Multidimensional Complete Chebyshev Approximation

In an n-dimensional approximation problem, let the domain of the value function be

{
x = (x1, . . . , xn) : xmin

j ≤ x j ≤ xmax
j , j = 1, . . . , n

}
,

for some real numbers xmin
j and xmax

j with xmax
j > xmin

j for j = 1, . . . , n. Let xmin =
(xmin

1 , . . . , xmin
n ) and xmax = (xmax

1 , . . . , xmax
n ). Then we denote [xmin, xmax] as the
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domain. Let α = (α1, . . . ,αn) be a vector of nonnegative integers. Let Tα(z) denote
the product Tα1(z1) · · · Tαn (zn) for z = (z1, . . . , zn) ∈ [−1, 1]n . Let

Z(x) =
(

2x1 − xmin
1 − xmax

1

xmax
1 − xmin

1
, . . . ,

2xn − xmin
n − xmax

n

xmax
n − xmin

n

)

for any x = (x1, . . . , xn) ∈ [xmin, xmax].
Using these notations, the degree-m complete Chebyshev approximation for V (x)

is
V̂m(x; b) =

∑

0≤|α|≤m

bαTα (Z(x)) , (3)

where |α| = ∑n
j=1 α j for the nonnegative integer vector α = (α1, . . . ,αn). So the

number of terms with 0 ≤ |α| ≤ m is
(m+n

n

)
for the degree-m complete Chebyshev

approximation in Rn .

4.3 Numerical Integration

In the objective function of the Bellman equation, we often need to compute the
conditional expectation of V (x+). When the random variable is continuous, we can
use numerical integration to compute the expectation. Gaussian quadrature rules are
often applied in computing the integration.

4.3.1 Gauss–Hermite Quadrature

In the expectation operator of the objective function of the Bellman equation, if the
random variable has a normal distribution, then it will be good to apply the Gauss–
Hermite quadrature formula to compute the numerical integration. That is, if we want
to compute E{ f (Y )} where Y has a distribution N (µ, σ 2), then

E{ f (Y )} = (2πσ 2)−1/2

∞∫

−∞
f (y)e−(y−µ)2/(2σ 2)dy

= (2πσ 2)−1/2

∞∫

−∞
f (

√
2 σ x + µ)e−x2√

2σdx

.= π− 1
2

m∑

i=1

ωi f (
√

2σ xi + µ),

where ωi and xi are the Gauss–Hermite quadrature with m weights and nodes over
(−∞,∞). See Cai (2010), Judd (1998), Stroud and Secrest (1966) for more details.
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If Y is log normal, i.e., log(Y ) has a distribution N (µ, σ 2), then we can assume
that Y = eX where X ∼ N (µ, σ 2), thus

E{ f (Y )} = E{ f (eX )} .= π− 1
2

m∑

i=1

ωi f
(

e
√

2σ xi +µ
)

.

4.3.2 Multidimensional Integration

If we want to compute a multidimensional integration, we could apply the product rule.
For example, suppose that we want to compute E{ f (X)}, where X is a random vector
with multivariate normal distribution N (µ,)) over Rn , where µ is the mean column
vector and ) is the covariance matrix, then we could do the Cholesky factorization
first, i.e., find a lower triangular matrix L such that ) = L L⊤. This is feasible as )
must be a positive semi-definite matrix from the covariance property. Thus,

E{ f (X)} =
(
(2π)ndet())

)−1/2
∫

Rn

f (y)e−(y−µ)⊤)−1(y−µ)/2dy

=
(
(2π)ndet(L)2

)−1/2
∫

Rn

f
(√

2Lx + µ
)

e−x⊤x 2n/2det(L)dx

.= π− n
2

m∑

i1=1

· · ·
m∑

in=1

ωi1 · · ·ωid f
(√

2l1,1xi1 + µ1,

√
2(l2,1xi1 + l2,2xi2) + µ2, · · · ,

√
2

⎛

⎝
n∑

j=1

ln, j xi j

⎞

⎠ + µn

)
, (4)

where ωi and xi are weights and nodes over (−∞,∞), li, j is the (i, j)-element of L ,
and det(·) means the matrix determinant operator.

5 Parallel Dynamic Programming

The numerical DP algorithms can be applied easily in the HTCondor MW system for
DP problems with multidimensional continuous and discrete states. To solve these
problems, numerical DP algorithms with value function iteration have the maximiza-
tion step that is mostly time-consuming in numerical DP. Equation (1) in Algorithm
1 computes vi, j for each approximation point xi in the finite set Xt ⊂ Rn and each
discrete state vector θ j ∈ #, where Nt is the number of points of Xt and D is the
number of points of#, so there are Nt ×D small-size maximization problems. In high-
dimensional problems, Nt × D will be large, then it will take a huge amount of time to
do the DP maximization step. However, these Nt × D small-size maximization prob-
lems can be naturally parallelized, in which one or several maximization problem(s)
could be treated as one task. Since these maximization problems are independent, both
serial and parallel dynamic programming algorithms have these computation costs and
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will give the same solution. All the parallelization scalability comes through paral-
lelism across discrete state space points and/or approximation nodes of continuous
state variables.

5.1 Type-I Parallelization

When D is large, we could separate the Nt × D maximization problems into D tasks,
where each task corresponds to a discrete state vector θ j and all continuous state nodes
in Xt . Algorithm 2 is the architecture for the master processor, and Algorithm 3 is the
corresponding architecture for the workers.

Algorithm 2 Type-I parallel dynamic programming with value function iteration for
the master
Initialization. Given a finite set of θ ∈ # = {θ j : 1 ≤ j ≤ D} ⊂ Rd . Set bT as the parameters of the

terminal value function. For t = T − 1, T − 2, . . . , 0, iterate through steps 1 and 2.
Step 1. Separate the maximization step into D tasks, one task per θ ∈ #. Each task contains parameters

bt+1, stage number t and the corresponding task identity for some θ j . Then send these tasks to the
workers.

Step 2. [Step. 2] Wait until all tasks are done by the workers. Then collect parameters bt
j from the workers,

for all 1 ≤ j ≤ D, and let bt =
{

bt
j : 1 ≤ j ≤ D

}
.

Algorithm 3 Type-I parallel dynamic programming with value function iteration for
the workers
Initialization. Given a finite set of θ ∈ # = {θ j : 1 ≤ j ≤ D} ⊂ Rd and the probability transition

matrix P =
(

p j, j ′
)

D×D
where p j, j ′ is the transition probability from θ j ∈ # to θ j ′ ∈ # for

1 ≤ j, j ′ ≤ D. Choose a functional form for V̂ (x, θ; b) for all θ ∈ #.
Step 1. Get parameters bt+1, stage number t and the corresponding task identity for one θ j ∈ # from the

master, and then choose the approximation grid, Xt = {xi
t : 1 ≤ i ≤ Nt } ⊂ Rn .

Step 2. For this given θ j , compute

vi, j = max
a∈D(xi ,θ j ,t)

u(xi , θ j , a) + βE{V̂ (x+, θ+; bt+1)},

for each xi ∈ Xt , 1 ≤ i ≤ Nt , where the next-stage discrete state θ+ ∈ # is random with
probability mass function P(θ+ = θ j ′ | θ j ) = p j, j ′ for each θ j ′ ∈ #, and x+ is the next-stage

state transition from xi and may be also random.
Step 3. Using an appropriate approximation method, compute bt

j such that V̂ (x, θ j ; bt
j ) approximates

{(xi , vi, j ): 1 ≤ i ≤ Nt }, i.e., vi, j ≈ V̂ (xi , θ j ; bt
j ) for all xi ∈ Xt .

Step 4. Send bt
j and the corresponding task identity for θ j to the master.

Algorithm 2 describes the master’s function. Suppose that the value function for
time t + 1 is known, and the master wants to solve for the value function at period
t . For each point θ ∈ #, the master gathers all the Bellman optimization problems
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associated with that θ , together with the solution for the next period’s value function,
and sends that package of problems to a worker processor. It does this until all workers
are working on some such package. When the master receives the solutions from a
worker, it records those results and sends that worker another package of problems
not yet solved. This continues until all θ specific packages have been solved, at which
point the master repeats this for period t − 1.

Algorithm 3 describes the typical worker task. It takes the θ j package from the
master, solves the Bellman optimization problem for each node in Xt , and computes
the new value for bt

j , the coefficients for the time-t value function in the θ j dimension,
and sends the coefficients to the master. In the algorithm, the discrete states are assumed
to be exogenously evolving, but this assumption is not required. For example, if the
probability transition matrix P is dependent on control variables, a, the workers can
still do the same job, while the only difference is that the expectation operator in
the objective function uses a controlled probability mass function, p j, j ′(a), for the
transition probability from θ j to θ j ′ .

5.2 Type-II Parallelization

The case where we parallelize only across the discrete dimensions is easy to implement,
and is adequate if the number of available workers is small relative to the number of
points in #. If we have access to more workers, then we will also parallelize across
points in Xt . That is, if the number of nodes for continuous states, Nt , is large, or the
maximization step for each node is time-consuming, then it will be possible to break
the task for one θ j into subtasks and maintain parallel efficiency. If the fitting method
requires all points {(xi , vi, j ): 1 ≤ i ≤ Nt } to construct the approximation, then each
worker cannot do step 3 and 4 along with step 1 and 2 in Algorithm 3, as it has only
an incomplete set of approximation nodes xi for one given θ j . Therefore, the fitting
step is executed by the master. Thus we have Algorithm 4 for the master process and
Algorithm 5 for the workers.

Algorithm 4 Type-II parallel dynamic programming with value function iteration for
the master
Initialization. Given a finite set of θ ∈ # = {θ j : 1 ≤ j ≤ D} ⊂ Rd . Choose a functional form for

V̂ (x, θ; b) for all θ ∈ #, and choose the approximation grid, Xt = {xi
t : 1 ≤ i ≤ Nt } ⊂ Rn . Set

bT as the parameters of the terminal value function. For t = T − 1, T − 2, . . . , 0, iterate through
steps 1 and 2.

Step 1. Separate Xt into M disjoint subsets with almost equal sizes: Xt,1, . . . , Xt,M , and separate the
maximization step into M × D tasks, one task per (Xt,m , θ j ) with θ j ∈ #, for m = 1, . . . , M and
j = 1, . . . , D. Each task contains the parameters bt+1, the stage number t and the corresponding
task identity for (Xt,m , θ j ). Then send these tasks to the workers.

Step 2. Wait until all tasks are done by the workers. Then collect all vi, j from the workers, for 1 ≤ i ≤
Nt , 1 ≤ j ≤ D.

Step 3. Using an appropriate approximation method, for each θ j ∈ #, compute bt
j such that V̂ (x, θ j ; bt

j )

approximates {(xi , vi, j ): 1 ≤ i ≤ Nt }, i.e., vi, j ≈ V̂ (xi , θ j ; bt
j ) for all xi ∈ Xt . Let bt =

{
bt

j : 1 ≤ j ≤ D
}

.

123



274 Y. Cai et al.

Algorithm 5 Type-II parallel dynamic programming with value function iteration for
the workers
Initialization. Given a finite set of θ ∈ # = {θ j : 1 ≤ j ≤ D} ⊂ Rd and the probability transition

matrix P =
(

p j, j ′
)

D×D
where p j, j ′ is the transition probability from θ j ∈ # to θ j ′ ∈ # for

1 ≤ j, j ′ ≤ D. Choose the approximation grid, Xt = {xi
t : 1 ≤ i ≤ Nt } ⊂ Rn , which is the same

with the set Xt in the master.
Step 1. Get the parameters bt+1, stage number t and the corresponding task identity for one (Xt,m , θ j )

with θ j ∈ # from the master.
Step 2. For this given θ j , compute

vi, j = max
a∈D(xi ,θ j ,t)

u(xi , θ j , a) + βE{V̂ (x+, θ+; bt+1)},

for all xi ∈ Xt,m , where the next-stage discrete state θ+ ∈ # is random with probability mass
function P(θ+ = θ j ′ | θ j ) = p j, j ′ for each θ j ′ ∈ #, and x+ is the next-stage state transition

from xi and may be also random.
Step 3. Send vi, j for these given xi ∈ Xt,m and θ j , to the master process.

If it is quick to compute bt
j in the fitting step (e.g., Chebyshev polynomial approx-

imation using Chebyshev regression algorithm), then we can just let the master do
the fitting step like the type-II parallel DP algorithm. However, if the fitting step is
time-consuming, then the master could send these fitting jobs for each discrete state
θ j to the workers, and then collect the new approximation parameters.

Our parallel algorithms have used only the most basic techniques for coordinating
computation among processors. There are many other places where parallelization
might be useful. For example, if the Bellman optimization problem corresponding to
a single point (xi , θ j ) in the state space were itself a large problem, and we had a
large number of processors, then it might be useful to use a parallel algorithm to solve
each such state-specific problem. There are many possible ways to decompose the big
problem into smaller ones and exploit the available processors. We have discussed only
the first two layers of parallelization that can be used in dynamic programming. How
fine we go depends on the number of processors at our disposal and the communication
times across computational units.

5.3 Sparsity

In many cases, the probability transition matrix is sparse and this fact can be exploited
to reduce communication cost. For example, suppose that a worker is given the task to
compute the value function for θ j . When it computes the expectation in the objective
function of the maximization problems, it only needs access to the value functions for
those θ j ′ which can be reached from θ j in one period. That is,

E{V̂ (x+, θ+; bt+1)} =
∑

1≤ j ′≤D, p j, j ′ ̸=0

p j, j ′E{V̂ (x+, θ j ′; bt+1
j ′ )}.
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Therefore, when the master forms the description of a task for a worker, it only
needs to include those bt+1

j ′ with nonzero transition probability p j, j ′ (instead

of the whole set of parameters, bt+1) in the tasks corresponding to θ j , i.e.,{
bt+1

j ′ : p j, j ′ > 0, 1 ≤ j ′ ≤ D
}

where p j, j ′ = P(θ+ = θ j ′ | θ j ), and then send

this subset of bt+1 to the workers in Step 1 of Algorithm 2 or 4. This saves on master-
worker communication costs.

6 Application to Stochastic Optimal Growth Models

We consider a multi-dimensional stochastic optimal growth problem. We assume
that there are d sectors, and let kt = (kt,1, . . . , kt,d) denote the capital stocks
of these sectors which is a d-dimensional continuous state vector at time t . Let
θt =

(
θt,1, . . . , θt,d

)
∈ # = {θ j

t : 1 ≤ j ≤ D} ⊂ Rd denote current productiv-
ity levels of the sectors which is a d-dimensional discrete state vector at time t , and
assume that θt follows a Markov process with a stable probability transition matrix,
denoted as θt+1 = g(θt , ξt ) where ξt are i.i.d. disturbances. Let lt =

(
lt,1, . . . , lt,d

)

denote elastic labor supply levels of the sectors which is a d-dimensional contin-
uous control vector variable at time t . Assume that the net production function of
sector i at time t is f (kt,i , lt,i , θt,i ), for i = 1, . . . , d. Let ct =

(
ct,1, . . . , ct,d

)
and

It =
(
It,1, . . . , It,d

)
denote, respectively, consumption and investment of the sectors

at time t . We want to find an optimal consumption and labor supply decisions such
that expected total utility over a finite-horizon time is maximized, i.e.,

V0(k0, θ0) = max
kt ,It ,ct ,lt

E
{

T −1∑

t=0

β t u(ct , lt ) + βT VT (kT , θT )

}

,

s.t. kt+1, j = (1 − δ)kt, j + It, j + ϵt, j , j = 1, . . . , d,

-t, j = ζ

2
kt, j

(
It, j

kt, j
− δ

)2

, j = 1, . . . , d,

d∑

j=1

(
ct, j + It, j − δkt, j

)
=

d∑

j=1

(
f (kt, j , lt, j , θt, j ) − -t, j

)
,

θt+1 = g(θt , ξt ),

where k0 and θ0 are given, δ is the depreciation rate of capital, -t, j is the invest-
ment adjustment cost of sector j , and ζ governs the intensity of the friction,
ϵt =

(
ϵt,1, . . . , ϵt,d

)
are serially uncorrelated i.i.d. disturbances with E{ϵt,i } = 0,

and VT (k, θ) is a given terminal value function. For this finite-horizon model, Cai
and Judd (2012b) solve some of its simplified problem. An infinite-horizon version
of this model is introduced in Haan et al. (2011), Juillard and Villemot (2011), and a
nonlinear programming method for dynamic programming is introduced in Cai et al.
(2013a) to solve the multi-country growth model with infinite horizon.
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6.1 Dynamic Programming Model

The DP formulation of the multi-dimensional stochastic optimal growth problem is

Vt (k, θ) = max
c,l,I

u(c, l) + βE
{

Vt+1(k+, θ+) | θ
}
,

s.t. k+
j = (1 − δ)k j + I j + ϵ j , j = 1, . . . , d,

- j = ζ

2
k j

(
I j

k j
− δ

)2

, j = 1, . . . , d,

d∑

j=1

(
c j + I j − δk j

)
=

d∑

j=1

(
f (k j , l j , θ j ) − - j

)
,

θ+ = g(θ, ξt ),

for t = 0, . . . , T − 1, where k = (k1, . . . , kd) is the continuous state vector and
θ = (θ1, . . . , θd) ∈ # = {(ϑ j,1, . . . ,ϑ j,d) : 1 ≤ j ≤ D} is the discrete state
vector, c = (c1, . . . , cd) , l = (l1, . . . , ld), and I = (I1, . . . , Id) are control variables,
ϵ = (ϵ1, . . . , ϵd) are i.i.d. disturbance with mean 0, and k+ = (k+

1 , . . . , k+
d ) and

θ+ =
(
θ+

1 , . . . , θ+
d

)
∈ # are the next-stage state vectors. Numerically, V (k, θ) is

approximated with given values at finite nodes, so the approximation is only good at a
finite range. That is, the state variable must be in a finite range [k, k̄], then we should
have the restriction k+ ∈ [k, k̄]. Here k = (k1, . . . , kd), k̄ = (k̄1, . . . , k̄d), and k+ ∈
[k, k̄] denotes that k+

i ∈ [ki , k̄i ] for all 1 ≤ i ≤ d. Like most computational methods,
our Chebyshev polynomial approach to approximation is defined on a compact domain.
However, the solution to the economic problem does not have binding constraints.
Therefore, the range is chosen to be wide so that the restriction k+ ∈ [k, k̄] will not
be binding for all t = 0, . . . , T − 1.

6.2 Numerical Example

In the following numerical example, we see the application of parallelization of
numerical DP algorithms for the DP model of the multi-dimensional stochastic opti-
mal growth problem. We let T = 3,β = 0.8, δ = 0.025, ζ = 0.5, [k, k̄] =
[0.2, 3.0]d , f (ki , li , θi ) = θi Akψi l1−ψ

i with ψ = 0.36 and A = (1 − β)/(ψβ),
for i = 1, . . . , d, and

u(c, l) =
d∑

i=1

[
(ci/A)1−γ − 1

1 − γ
− (1 − ψ)

l1+η
i − 1
1 + η

]

,

with γ = 2 and η = 1.
In this example, we let d = 4. So this is a DP example with 4-dimensional continu-

ous states and 4-dimensional discrete states. Here we assume that the possible values
of θi and θ+

i are
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ϑ1 = 0.85, ϑ2 = 0.9, ϑ3 = 0.95, ϑ4 = 1.0, ϑ5 = 1.05, ϑ6 = 1.1, ϑ7 = 1.15,

and the probability transition matrix from θi to θ+
i is a 7 × 7 tridiagonal matrix:

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.75 0.25
0.25 0.50 0.25

0.25 0.50 0.25

0.25
. . .

. . .

. . . 0.50 0.25
0.25 0.75

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

for each i = 1, . . . , 4, and we assume that θ+
1 , . . . , θ+

d are independent of each other.
That is,

Pr[θ+ = (ϑi1 , . . . ,ϑi4) | θ = (ϑ j1, . . . ,ϑ j4)] = Pi1, j1 Pi2, j2 Pi3, j3 Pi4, j4 ,

where Piα, jα is the (iα, jα) element of P , for any iα, jα = 1, . . . , 7,α = 1, . . . , 4.
In addition, we assume that ϵ1, . . . , ϵ4 are i.i.d., and each ϵi has 3 discrete values:

δ1 = −0.01, δ2 = 0.0, δ3 = 0.01,

while their probabilities are q1 = 0.25, q2 = 0.5 and q3 = 0.25, respectively. That is,

Pr[ϵ = (δn1, . . . , δn4)] = qn1qn2qn3qn4 ,

for any nα = 1, 2, 3,α = 1, . . . , 4. Moreover, ϵ1, . . . , ϵ4 are assumed to be indepen-
dent of θ+

1 , . . . , θ+
4 .

Therefore,

E{V (k+, θ+) | θ = (ϑ j1 , . . . ,ϑ j4)} =
3∑

n1,n2,n3,n4=1

qn1qn2qn3qn4

7∑

i1,i2,i3,i4=1

Pi1, j1 Pi2, j2 Pi3, j3 Pi4, j4

×V (k̂+
1 + δn1 , . . . , k̂+

4 + δn4 ,ϑi1 , . . . ,ϑi4),

(5)

where k̂+
α = (1 − δ)kα + Iα , for any α = 1, . . . , 4.

From the formula (5), it seems that we should compute the value function V at a
large number of points up to 34 × 74 = 194,481 in order to evaluate the expectation.
But in fact, we can take advantage of the sparsity of the probability transition matrix P .
After canceling the zero probability terms, the evaluation of the expectation will need
to compute the value function at a number of points ranging from 34 × 24 = 1,296 to
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Table 1 Statistics of parallel
DP under HTCondor-MW for
the growth problem

Wall clock time for all 3 VFIs 8.28 h

Wall clock time for 1st VFI 0.34 h

Wall clock time for 2nd VFI 3.92 h

Wall clock time for 3rd VFI 4.01 h

Total time workers were up (alive) 16.9 days

Total cpu time used by all workers 16.5 days

Number of (different) workers 50

Average number present workers 49

Overall parallel performance 98.6 %

34 × 34 = 6,561, which is far less than the case without using the sparsity. Moreover,
the communication cost between the master and workers is also far less than the case
without using the sparsity.

The continuous value function approximation is the complete degree-6 Chebyshev
polynomial approximation method (3) with 74 = 2,401 Chebyshev nodes for con-
tinuous state variables, the optimizer is NPSOL, and the terminal value function is
chosen as

VT (k, θ) = u( f (k, e, e), e)/(1 − β),

where e is the vector with 1’s everywhere. Here e is chosen because it is the steady state
labor supply for the corresponding infinite-horizon problem and is also the average
value of θ .

6.3 HTCondor-MW Results

We use the master Algorithm 2 and the worker Algorithm 3 to solve the optimal growth
problem. There are seven possible values of θi for each i = 1, . . . , 4, and each task
consists of updating the value function at one specific θ j ; therefore, the total number of
HTCondor-MW tasks for one value function iteration is 74 = 2,401. Furthermore, we
use seven approximation nodes in each continuous dimension to construct a degree six
complete polynomial; therefore, each task computes 2,401 small-size maximization
problems as there are 2,401 Chebyshev nodes.

Under HTCondor, we assign 50 workers to do this parallel work. Table 1 lists some
statistics of our parallel DP algorithm under HTCondor-MW system for the growth
problem after running 3 value function iterations (VFI). The last line of Table 1 shows
that the parallel efficiency of our parallel numerical DP method is very high (up to
98.6 %) for this example. We see that the total cpu time used by all workers to solve the
optimal growth problem is nearly 17 days, i.e., it will take nearly 17 wall clock days
to solve the problem without using parallelism. However, it takes only 8.28 wall clock
hours to solve the problem if we use the parallel algorithm and 50 worker processors.6

6 The pool has machines of different characteristics, but a typical machine has eight cores and 8 GB memory,
uses the Intel(R) Xeon(R) CPU E5345 @ 2.33GHz with 1 Gbps (Gigabit per second) Ethernet.
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Table 2 Parallel efficiency for various numbers of worker processors

# Worker Parallel Average task Total wall clock
processors efficiency (%) wall clock time (s) time (h)

50 98.6 199 8.28

100 97 185 3.89

200 91.8 186 2.26

Table 2 gives the parallel efficiency with various number of worker processors for
this optimal growth model. We see that it has an almost linear speed-up when we add
the number of worker processors from 50 to 200. We see that the wall clock time to
solve the problem is only 2.26 h now if the number of worker processors increases to
200.

Parallel efficiency drops from 99 to 92 % when we move from 100 processors to
200. This is not the critical fact for a user. The most important fact is that requesting 200
processors reduced the waiting time from submission to final output by 1.6 h. Focussing
on the user’s waiting time is one of the values of the HTC approach to parallelization.
Since the average task takes about 3 min, the network latency does not matter much.
Moreover, our tasks are computationally expensive but not data intensive (as we use
smooth functional approximation and fast Newton-type optimization solvers instead
of discretization and grid search method), our memory requirement is small.

7 Application to Dynamic Portfolio Problems with Transaction Costs

We consider a dynamic portfolio problem with transaction costs. We assume that an
investor begins with some initial wealth W0, invests it in several assets, and manages
it at every time t so as to maximize the expected utility of wealth at a terminal time
T . We assume a power utility function for terminal wealth, u(W ) = W 1−γ /(1 − γ )

where γ > 0 and γ ̸= 1. Let R = (R1, . . . , Rn)⊤ be the random one-period return
of n risky assets, and R f be the return of the riskless asset. The portfolio share for
asset i at the beginning of period t is denoted xt,i , and let xt = (xt,1, . . . , xt,n)⊤. The
difference between wealth and the wealth invested in stocks is invested in bonds. At
the beginning of every period, the investor has a chance to re-balance the portfolio with
a proportional transaction cost rate τ for buying or selling stocks. Let δ+t,i W denote the
amount of asset i purchased, expressed as a fraction of wealth, and let δ−t,i W denote
the amount sold, where δ+t,i , δ

−
t,i ≥ 0, for periods t = 0, . . . , T − 1.

We assume that the riskless return R f and the risky assets’ return R may be depen-
dent on a discrete time stochastic process θt (could be a vector), denoted by R f (θt )

and R(θt ) respectively, for t = 0, . . . , T − 1. Then the dynamic portfolio problem
becomes

V0(W0, x0, θ0) = max
δ+,δ−≥0

E {u(WT )} , (6)

s.t. Wt+1 = e⊤ Xt+1 + R f (θt )(1 − e⊤xt − yt )Wt ,

123



280 Y. Cai et al.

Xt+1,i = Ri (θt )(xt,i + δ+t,i − δ−t,i )Wt ,

yt = e⊤(δ+
t − δ−

t + τ (δ+
t + δ−

t )),

xt+1,i = Xt+1,i/Wt+1,

θt+1 = g(θt , ξt ),

t = 0, . . . , T − 1; i = 1, . . . , n,

where e is the column vector with 1’s everywhere, Xt+1 = (Xt+1,1, . . . , Xt+1,n)⊤,

δ+
t = (δ+t,1, . . . , δ

+
t,n)⊤, and δ−

t = (δ−t,1, . . . , δ
−
t,n)⊤. Here, Wt+1 is time t + 1 wealth,

Xt+1,i is time t + 1 wealth in asset i, yt Wt is the change in bond holding, and xt+1,i
is the allocation of risky asset i .

7.1 Dynamic Programming Model

The DP model of the multi-stage portfolio optimization problem (6) is

Vt (W, x, θ) = max
δ+,δ−≥0

E
{

Vt+1(W +, x+, θ+)
}
,

for t = 0, 1, . . . , T − 1, while the terminal value function is VT (W, x, θ) =
W 1−γ /(1 − γ ). Given the isoelasticity of VT , we know that the value function can be
rewritten as

Vt (Wt , xt , θt ) = W 1−γ
t · Ht (xt , θt ),

for some functions Ht (xt , θt ), where Wt and xt are respectively wealth and allocation
fractions of stocks right before re-balancing at stage t = 0, 1, . . . , T , and

Ht (x, θ) = max
δ+,δ−

E
{
41−γ · Ht+1(x+, θ+)

}
, (7)

s.t. δ+ ≥ 0, δ− ≥ 0,

x + δ+ − δ− ≥ 0,

y ≤ 1 − e⊤x,

θ+ = g(θ, ξt ),

where HT (x, θ) = 1/(1 − γ ), and

y ≡ e⊤(δ+ − δ− + τ (δ+ + δ−)),

si ≡ Ri (θ)(xi + δ+i − δ−i ),

4 ≡ e⊤s + R f (θ)(1 − e⊤x − y),

x+
i ≡ si/4,

for i = 1, . . . , n and t = 0, 1, . . . , T − 1. See Cai et al. (2013b) for a detailed
discussion of this dynamic portfolio optimization problem.
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Since Wt and xt are separable, we can just assume that Wt = 1 dollar for simplicity.
Thus, at time t, δ+ and δ− are the amounts for buying and selling stocks respectively,
y is the change in bond holding, s is the next-stage amount vector of dollars on the
stocks,4 is the total wealth at the next stage, and x+ is the new fraction vector of the
stocks at the next stage. In this model, the state variables, x and x+, are continuous in
[0, 1]n .

7.2 Numerical Examples

We choose a portfolio with n = 6 stocks and one riskless bond. The investor wants
to maximize the expected terminal utility after T = 6 years with the terminal utility,
u(W ) = W 1−γ /(1−γ ), with γ = 4. At the beginning of each year t = 0, 1, . . . T −1,
the investor has a chance to rebalance the portfolio with a proportional transaction
cost rate τ = 0.002 for buying or selling stocks. We assume that the stock returns are
independent each other, and stock i has a log-normal annual return, i.e., log(Ri ) ∼
N (µi − σ 2

i /2, σ 2
i ) with µi = 0.07 and σi = 0.25, for i = 1, . . . , n. We assume that

the bond has a riskless annual return exp (rt ), while the interest rate rt is a discrete
Markov chain, with rt = 0.01, 0.02, 0.03, 0.04 or 0.05, and its transition probability
matrix is

P =

⎡

⎢⎢⎢⎢⎣

0.7 0.3
0.3 0.4 0.3

0.3 0.4 0.3
0.3 0.4 0.3

0.3 0.7

⎤

⎥⎥⎥⎥⎦
.

We use the degree-4 complete Chebyshev polynomials (3) as the approximation
method, and choose 5 Chebyshev nodes on each dimension, so that we can apply
the Chebyshev regression algorithm to compute the approximation coefficients in the
fitting step of numerical DP algorithms. Thus, the number of approximation nodes is
56 = 15,625 for each discrete state, so the total number of small-size maximization
problems for one value function iteration is 5 × 56 = 78,125. We use the product
Gauss–Hermite quadrature formula (4) with 5 nodes for each dimension, so the number
of quadrature nodes is 56 = 15,625 for each discrete state. Therefore, after using the
sparsity of the probability transition matrix, the computation of the expectation in
the objective function of the maximization problem (7) includes 2 × 56 = 31,250 or
3 × 56 = 46,875 evaluations of the approximated value function at stage t + 1 for
each approximation node. We use NPSOL as our optimization solver for solving the
maximization problem (7) .

7.3 HTCondor-MW Results

We apply Algorithm 4 and 5 to solve the high-dimensional dynamic portfolio problem.
Each HTCondor-MW task solves 25 small-size maximization problems, implying
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Table 3 Statistics of parallel
DP under HTCondor-MW for
the 7-asset portfolio problem
with stochastic interest rate

Wall clock time for all 6 VFIs 3.6 h

Wall clock time for 1st VFI 4.8 min

Wall clock time for 2nd VFI 43.4 min

Wall clock time for 3rd VFI 40.6 min

Wall clock time for 4th VFI 41.5 min

Wall clock time for 5th VFI 42.9 min

Wall clock time for 6th VFI 43.7 min

Total time workers were up (alive) 29.3 days

Total cpu time used by all workers 27.4 days

Number of (different) workers 200

Average number present workers 194

Overall parallel performance 94.2 %

that each value function iteration is broken into 3,125 MTCondor-MW tasks. Our
HTCondor program requested 200 workers, and was given 194 processors on average.

Table 3 lists some statistics of our parallel DP algorithm under HTCondor-MW
system for the portfolio problem with six stocks and one bond with stochastic interest
rates. The parallel efficiency of our parallel numerical DP method is 94.2 % for this
example, even when we use 200 workers. Moreover, the total cpu time used by all
workers to solve the dynamic portfolio optimization problem is more than 27 days,
i.e., it will take more than 27 days to solve the problem using a single core. However, it
takes only about 3.6 wall clock hours to solve the problem if we use the type-II parallel
DP algorithm and 200 worker processors. This reduction in “waiting time” cost to a
researcher makes it possible to solve problems that essentially cannot be solved on a
laptop.

8 Conclusion

This paper presented an implementation of parallel dynamic programming methods in
HTCondor Master–Worker system, and demonstrated its ability to solve demanding
high-dimensional dynamic programming problems efficiently. We have focused on
computational details of the algorithm, and its integration with the Master–Worker
tool in HTCondor. This is just one example of how HTCondor makes it possible for
a user to adapt serial code for high-latency massively parallel systems with minimal
effort. The programmer can use exactly the same code for the key numerical tasks.
The only requirement is for the user to set up input–output commands to facilitate
communications between the Master and Workers, and tell the HTCondor system
how many processors you would like to use. An example of this code is given in
https://sites.google.com/site/dpinhtcondor/.

While we only used DP examples, it is clear that these tools can be used for many
related economics problems. For example, the nested fixed point method for solving
structural models (see Rust 1987) requires solutions to dynamic programming prob-
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lems in its “inner loop”. Our Master could manage both the solution of specific DP
problems within the search for the econometric estimates. Public finance analyses
often need to compute the response of economic actors to alternative tax codes. Given
the central role of dynamic programming in dynamic economic analyses, it is clear
that HTCondor and similar tools have wide potential use in economics.
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