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a b s t r a c t

We show how to enhance the performance of a Smolyak method for solving dynamic
economic models. First, we propose a more efficient implementation of the Smolyak
method for interpolation, namely, we show how to avoid costly evaluations of repeated
basis functions in the conventional Smolyak formula. Second, we extend the Smolyak
method to include anisotropic constructions that allow us to target higher quality of
approximation in some dimensions than in others. Third, we show how to effectively
adapt the Smolyak hypercube to a solution domain of a given economic model. Finally, we
argue that in large-scale economic applications, a solution algorithm based on Smolyak
interpolation has substantially lower expense when it uses derivative-free fixed-point
iteration instead of standard time iteration. In the context of one- and multi-agent optimal
growth models, we find that the proposed modifications to the conventional Smolyak
method lead to substantial increases in accuracy and speed.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In a seminal paper, Smolyak (1963) proposed a sparse-grid method that allows to efficiently represent, integrate and
interpolate functions on multidimensional hypercubes. The Smolyak method is not subject to the curse of dimensionality
and can be used to solve large-scale applications. A pioneering work of Krueger and Kubler (2004) introduced the Smolyak
method to economics in the context of a projection-style iterative method for solving multi-period overlapping generation
models. Smolyak methods have been also used to solve portfolio-choice problems (Gavilan-Gonzalez and Rojas, 2009); to
develop state-space filters tractable in large-scale problems (Winschel and Krätzig, 2010); to solve models with infinitely
lived heterogenous agents (Malin et al., 2011; Gordon, 2011; Brumm and Scheidegger, 2013); and to solve new Keynesian
models (Fernández-Villaverde et al., 2012).

While the Smolyak method enables us to study far larger problems than do tensor-product methods, its computational
expense still grows rapidly with the dimensionality of the problem. In particular, Krueger and Kubler (2004) and Malin et al.
(2011) document a high computational cost of their solution methods when the number of state variables exceeds twenty.
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In the paper, we show a more efficient implementation of the Smolyak method that reduces its computational expense, and
we propose extensions of the Smolyak method that enable us to more effectively solve dynamic economic models.1

First, the conventional Smolyak formula is inefficient. To interpolate a function in a given point, it first causes the
computer to create and evaluate a long list of repeated basis functions, and it then constructs linear combinations of such
functions to get rid off repetitions. In high-dimensional problems, the number of repetitions is large and slows down
computations dramatically. We offer a way to avoid costly evaluations of the repeated basis functions: Instead of
conventional nested-set generators, we introduce disjoint-set generators. Nested sets include one another, and as a result,
their tensor products contain repeated elements but our disjoint sets do not. This is why our implementation of the Smolyak
formula does not have repetitions.2

An efficient implementation of the Smolyak method is especially important in the context of numerical methods for
solving dynamic economic models which require us to interpolate decision and value functions a very large number of
times, e.g., in each grid point, integration node or time period. We save on cost every time when we perform an evaluation
of the Smolyak interpolant.

To compute the interpolation coefficients, we use a universal Lagrange interpolation technique instead of the
conventional closed-form expressions. Namely, we proceed in three steps: (i) construct M Smolyak grid points;
(ii) construct M corresponding Smolyak basis functions; and (iii) interpolate the values of the true function at the grid
points using the basis functions. We then solve a system of M linear equations in M unknowns. The cost of solving this
system can be high but it is a fixed cost in the context of iterative methods for solving dynamic economic models. Namely,
we argue that an expensive inverse in the Lagrange inverse problem can be precomputed up-front (as it does not change
along iterations). Furthermore, to ensure numerical stability of a solution to the Lagrange inverse problem, we use families
of orthogonal basis functions, such as a Chebyshev family.

Second, the conventional Smolyak formula is symmetric in a sense that it has the same number of grid points and basis
functions for all variables. To increase the quality of approximation, one must equally increase the number of grid points and
basis functions for all variables, which may be costly or even infeasible in large-scale applications. In the paper, we present
an anisotropic version of the Smolyak method that allows for asymmetric treatments of variables, namely, it enables us to
separately choose the accuracy level for each dimension with the aim of increasing the quality of approximation. In
economic applications, variables do not enter symmetrically: decision or value functions may have more curvature in some
variables than in others; some variables may have larger ranges of values than others; and finally, some variables may be
more important than the others. For example, in heterogeneous-agent economies, an agent's decision functions may depend
more on her own capital stock than on the other agents' capital stocks (e.g., Kollmann et al., 2011); also, we may need more
grid points for accurate approximation of endogenous than exogenous state variables (e.g., models based on Tauchen and
Hussy's, 1991 approximation of shocks). An anisotropic version of the Smolyak method allows us to take into account a
specific structure of decision or value functions to solve economic models more efficiently.

Third, the Smolyak method constructs grid points within a normalized multidimensional hypercube. In economic applications,
we must also specify how the model's state variables are mapped into the Smolyak hypercube. The way in which this mapping is
constructed can dramatically affect the effective size of a solution domain, and hence, the quality of approximation. In the paper,
we show how to effectively adapt the Smolyak grid to a solution domain of a given economic model. We specifically construct a
parallelotope that encloses a high-probability area of the state space of the given model, and we reduce the size of the
parallelotope to minimum by reorienting it with a principle-component transformation of state variables. Judd et al. (2011) find
that solution algorithms that focus on “a relevant domain” are more accurate (in that domain) than solution algorithms that focus
on a larger (and partially irrelevant) domain and that face therefore a trade off between the fit inside and outside the relevant
domain. For the same reason, an adaptive domain increases the accuracy of the Smolyak method.

Finally, the Smolyak method for interpolation is just one ingredient of a numerical method for solving dynamic economic
models. In particular, Krueger and Kubler (2004) and Malin et al. (2011) complemented Smolyak interpolation with other
computational techniques that are tractable in large-scale problems, such as Chebyshev polynomials, monomial integration
and a learning-style procedure for finding polynomial coefficients. Nonetheless, there is one technique – time iteration –

that is expensive in their version of their numerical procedure. Time iteration is traditionally used in dynamic programming:
given functional forms for future value function, it solves for current value function using a numerical solver. It works
similarly in the context of the Euler equation methods: given functional forms for future decision functions, it solves for
current decision functions using a numerical solver. However, there is a simple derivative-free alternative to time iteration –

fixed point iteration – that can solve large systems of equations using only straightforward calculations, avoiding thus the
need of a numerical solver. Fixed-point iteration is commonly used in the context of solution methods for dynamic
economic models; see, e.g., Wright and Williams (1984), Miranda and Helmberger (1988), Marcet (1988), Den Haan (1990),
Marcet and Lorenzoni (1999), Gaspar and Judd (1997), Judd et al. (2010, 2011), Maliar and Maliar (2014b). We assess how the
cost of a Smolyak-based projection method for solving dynamic economic models depends on a specific iterative scheme
used. We find that time iteration may dominate fixed-point iteration in small-scale applications but the situation reverses

1 We provide a MATLAB code that implements the computational techniques developed in the paper. Also, Coleman and Lyon (2013) provide Python
and Julia codes that implement some of these techniques.

2 Our exposition was informed by our personal communication with Sergey Smolyak.
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when the dimensionality increases. Therefore, we advocate the use of fixed-point iteration instead of time iteration in large-
scale applications.

We assess the performance of the Smolyak-based projection method in the context of one- and multi-agent neoclassical
stochastic growth models with up to 20 state variables. Our analysis shows that there are substantial accuracy gains from
using anisotropic grid and adaptive domain even in the simplest case with two state variables: the maximum residuals in
the Euler equations can be reduced by an order of magnitude compared to those produced by the baseline isotropic Smolyak
method with the standard hypercube domain (holding the number of the coefficients roughly the same). In multi-
dimensional problems – the real interest of our analysis – the accuracy gains from using anisotropic grid and adaptive
domain reach two orders of magnitude in some examples. Our cost grows fairly slowly with the dimensionality of the
problem. In particular, our MATLAB code delivers a second-level Smolyak approximation to a model with ten countries
(twenty state variables) in about 45 min. For comparison, a Fortran code of Malin et al. (2011), based on the conventional
Smolyak method, solves a similar model in about 10 h. Moreover, we are able to produce a very accurate third-level
polynomial approximation to a ten-country model; however, such an approximation is computationally demanding even for
our efficient implementation of the Smolyak method (our running time increases to nearly 45 h).

The rest of the paper is organized as follows: in Section 2, we illustrate the inefficiency of the conventional Smolyak
formula. In Section 3, we introduce an alternative implementation of the Smolyak method based on disjoint-set
unidimensional generators and Lagrange interpolation. In Sections 4 and 5, we develop versions of the Smolyak method
with anisotropic grid and adaptive domain, respectively. In Section 6, we assess the performance of the Smolyak-based
projection method in the context of one- and multi-agent optimal growth models. Finally, in Section 7, we conclude.

2. Conventional Smolyak method for interpolation

In this section, we describe the conventional Smolyak method for interpolation. In Section 2.1, we outline the idea of the
Smolyak method and review the related literature. In Sections 2.2, 2.3 and 2.4, we show how to construct the Smolyak grid
points, Smolyak polynomial and Smolyak interpolating coefficients, respectively. Finally, in Section 2.5, we argue that the
conventional Smolyak method is inefficient.

2.1. Smolyak method at glance

The problem of representing and interpolating multidimensional functions commonly arises in economics. In particular,
when solving dynamic economic models, one needs to represent and interpolate decision and value functions in terms of
state variables. With few state variables, one can use tensor-product rules but such rules become intractable when the
number of state variables increases. For example, if there are five grid points per each variable, a tensor product grid for d
variables contains 5d grid points, which is a large number even for moderately large d. Bellman (1961) referred to
exponential growth in complexity as a curse of dimensionality.

Smolyak (1963) introduced a numerical technique for representing multidimensional functions, which is tractable in
problems with high dimensionality. The key idea of Smolyak's (1963) analysis is that some elements produced by tensor-
product rules are more important for representing multidimensional functions than the others. The Smolyak method orders
all elements produced by a tensor-product rule by their potential importance for the quality of approximation and selects a
relatively small number of the most important elements. A parameter, called a level of approximation, controls how many
tensor-product elements are included into the Smolyak grid. By increasing the level of approximation, one can add new
elements and improve the quality of approximation.3

Examples of Smolyak grids under approximation levels μ¼ 0;1;2;3 are illustrated in Fig. 1 for the two-dimensional case.
For comparison, we also show a tensor-product grid of 52 points.

Fig. 1. Smolyak grids versus a tensor-product grid.

3 The level of approximation plays the same role in the Smolyak construction as the order of expansion in the Taylor series, i.e., we include the terms
up to a given order, and we neglect the remaining high-order terms.
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In Table 1, we compare the number of points in the Smolyak grid and that in the tensor-product grid with five grid points
in each dimension. The number of points in a Smolyak grid grows polynomially with dimensionality d, meaning that the
Smolyak method is not subject to the curse of dimensionality. In particular, for μ¼ 1 and μ¼ 2, the number of the Smolyak
grid points grows as 1þ2d and 1þ4dþð4dðd$1ÞÞ=2, i.e., linearly and quadratically, respectively. A relatively small number
of points in Smolyak grids sharply contrasts with a huge number of points in tensor-product grids in a high-dimensional
case. Because of this, Smolyak grids are also called sparse grids.

To interpolate multidimensional functions off the Smolyak grid, two broad classes of interpolants are used in
mathematical literature. One class uses hierarchical surplus formulas and piecewise local basis functions; see, e.g.,
Griebel (1998), Bungartz and Griebel (2004), Klimke and Wohlmutch (2005) and Jakeman and Roberts (2011) for related
mathematical results, and see Brumm and Scheidegger (2013) for an economic application. Piecewise functions are very
flexible and make it possible to vary the quality of approximations over different areas of the state space as needed.
However, the resulting approximations are non-smooth and non-differentiable and also, they have a high computational
expense (this interpolation technique is still subject to the curse of dimensionality).

The other class of Smolyak interpolants includes global polynomial functions; see, e.g., Delvos (1982), Wasilkowski and
Woźniakowski (1995) and Barthelmann et al. (2000) for a mathematical background. Global polynomial approximations are
smooth and continuously differentiable and also, they are relatively inexpensive. However, their flexibility and adaptivity
are limited. In economics, global polynomial approximation is used in Krueger and Kubler (2004), Gavilan-Gonzalez and
Rojas (2009), Winschel and Krätzig (2010), Gordon (2011), Malin et al. (2011) and Fernández-Villaverde et al. (2012). In the
present paper, we also confine our attention to global polynomial approximations. Below, we show the conventional
Smolyak method for interpolation in line with Malin et al. (2011).

2.2. Construction of Smolyak grids using unidimensional nested sets

To construct a Smolyak grid, we generate unidimensional sets of grid points, construct tensor products of unidimensional
sets and select a subsets of grid points satisfying the Smolyak rule.

2.2.1. Unidimensional nested sets of points
The Smolyak construction begins with one dimension. To generate unidimensional grid points, we use extrema of

Chebyshev polynomials (also known as Chebyshev–Gauss–Lobatto points or Clenshaw–Curtis points); see Appendix A.
We do not use all consecutive extrema but those that form a sequence S1; S2;… satisfying two conditions:

Condition 1: A set Si, i¼ 1;2;…, has mðiÞ ¼ 2i$1þ1 points for iZ2 and mð1Þ & 1.
Condition 2: Each subsequent set contains all points of the previous set, Si ' Siþ1. Such sets are called nested.4

Below, we show the first four nested sets composed of extrema of Chebyshev polynomials:

i¼ 1: S1 ¼ f0g;

i¼ 2: S2 ¼ f0; $1;1g;

i¼ 3: S3 ¼ 0; $1;1;
$1ffiffiffi
2

p ;
1ffiffiffi
2

p
" #

;

i¼ 4: S4 ¼ 0; $1;1;
$1ffiffiffi
2

p ;
1ffiffiffi
2

p
$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffi
2

pp

2
;
$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2$

ffiffiffi
2

pp

2
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2$

ffiffiffi
2

pp

2
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffi
2

pp

2

( )

:

Table 1
Number of grid points: tensor-product grid with 5 points in each dimension versus Smolyak grids.

4 There are many other ways to construct sets of points that have a nested structure. For example, we can use subsets of equidistant points; see
Appendix A for a discussion. Gauss–Patterson points also lead to nested sets, however, the number of points in such sets is different, namely,
mðiÞ ¼ 2i$1$1; see Patterson (1968).
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2.2.2. Tensor products of unidimensional nested sets of points
Next, we construct tensor products of unidimensional sets of points. As an illustration, we consider a two-dimensional

case with i¼ 1;2;3 in each dimension.
In Table 2, i1 and i2 are indices that correspond to dimensions one and two, respectively; a column Si1 and a raw Si2

(see Si1 jSi2 ) show the sets of unidimensional elements that correspond to dimensions one and two, respectively.

2.2.3. Smolyak sparse grids
Smolyak (1963) offers a rule that tells us which tensor products must be selected from the table. For the two-dimensional

case, we must select tensor products (cells of Table 2) for which the following condition is satisfied:

dr i1þ i2rdþμ; ð1Þ

where μAf0;1;2;…g is the approximation level, and d is the dimensionality (in Table 2, d¼2). In other words, the sum of a
column i1 and a raw i2 must be between d and dþμ.

Let Hd;μ denote a Smolyak grid for a problem with dimensionality d and approximation level μ. Let us construct Smolyak
grids for μ¼ 0;1;2 and d¼2 using Smolyak rule (1).

( If μ¼ 0, then 2r i1þ i2r2. The only cell in Table 2 that satisfies this restriction is i1 ¼ 1 and i2 ¼ 1, so that the Smolyak
grid has just one grid point,

H2;0 ¼ fð0;0Þg: ð2Þ

( If μ¼ 1, then 2r i1þ i2r3. The three cells that satisfy this restriction are (a) i1 ¼ 1, i2 ¼ 1; (b) i1 ¼ 1, i2 ¼ 2; (c) i1 ¼ 2,
i2 ¼ 1, and the corresponding five Smolyak grid points are

H2;1 ¼ fð0;0Þ; ð$1;0Þ; ð1;0Þ; ð0; $1Þ; ð0;1Þg: ð3Þ

( If μ¼ 2, then 2r i1þ i2r4. There are six cells that satisfy this restriction: (a) i1 ¼ 1, i2 ¼ 1; (b) i1 ¼ 1, i2 ¼ 2 ; (c) i1 ¼ 2,
i2 ¼ 1; (d) i1 ¼ 1, i2 ¼ 3; (e) i1 ¼ 2, i2 ¼ 2; (f) i1 ¼ 3, i2 ¼ 1, and there are thirteen Smolyak grid points,

H2;2 ¼ ð$1;1Þ; ð0;1Þ; ð1;1Þ; ð$1;0Þ; ð0;0Þ; ð1;0Þ; ð$1; $1Þ; ð0; $1Þ;
$

1; $1ð Þ;
$1ffiffiffi
2

p ;0
% &

;
1ffiffiffi
2

p ;0
% &

; 0;
$1ffiffiffi
2

p
% &

; 0;
1ffiffiffi
2

p
% &#

: ð4Þ

Smolyak grids H2;0, H2;1 and H2;2 are those that are shown in the first three subplots of Fig. 1.

Table 2
Tensor products of disjoint sets of unidimensional grid points for the two-dimensional case.
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2.3. Smolyak formula for interpolation using unidimensional nested sets

The conventional technique for constructing a Smolyak polynomial function also builds on unidimensional nested sets
and mimics the construction of a Smolyak grid.

2.3.1. Smolyak polynomial

Let bf d;μ denote a Smolyak polynomial function (interpolant) in dimension d, with approximation level μ. The Smolyak
interpolant is a linear combination of tensor-product operators pjij given by

bf d;μðx1;…; xd; bÞ ¼ ∑
maxðd;μþ1Þr jijrdþμ

ð$1Þdþμ$ jij d$1
dþμ$ jij

 !
pjijðx1;…; xdÞ; ð5Þ

where jij is defined as jij& i1þ⋯þ id and ð$1Þdþμ$ jij d$1
dþμ$ jij

' (
is a counting coefficient. For each jij satisfying max

ðd; μþ1Þr jijrdþμ, a tensor-product operator pjijðx1;…; xdÞ is defined as

pjijðx1;…; xdÞ ¼ ∑
i1 þ⋯þ id ¼ jij

pi1 ;…;id ðx1;…; xdÞ; ð6Þ

and pi1 ;…;id is defined as

pi1 ;…;id ðx1;…; xdÞ ¼ ∑
mði1Þ

ℓ1 ¼ 1
… ∑

mðidÞ

ℓd ¼ 1
bℓ1…ℓdψℓ1

ðx1Þ…ψℓd
ðxdÞ; ð7Þ

where mðijÞ is the number of basis functions in dimension j, with mðijÞ & 2ij $1þ1 for ijZ2 and mð1Þ & 1; ψℓj ðxjÞ is a ℓjth
unidimensional basis function in dimension j with ℓj ¼ 1;…;mðijÞ; ψℓ1

ðx1Þ⋯ψℓd
ðxdÞ is a d-dimensional basis function and

bℓ1…ℓds are the corresponding polynomial coefficients.

2.3.2. Example of Smolyak polynomial under d¼2 and μ¼1
We now illustrate the construction of Smolyak polynomial function (5) under d¼2 and μ¼ 1; in Appendix B, we show

the construction of such a function under d¼2 and μ¼ 2.
For the case of μ¼ 1, we have that 2r jijr3. This is satisfied in three cases: (a) i1 ¼ i2 ¼ 1; (b) i1 ¼ 1, i2 ¼ 2; (c) i1 ¼ 2 ,

i2 ¼ 1. From (7), we obtain

ðaÞ p1;1 ¼ ∑
mð1Þ

ℓ1 ¼ 1
∑
mð1Þ

ℓ2 ¼ 1
bℓ1ℓ2ψℓ1 ðxÞψℓ2

ðyÞ ¼ b11; ð8Þ

ðbÞ p1;2 ¼ ∑
mð1Þ

ℓ1 ¼ 1
∑
mð2Þ

ℓ2 ¼ 1
bℓ1ℓ2ψℓ1 ðxÞψℓ2

ðyÞ ¼ b11þb12ψ2ðyÞþb13ψ3ðyÞ; ð9Þ

ðcÞ p2;1 ¼ ∑
mð2Þ

ℓ1 ¼ 1
∑
mð1Þ

ℓ2 ¼ 1
bℓ1ℓ2ψℓ1

ðxÞψℓ2
ðyÞ ¼ b11þb21ψ2ðxÞþb31ψ3ðxÞ; ð10Þ

where we assume that ψ1ðxÞ ¼ ψ1ðyÞ & 1. Collecting the elements pi1 ;i2 with the same sum i1þ i2 & jij, we obtain

pj2j & p1;1; ð11Þ

pj3j & p2;1þp1;2: ð12Þ

Smolyak polynomial function (5) for the case of d¼2 and μ¼ 1 is given by

bf 2;1 x; y; bð Þ ¼ ∑
maxðd;μþ1Þr jijrdþμ

ð$1Þdþμ$ jij d$1
dþμ$ jij

 !
pjij

¼ ∑
2r jijr3

ð$1Þ3$ jij 1
3$ jij

% &
pjij ¼ ∑

2r jijr3
ð$1Þ3$ jij 1

ð3$ jijÞ!
pjij

¼ ð$1Þ ) pj2jþ1 ) pj3j

¼ ð$1Þ ) p1;1þ1 ) ðp2;1þp1;2Þ

¼ $b11þb11þb21ψ2ðxÞþb31ψ3ðxÞþb11þb12ψ2ðyÞþb13ψ3ðyÞ

¼ b11þb21ψ2ðxÞþb31ψ3ðxÞþb12ψ2ðyÞþb13ψ3ðyÞ: ð13Þ

By construction, the number of basis functions in Smolyak polynomial bf 2;1ðx; y; bÞ is equal to the number of points in
Smolyak grid H2;1. The same is true for a Smolyak grid Hd;μ and Smolyak polynomial bf d;μ under any dZ1 and μZ0.
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2.4. Smolyak interpolation coefficients

Polynomial coefficients bℓ1…ℓds in (5) must be constructed so that Smolyak polynomial bf d;μ matches the true function f in

all points of Smolyak grid Hd;μ. In the present paper, we construct multidimensional Smolyak polynomials using
unidimensional Chebyshev polynomial basis functions.

2.4.1. Closed-form expression for Smolyak interpolation coefficients
There is a closed-form formula for the polynomial coefficients in (5) if multidimensional Smolyak grid points and basis

functions are constructed using unidimensional Chebyshev polynomials and their extrema, respectively; see Quarteroni
et al. (2000) for a derivation of such formulas. Consider a grid that has mði1Þ;…;mðidÞ grid points and basis functions in
dimensions 1;…; d, respectively. Then, the corresponding coefficients are given by

bℓ1…ℓd ¼
2d

ðmði1Þ$1Þ⋯ðmðidÞ$1Þ
)

1
cℓ1⋯cℓd

* ∑
mði1Þ

j1 ¼ 1
⋯ ∑

mðidÞ

jd ¼ 1

ψℓ1
ðζj1 Þ⋯ψℓd

ðζjd Þ ) f ðζj1 ;…; ζjd Þ
cj1⋯cjd

; ð14Þ

where ζj1 ;…; ζjd are grid points in dimensions j1;…; jd, respectively; c2 ¼ 1; c2 ¼ c3 ¼ 2; and cj ¼ 1 for j¼ 4;…;mðidÞ. If along any
dimension d, we have mðidÞ ¼ 1, this dimension is dropped from computation, i.e., mðidÞ$1 is set to 1 and cjd ¼ c1 is set to 1.

We shall comment on the following notational issue. We ordered the Smolyak elements so that we do not need to
distinguish between grid points and basis functions corresponding to different levels of approximation. This simplifies
notation considerably. For example, for id ¼ 1, the node is ζ11 ¼ 0, and for i2 ¼ 2, we write the nodes as fζ21; ζ

2
2; ζ

2
3g¼ f0; $1;1g;

we set ζ11 ¼ ζ21 & ζ1 and we omit the approximation-level superscript. We do the same for the basis functions, for example,
we set ψ1

1 ¼ ψ2
1 & ψ1, etc. Finally, we define cj1⋯cjd in a way that allows us to omit the approximation-level superscript. Note

that under other orderings of Smolyak elements we need to keep the approximation-level superscript, for example, if we set
ζ11 ¼ 0, and fζ21; ζ

2
2; ζ

2
3g¼ f$1;0;1g, then we have ζ11aζ21.

2.4.2. Example of the Smolyak coefficients under d¼2 and μ¼ 1
We must compute the coefficients fb11; b21;b31; b12; b13g so that polynomial function bf 2;1, given by (13), matches true

function f on Smolyak grid H2;1 given by (3). For μ¼ 1, the set of Chebyshev polynomial basis are fψ1ðxÞ;
ψ2ðxÞ;ψ3ðxÞg¼ f1; x;2x2$1g (and we have the same polynomial basis for y, namely, f1; y;2y2$1g); the extrema of Chebyshev
polynomials are fζ1; ζ2; ζ3g¼ f0; $1;1g; and finally, we have c1 ¼ 1, c2 ¼ c3 ¼ 2.

For b21, formula (14) implies

b21 ¼
2

3$1
)
1
c2

∑
3

j1 ¼ 1

ψ2ðζj1 Þ ) f ðζj1 ;0Þ
cj1 ) 1

¼
ψ2ðζ1Þ ) f ðζ1;0Þ

c1
þ
ψ2ðζ2Þ ) f ðζ2;0Þ

c2
þ
ψ2ðζ3Þ ) f ðζ3;0Þ

c3
¼

$1 ) f ð$1;0Þ
2

þ
1 ) f ð1;0Þ

2
;

similarly, for b12, we get

b12 ¼ $
f ð0; $1Þ

2
þ
f ð0;1Þ

2
:

Coefficient b31 is given by

b31 ¼
2

3$1
)
1
c3

∑
3

j1 ¼ 1

ψ3ðζj1 Þ ) f ðζj1 ;0Þ
cj1

¼
1
2

1 ) f ð$1;0Þ
2

$ f 0;0ð Þþ
1 ) f ð1;0Þ

2

) *
¼ $

f ð0;0Þ
2

þ
f ð$1;0Þþ f ð1;0Þ

4
;

and b13 is obtained similarly

b13 ¼ $
f ð0;0Þ

2
þ
f ð0; $1Þþ f ð0;1Þ

4
:

Formula (14) does not apply to a constant term b11. To find b11, observe that (13) implies

bf 2;1 0;0; bð Þ ¼ b11þ
f ð0;0Þ

2
$
f ð$1;0Þþ f ð1;0Þ

4
þ
f ð0;0Þ

2
$
f ð0; $1Þþ f ð0;1Þ

4
:

Since under interpolation, we must have bf 2;1ð0;0; bÞ ¼ f ð0;0Þ, the last formula yields

b11 ¼
f ð$1;0Þþ f ð1;0Þþ f ð0; $1Þþ f ð0;1Þ

4
:

Note that to compute the coefficients, we need to evaluate function f in five Smolyak grid points of H2;1.

2.5. Shortcomings of the conventional Smolyak method

The conventional Smolyak method using nested sets is inefficient. First, it creates a list of tensor products
with many repeated elements and then, it eliminates the repetitions. In high-dimensional applications, the
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number of repetitions is large and increases with both μ and d, which leads to a considerable increase in computational
expense.

Repetitions of grid points can be appreciated by looking at Table 2. For example, when constructing H2;1, we list a grid
point ð0;0Þ in three different cells, and hence, we must eliminate two grid points out of seven; when constructing H2;2, we
must eliminate thirteen repeated points out of twenty six points, etc. However, the repeated grid points are not a critical
issue for computational expense. This is because grid points must be constructed just once (it is a one-time fixed cost), and it
is not so important if they are constructed efficiently or not.

Unfortunately, the Smolyak formula (5) involves the same kind of repetitions, and it is not a fixed cost. For example, bf 2;1,
given by (13), lists seven basis functions f1g, f1;ψ2ðxÞ;ψ3ðxÞg and f1;ψ2ðyÞ;ψ3ðyÞg in (8)–(10), respectively, and eliminates two

repeated functions 1f g by assigning a weight ð$1Þ to pj2j; furthermore, bf 2;2, derived in Appendix B, creates a list of twenty six
basis functions and removes thirteen repeated basis function by assigning appropriate weights, etc. We suffer from
repetitions every time we evaluate a Smolyak polynomial function. This is an especially important issue in the context of
numerical methods for solving dynamic economic models, since we must interpolate decision and value functions in a very
large number of points, e.g., grid points, integration nodes and time periods. Moreover, we must repeat interpolation each
time when the decision and value functions change in the iterative cycle. The overall cost of repetitions in the Smolyak
formula can be very large.

3. Efficient implementation of the Smolyak method for interpolation

We have argued that the Smolyak (1963) sparse-grid structure is an efficient choice for high-dimensional interpolation.
However, the existing implementation of the Smolyak method does not arrive to this structure directly. Instead, it produces
such a structure using a linear combinations of sets with repeated elements, which is inefficient and expensive. In this
section, we propose a more efficient implementation of the Smolyak method that avoids costly repetitions of elements and
arrives to the Smolyak structure directly. Our key novelty is to replace the conventional nested-set generators with
equivalent disjoint-set generators. We use the disjoint-set generators not only for constructing Smolyak grids but also for
constructing Smolyak basis functions; as a result, we do not make use of the conventional interpolation formula of type (7).
Furthermore, to identify the interpolating coefficients, we use a canonical Lagrange interpolation; thus, we also do not make
use of formula (14) for the coefficient. We find it easiest to present our implementation of the Smolyak method starting from
a description of the Lagrange interpolation framework.

3.1. Multidimensional Lagrange interpolation

We consider the following interpolation problem. Let f : ½$1;1,d-R be a smooth function defined on a normalized
d-dimensional hypercube, and let bf ð); bÞ be a polynomial function of the form

bf ðx; bÞ ¼ ∑
M

n ¼ 1
bnΨnðxÞ; ð15Þ

where Ψn: ½$1;1,d-R, n¼ 1;…;M, are d-dimensional basis functions, and b& ðb1;…; bMÞ is a coefficient vector.
We construct a set of M grid points fx1;…; xMg in ½$1;1,d, and we compute b so that the true function, f, and its

approximation, bf ð); bÞ coincide in all grid points:

f ðx1Þ
⋯

f ðxMÞ

2

64

3

75¼

bf x1; bð Þ
⋯

bf ðxM; bÞ

2

664

3

775¼

Ψ1ðx1Þ ⋯ ΨMðx1Þ
⋯ ⋱ ⋯

Ψ1ðxMÞ ⋯ ΨMðxMÞ

2

64

3

75 )

b1
⋯
bM

2

64

3

75: ð16Þ

Approximation bf ð); bÞ is used to interpolate (infer, reconstruct) f in any point xA ½$1;1,d.
To implement the above interpolation method, we must perform three steps:
(i) Choose M grid points fx1;…; xMg.
(ii) Choose M basis functions for forming bf ðx; bÞ.
(iii) Compute b that makes f and bf ð); bÞ coincide in all grid points.
Lagrange interpolation allows for many different choices of grid points and basis functions. We will use grid points and

basis functions produced by the Smolyak method. In Section 3.2, we construct the Smolyak grid points; in Section 3.3, we
produce the Smolyak basis functions; in Section 3.4, we identify the interpolation coefficients; in Section 3.5, we compare
our implementation of the Smolyak method with the conventional implementation described in Section 2; and finally, in
Section 3.6, we show an efficient formula for Smolyak interpolation.

3.2. Construction of Smolyak grids using unidimensional disjoint sets

To construct a Smolyak grid, we proceed as in the conventional Smolyak method, namely, we produce sets of
unidimensional grid points, compute tensor products of such sets and select an appropriate subsets of tensor-product
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elements for constructing a multidimensional grid. The difference is that we operate with unidimensional disjoint sets
instead of unidimensional nested sets. This allows us to avoid repetitions of grid points.

3.2.1. Unidimensional disjoint sets of grid points
Let us define a sequence of disjoint sets A1;A2;… using the sequence of nested sets S1; S2;… of Section 2.2.1 such that

A1 ¼ S1 and Ai ¼ Si\Si$1 for iZ2:

i¼ 1:A1 ¼ f0g;

i¼ 2:A2 ¼ f$1;1g;

i¼ 3:A3 ¼
$1ffiffiffi
2

p ;
1ffiffiffi
2

p
" #

;

i¼ 4:A4 ¼
$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffi
2

pp

2
;
$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2$

ffiffiffi
2

pp

2
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2$

ffiffiffi
2

pp

2
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffi
2

pp

2

( )

:

By definition, Ai is a set of points in Si but not in Si$1, i.e., Si\Si$1 The constructed sets are disjoint, Ai \ Aj ¼ f∅g for any
ia j and their unions satisfy A1 [ ⋯ [ Ai ¼ Si. The number of elements in Ai is mðiÞ$mði$1Þ ¼ 2i$2 points for iZ3, and the
number of elements in A1 and A2 is 1 and 2, respectively.

3.2.2. Tensor products of unidimensional disjoint sets of points
Next, we construct tensor products of disjoint sets of unidimensional grid points. Again, we consider the two-

dimensional case, with i¼ 1;2;3 in each dimension.
In Table 3, i1 and i2 are indices that correspond to dimensions one and two, respectively; a column Ai1 and a raw Ai2

(see Ai1 \Ai2 ) show the sets of unidimensional elements that correspond to dimensions one and two, respectively; ðζℓ; ζnÞ denotes a
two-dimensional grid point obtained by combining a grid point ζℓ in dimension one and a grid point ζn in dimension two. Thus, the
table shows incremental grid points, and we can easily see which grid points are added whenwe increase the approximation level.

3.2.3. Smolyak sparse grids
We use the same Smolyak rule (1) for constructing multidimensional grid points. That is, we select elements that belong

to the cells in Table 3 for which the sum of indices of a column and a raw, i1þ i2, is between d and dþμ. This leads to the
same Smolyak grids H2;0, H2;1 and H2;2 as is shown in (2), (3), and (4), respectively. However, in our case, no grid point is
repeated in Table 3. Furthermore, note that the multidimensional gridsH2;0,H2;1 andH2;2 are nestedH2;0 'H2;1 'H2;2 even
though their unidimensional generators are disjoint (i.e., not nested).

3.3. Construction of Smolyak polynomials using unidimensional disjoint sets

Our construction of Smolyak polynomials parallels our construction of Smolyak grids using unidimensional disjoint sets.
To be specific, we produce disjoint sets of unidimensional basis functions, compute tensor products of such sets and select
an appropriate subset of tensor-product elements for constructing a multidimensional polynomial function. Again, using
disjoint-set generators instead of nested-set generators allows us to avoid repetitions of basis functions.

Table 3
Tensor products of disjoint sets of unidimensional grid points for the two-dimensional case.
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3.3.1. Unidimensional disjoint sets of basis functions
We first construct disjoint sets F1;…; Fi;… that contain unidimensional basis functions:

i¼ 1: F1 ¼ f1g;

i¼ 2: F2 ¼ fψ2ðxÞ;ψ3ðxÞg;

i¼ 3: F3 ¼ fψ4ðxÞ;ψ5ðxÞg:

i¼ 4: F4 ¼ fψ6ðxÞ;ψ7ðxÞ;ψ8ðxÞ;ψ9ðxÞg:

3.3.2. Tensor products of unidimensional disjoint sets of basis functions
We next construct the two-dimensional basis functions using tensor products of unidimensional basis functions.
By construction, all elements in Table 4 appear just once and therefore, are non-repeated. Note that Table 4 looks exactly

like Table 3 (but for basis functions).

3.3.3. Smolyak polynomial basis functions
We apply the same Smolyak rule (1) to produce a list of basis function as we used for producing grid points. Let Pd;μ

denote a Smolyak basis function with dimensionality d and approximation level μ.

( If μ¼ 0, then 2r i1þ i2r2. The only cell that satisfies this restriction is i1 ¼ 1 and i2 ¼ 1, so that the set of Smolyak basis
functions has just one element

P2;0 ¼ f1g: ð17Þ

( If μ¼ 1, then 2r i1þ i2r3. The three cells that satisfy this restriction are (a) i1 ¼ 1, i2 ¼ 1; (b) i1 ¼ 1, i2 ¼ 2; (c) i1 ¼ 2,
i2 ¼ 1, and the corresponding five Smolyak basis functions are

P2;1 ¼ f1;ψ2ðxÞ;ψ3ðxÞ;ψ2ðyÞ;ψ3ðyÞg: ð18Þ

( If μ¼ 2, then 2r i1þ i2r4. There are six cells that satisfy this restriction: (a) i1 ¼ 1, i2 ¼ 1; (b) i1 ¼ 1, i2 ¼ 2 ; (c) i1 ¼ 2,
i2 ¼ 1; (d) i1 ¼ 1, i2 ¼ 3; (e) i1 ¼ , i2 ¼ 2; (f) i1 ¼ 3, i2 ¼ 1, and there are thirteen Smolyak basis functions

P2;2 ¼ f1;ψ2ðxÞ;ψ3ðxÞ;ψ2ðyÞ;ψ3ðyÞ;ψ4ðxÞ;ψ5ðxÞ;ψ4ðyÞ;ψ5ðyÞψ2ðxÞψ2ðyÞ;ψ2ðxÞψ3ðyÞ;ψ3ðxÞψ2ðyÞ;ψ3ðxÞψ3ðyÞg: ð19Þ

The sets of Smolyak basis functions P2;0, P2;1 and P2;2 defined in (17), (18), and (19) are used, respectively, with the grids
H2;0, H2;1 and H2;2 defined in (2), (3) and (4). To form a Smolyak polynomial function, one just needs to use the elements
satisfying condition (1) since no element is repeated in Table 4 by construction.

3.4. Construction of Smolyak coefficients using Lagrange interpolation

Recall that coefficients bℓ1…ℓds in (5) must be constructed so that the Smolyak polynomial bf d;μ matches the true function f
on the Smolyak grid Hd;μ. We construct the Smolyak interpolating coefficients solving the inverse problem (16) numerically.

Table 4
Tensor products of disjoint sets of Chebyshev polynomial basis for the two-dimensional case.
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3.4.1. Solution to the inverse problem
Provided that the matrix of basis functions in the right side of (16) has full rank, we obtain a system of M linear equations

with M unknowns that admits a unique solution for b:

b1
⋯
bM

2

64

3

75¼

Ψ1ðx1Þ ⋯ ΨMðx1Þ
⋯ ⋱ ⋯

Ψ1ðxMÞ ⋯ ΨMðxMÞ

2

64

3

75

$1 f ðx1Þ
⋯

f ðxMÞ

2

64

3

75: ð20Þ

By construction, the approximating polynomial bf coincides with the true function f in all grid points, i.e., bf ðxn; bÞ ¼ f ðxnÞ for
all xnAfx1;…; xMg.

3.4.2. Example of interpolation coefficients under d¼2 and μ¼1 revisited
Let us now construct the Smolyak polynomial coefficients under d¼2 and μ¼ 1 by solving the inverse problem as shown

in (20). We again use unidimensional Chebyshev polynomials and extrema of Chebyshev polynomials. As follows from (18),
the Smolyak polynomial function is given by

bf ðx; y; bÞ & b11 ) 1þb21xþb31ð2x2$1Þþb12yþb13ð2y2$1Þ; ð21Þ

where b& ðb11;b21; b31; b12; b13Þ is a vector of five unknown coefficients on five basis functions. We identify the coefficients
such that the approximation bf ðx; y; bÞ matches the true function f ðx; yÞ in five Smolyak grid points distinguished in (3),
namely, fð0;0Þ; ð$1;0Þ; ð1;0Þ; ð0; $1Þ; ð0;1Þg.

This yields a system of linear equations Bb¼w, where

B&

1 0 $1 0 $1
1 $1 1 0 $1
1 1 1 0 $1
1 0 $1 $1 1
1 0 $1 1 1

2

6666664

3

7777775
; b&

b11
b21
b31
b12
b13

2

6666664

3

7777775
; w&

f ð0;0Þ
f ð$1;0Þ
f ð1;0Þ
f ð0; $1Þ
f ð0;1Þ

2

6666664

3

7777775
: ð22Þ

The solution to this system is given by b¼ B$1w,

b11
b21
b31
b12
b13

2

6666664

3

7777775
¼

0 1
4

1
4

1
4

1
4

0 $1
2

1
2 0 0

$1
2

1
4

1
4 0 0

0 0 0 $1
2

1
2

$1
2 0 0 1

4
1
4

2

66666664

3

77777775

f ð0;0Þ
f ð$1;0Þ
f ð1;0Þ
f ð0; $1Þ
f ð0;1Þ

2

6666664

3

7777775
¼

f ð$1;0Þþ f ð1;0Þþ f ð0;$1Þþ f ð0;1Þ
4

$ f ð$1;0Þþ f ð1;0Þ
2

$ f ð0;0Þ
2 þ f ð$1;0Þþ f ð1;0Þ

4
$ f ð0;$1Þþ f ð0;1Þ

2

$ f ð0;0Þ
2 þ f ð0;$1Þþ f ð0;1Þ

4

2

666666664

3

777777775

ð23Þ

As expected, the coefficients in (23) coincide with those produced by conventional formula (14).

3.5. Comparison to the conventional Smolyak method

We compare our implementation of the Smolyak method with the conventional implementation described in
Section 2. First, we quantify the reduction in cost of the Smolyak interpolant's evaluation that we achieve by avoiding
the repetitions and then, we compare the Lagrange interpolation method with explicit formulas for the interpolating
coefficients.

3.5.1. Nested-set versus disjoint-set constructions of the Smolyak interpolant
First, consider the conventional construction of the Smolyak polynomial in (5) based on unidimensional nested sets; see

Section 2.3.1. By (5), the number of terms which we list to evaluate bf d;μ is ∑maxðd;μþ1Þr jijrdþμ∏d
j ¼ 1mðijÞ. Note that the

counting coefficient ð$1Þdþμ$ jij d$1
dþμ$ jij

' (
is not relevant for computation of the number of terms because it does not add

new terms but only counts the number of repetitions to be cancelled out.
Second, consider our alternative construction of the Smolyak polynomial function based on unidimensional disjoint sets;

see Section 3.3. The number of basis functions in Pd;μ is equal to∑dr jijrdþμ∏d
j ¼ 1½mðijÞ$mðij$1Þ,. To assess the difference in

costs between the two constructions, we consider a ratio of the number of terms under the two constructions:

Rd;μ &
∑maxðd;μþ1Þr jijrdþμ∏d

j ¼ 1mðijÞ

∑dr jijrdþμ∏d
j ¼ 1½mðijÞ$mðij$1Þ,

¼
∑maxðd;μþ1Þr jijrdþμ∏d

j ¼ 1mðijÞ

∑dr jijrdþμ∏d
j ¼ 1m ij

+ ,
∏d

j ¼ 1 1$mðij $1Þ
mðijÞ

' (; ð24Þ
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where mð0Þ ¼ 0. In Fig. 2, we represent the ratio Rd;μ for 1rdr10 and 0rμr5. The “iso-function-count” in the graph
shows the number of the Smolyak elements.

The higher is the level of approximation, the larger are the savings due to a more efficient evaluation of the Smolyak interpolant.
In particular, under μ¼ 1, the conventional nested-set construction of the Smolyak interpolant is up to 50% more expensive than
our construction, while under μ¼ 5, it can be more than 700% more expensive. For high-dimensional applications, the tractable
level of approximation is 1rμr3, so that the savings vary from 1.5 to 4. However, we shall emphasize that our construction saves
on cost every time when the Smolyak interpolant is evaluated, i.e., in every grid point, integration node or time period.

Some qualitative assessment of Rd;μ can be derived for the case when maxðd; μþ1Þ ¼ d (this is the most relevant case for
high-dimensional problems in which high-order polynomial approximations are infeasible). Consider the term

∏
d

j ¼ 1
1$

mðij$1Þ
mðijÞ

% &

in the denominator of (24). If ij ¼ 1, we have

1$
mð0Þ
mð1Þ

¼ 1;

and if ijZ2, we have

1$
mðij$1Þ
mðijÞ

¼ 1$
2ij $2þ1
2ij $1þ1

 !

¼
2ij $2

2ij $1þ1
:

Observe that

1
3
r 2ij $2

2ij $1þ1
r1

2
for ijZ2;

and that the limits are reached under ij ¼ 2 and ij-1. This means that for any ijZ2, our disjoint-set construction reduces

the number of terms by at least a factor of
1
3

compared to the conventional nested-set construction. For higher

approximation levels, the savings are larger, for example, for ijZ3, we have

2
5
r 2ij $2

2ij $1þ1
r1

2
; etc:

3.5.2. Analytical expression for interpolation coefficients versus numerical Lagrange interpolation
The Lagrange interpolation method is universal: it can be applied to any sets of grid points and basis functions provided

that the inverse problem (20) is well-defined (the matrix of basis functions evaluated in grid points has full rank). In turn,
the formula of type (14) is a special case of Lagrange interpolation in which the solution to the inverse problem can be
derived in a closed form. Using closed-form expressions to calculate the Smolyak interpolation coefficients is relatively
inexpensive. Furthermore, Petras (2001) proposes a “divide and conquer” method that allows to reduce even further the
cost of evaluating closed-form expressions for the coefficients. His method exploits the fact that expressions of type (14)
contain repeated computations; it stores the repeated elements in a tree and uses them as needed.

1 2 3 4 5 6 7 8 9 10
1
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5

6

7
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R
d,
µ
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# points = 10
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# points = 10000

# points = 100

Fig. 2. The ratio of the number of basis functions under two alternative implementations of the Smolyak method.
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Our numerical implementation of Lagrange interpolation using (20) has two potential shortcomings compared to the
closed-form expression: first, it can be numerically unstable and second, it can be expensive.

To attain numerical stability, we use families of grid points and basis functions that do not lead to ill-conditioned inverse
problems. Chebyshev polynomials and their extrema are one example but many other choices are possible.5 In Fig. 3, we
report a condition number of the matrix of basis functions in the associated inverse problem. As a condition number, we use
a ratio of the largest to the smallest eigenvalue. In all the cases considered, the condition number is always smaller than 105

while an inverse problem is ill-conditioned when the condition number is of order 1015 on a 16-digit machine.

To reduce the computational expense, we use the following precomputation technique in the context of numerical algorithm
for solving dynamic economic models. We compute an inverse of the matrix of basis functions in (20) at the initialization stage,
before entering the main iterative cycle. In this way, the expensive part of Lagrange interpolation becomes a fixed cost. In the
main iterative cycle, computing the interpolation coefficients requires only inexpensive matrix multiplications, which can be
easily parallelized for a further reduction in cost if needed. This precomputation technique allows us to reconstruct the
polynomial coefficients at a low cost each time when decision and value functions change along iterations.6

3.6. Smolyak formula for interpolation revisited

It is relatively straightforward to write a computer code that automates the construction of the Smolyak interpolant
under our disjoint-set generators described in Section 3.3. We just have to sum up all the basis functions that appear in a
table like Table 4 since no basis function is repeated by construction. Nonetheless, we were also able to derive a formula for
Smolyak interpolation using disjoint sets, which is parallel to the conventional formula (5) using nested sets. We show such
a formula below.

3.6.1. Smolyak polynomial: efficient construction
The formula for constructing a Smolyak polynomial function using unidimensional disjoint sets is as follows:

bf d;μðx1;…; xd; bÞ ¼ ∑
dr jijrdþμ

qjijðx1;…; xdÞ; ð25Þ

for each jij satisfying dr jijrdþμ, a tensor-product operator qjijðx1;…; xdÞ is defined as

qjijðx1;…; xdÞ ¼ ∑
i1 þ⋯þ id ¼ jij

qi1 ;…;id ðx1;…; xdÞ; ð26Þ
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Fig. 3. Condition number of the matrix of basis functions in the inverse problem.

5 See Judd et al. (2011) for a discussion of numerical techniques for dealing with ill-conditioned problems.
6 See Maliar et al. (2011) and Judd et al. (2011) for other precomputation techniques that reduce the computational expense of numerical solution

methods, precomputation of intertemporal choice functions and precomputation of integrals.
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and qi1 ;…;id ðx1;…; xdÞ is defined as

qi1 ;…;id ðx1;…; xdÞ ¼ ∑
mði1Þ

ℓ1 ¼ mði1 $1Þþ1
⋯ ∑

mðidÞ

ℓd ¼ mðid $1Þþ1
bℓ1…ℓdψℓ1 ðx1Þ⋯ψℓd

ðxdÞ; ð27Þ

where ψℓ1 ðx1Þ;…;ψℓd
ðxdÞ are unidimensional basis functions, in dimensions 1;…; d, respectively; ψℓ1 ðx1Þ⋯ψℓd

ðxdÞ is a
d-dimensional basis function; ℓd ¼ 1;…;mðidÞ; bℓ1…ℓd is a coefficients vector. We use the convention that mð0Þ ¼ 0 and
mð1Þ ¼ 1. By construction of (27), there are no repeated terms across different qi1 ;…;id 's.

Formula (25) sums up all the terms in Table 4 (recall that all the sets in Table 4 are disjoint and basis functions are never
repeated by construction). The economization from our more efficient alternative Smolyak formula is described in (24) and
is shown in Fig. 2. To compute coefficients bℓ1…ℓds, we can use either the conventional closed-form expression (14) or a
numerical solution using (20) to the Lagrange interpolation problem.

3.6.2. Example of Smolyak polynomial under d¼2 and μ¼ 1 revisited
We now illustrate the construction of the Smolyak polynomial function (25) by revisiting an example with d¼2 and μ¼ 1

studied in Section 2.3.2 (in Appendix B, we also show the construction of such a function with d¼2 and μ¼ 2).
For the case of μ¼ 1, we have i1þ i2r3. This restriction is satisfied in three cases: (a) i1 ¼ i2 ¼ 1; (b) i1 ¼ 1, i2 ¼ 2;

(c) i1 ¼ 2, i2 ¼ 1. Thus, using (27), we obtain

ðaÞ q1;1 ¼ ∑
mð1Þ

ℓ1 ¼ mð0Þþ1
∑
mð1Þ

ℓ2 ¼ mð0Þþ1
bℓ1ℓ2ψℓ1 ðxÞψℓ2

ðyÞ ¼ b11; ð28Þ

ðbÞ q1;2 ¼ ∑
mð1Þ

ℓ1 ¼ mð0Þþ1
∑
mð2Þ

ℓ2 ¼ mð1Þþ1
bℓ1ℓ2ψℓ1 ðxÞψℓ2

ðyÞ ¼ b12ψ2ðyÞþb13ψ3ðyÞ; ð29Þ

ðcÞ q2;1 ¼ ∑
mð2Þ

ℓ1 ¼ mð1Þþ1
∑
mð1Þ

ℓ2 ¼ mð0Þþ1
bℓ1ℓ2ψℓ1 ðxÞψℓ2

ðyÞ ¼ b21ψ2ðxÞþb31ψ3ðxÞ: ð30Þ

Collecting elements qi1 ;i2 with the same i1þ i2 & jij, we have

qj2j & q1;1; ð31Þ

and

qj3j & q2;1þq1;2: ð32Þ

The Smolyak polynomial function (27) for the case of μ¼ 1 is given by

P2;1ðx; y; bÞ ¼ ∑
jijrdþμ

qjij ¼ q1;1þq2;1þq1;2 ¼ b11þb21ψ2ðxÞþb31ψ3ðxÞþb12ψ2ðyÞþb13ψ3ðyÞ: ð33Þ

This formula coincides with (13). Thus, we obtain the same Smolyak polynomial function as the one produced by the
conventional Smolyak formula but we avoid forming lists of repeated basis functions.

4. Anisotropic Smolyak method

In economic applications, variables often enter asymmetrically in decision or value functions. For example, in a
heterogeneous-agent economy studied in Kollmann et al. (2011), the individual choices depend more on her own variables
than on variables of other agents; and the literature, based on Tauchen and Hussy's (1991) discretizations uses many grid
points for endogenous state variables and few grid points for exogenous state variables.

However, the Smolyak method, studied in Sections 2 and 3, treats all dimensions equally in the sense that it uses the
same number of grid points and basis functions for all variables. To increase the quality of approximation under such a
method, we must equally increase the number of grid points and basis functions in all dimensions. This may be too costly to
do in large-scale applications. An alternative is to increase the number of grid points and basis functions only in those
dimensions that are most important for the overall quality of approximation. In this section, we show a variant of the
Smolyak method that allows for a differential treatment of variables, specifically, it enables us to separately choose accuracy
levels for each dimension by taking into account a specific structure of decision functions in a given economic model.
We refer to such a method as a Smolyak method with anisotropic grid.

4.1. Definition of anisotropy

The term anisotropic comes from mathematical literature and refers to functions that are “asymmetric” in some respect,
for example, have more curvature in some variables than in others, or have a larger range in some variables than in others.
Gerstner and Griebel (1998, 2003) propose dimension-adaptive grids for numerical integration of multivariate anisotropic
functions; see also Bungartz and Griebel (2004), Garcke (2011) and Jakeman and Roberts (2011). In particular, the last paper
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develops a sparse grid technique for both integration and interpolation that combines local and dimension adaptivities.
We introduce the Smolyak anisotropic constructions for interpolation in line with this literature.

As a starting point, consider a standard (isotropic) Smolyak grid with a level of approximation μ, as defined in Sections 2
and 3. Observe that for each dimension j¼ 1;…;d, index ij varies from 1 to μþ1. For example, in Table 2, i1 and i2 vary from 1
to 3, and μ varies from 0 to 2, respectively (i.e., μ is equal to a maximum index minus 1).

For the anisotropic case, let us denote by μj an approximation level in dimension j. If in a dimension j, the maximum
index admitted is imax

j , i.e., ij ¼ 1;…; imax
j , then μj ¼ imax

j $1. A Smolyak grid is called anisotropic if there is at least one
two-dimensional pair j; k such that μjaμk; otherwise, it is called isotropic. We denote an anisotropic Smolyak grid, Smolyak

basis functions and Smolyak interpolant as Hd;ðμ1 ;…;μdÞ, Pd;ðμ1 ;…;μdÞ and bf d;ðμ1 ;…;μdÞ, respectively.

4.2. Anisotropic Smolyak grid

Our design of an anisotropic variant of the Smolyak method parallels the design of the isotropic Smolyak method
described in Sections 3. Namely, we first produce an anisotropic Smolyak grid, we then produce an anisotropic Smolyak
polynomial function, and we finally compute polynomial coefficients using Lagrange interpolation. Our anisotropic
construction also builds on disjoint-set generators, which allow us to avoid costly repetitions of elements in the Smolyak
interpolant.

4.2.1. Tensor products of unidimensional sets of points
The two-dimensional tensor products, constructed from the unidimensional sets up to i¼4 and i¼2 in the dimensions

x and y, respectively, are summarized in Table 5. By construction, the table contains only non-repeated elements.

4.2.2. Smolyak sets of multidimensional elements under anisotropic construction
The Smolyak rule tells us which tensor products must be selected. For the two-dimensional case, it is as follows: Select

elements that belong to the cells in Table 5 for which the following conditions are satisfied:

dr i1þ i2rdþμmax; ð34Þ

i1rμ1þ1; i2rμ2þ1; ð35Þ

where μmax &maxfμ1; μ2g is a maximum level of approximation across the two dimensions, and the dimensionality is d¼2.
In other words, the sum of indices of a column and a raw, i1þ i2, must be between d and dþμmax subject to additional
dimension-specific restrictions i1rμ1þ1, i2rμ2þ1.

Table 5
Tensor products of unidimensional disjoint sets of grid points in the two-dimensional case.
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Let us construct examples of Smolyak anisotropic grids using the anisotropic version of the Smolyak rule (34).

( If ðμ1; μ2Þ ¼ ð1;0Þ, then μmax ¼ 1 and the anisotropic Smolyak rule implies 2r i1þ i2r3, i1r2 and i2r1. The two cells
that satisfy this restriction are (a) i1 ¼ 1, i2 ¼ 1; (b) i1 ¼ 2, i2 ¼ 1, and the corresponding three Smolyak grid points are

H2;ð1;0Þ ¼ fð0;0Þ; ð$1;0Þ; ð1;0Þg: ð36Þ

( If ðμ1; μ2Þ ¼ ð2;1Þ, then μmax ¼ 2 and 2r i1þ i2r4, i1r3 and i2r2. There are five cells that satisfy this restriction
(a) i1 ¼ 1, i2 ¼ 1; (b) i1 ¼ 1, i2 ¼ 2; (c) i1 ¼ 2, i2 ¼ 1; (d) i1 ¼ 3, i2 ¼ 1 ; (e) i1 ¼ 2, i2 ¼ 2; and there are eleven Smolyak grid
points

H2;ð2;1Þ ¼ ð$1;1Þ; ð0;1Þ; ð1;1Þ; ð$1;0Þ; ð0;0Þ; ð1;0Þ; ð$1; $1Þ; ð0; $1Þ; 1; $1ð Þ;
$1ffiffiffi
2

p ;0
% &

;
1ffiffiffi
2

p ;0
% &" #

: ð37Þ

( If ðμ1; μ2Þ ¼ ð3;1Þ, then μmax ¼ 3 and 2r i1þ i2r5, i1r4 and i2r2. There are seven cells in the table that satisfy this
restriction, and H3;ð3;1Þ consists of nineteen grid points (see Table 5).

The three Smolyak anisotropic grids constructed in the above two-dimensional example are shown in Fig. 4.
We do not elaborate the construction of the anisotropic Smolyak polynomial function because such a construction

trivially repeats the construction of grid points. Furthermore, to find the interpolation coefficients, we use the Lagrange
interpolation approach described in Section 3.4, which applies to anisotropic construction without changes. Finally, we can
adapt Smolyak interpolation formula (25) to the anisotropic case by imposing restrictions on i1;…; id.

4.3. Advantages of anisotropic Smolyak method

The anisotropic class of methods involves the following trade-off: from one side, decreasing the number of grid points
and basis functions reduces the computational expense but from the other side, it also reduces the quality of approximation.
This trade-off suggests that anisotropic methods must be used when the former effect overweighs the latter. Using
anisotropic methods in practice would require us either to have certain knowledge of the function that we want to
interpolate or to do some experimentation. Namely, we can keep adding or removing grid points and basis functions in
different dimensions until the target level of accuracy is attained. Maliar et al. (2014) construct error bounds for a variant of
the Smolyak anisotropic method.

Let us compare the number of elements in an isotropic Smolyak grid Hd;μ with the number of elements in an anisotropic
Smolyak grid Hd;ðμ1 ;…;μdÞ; we assume that μ¼maxfμ1;…; μdg; and in both cases, we use the disjoint-set construction with no
elements repeated:

Rd;μ ¼
∑dr jijrdþμ∏d

j ¼ 1m ij
+ ,

1$
mðij$1Þ
mðijÞ

% &

∑dr jijrdþμ;fij rμj þ1gdj ¼ 1
∏d

j ¼ 1m ij
+ ,

1$
mðij$1Þ
mðijÞ

% &:

The above ratio depends on the specific assumption about the approximation level in each dimension ðμ1;…; μdÞ. Let us
assume that the true function is completely flat in all dimensions except in dimension one. To accurately approximate such a

Fig. 4. Examples of Smolyak anisotropic grids.
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function, we can use an anisotropic Smolyak method in which μ1 ¼ μ in dimension 1 and μj ¼ 1 for all other dimensions,
j¼ 2;…; d. In Fig. 5, we show the corresponding ratio of the number of points under isotropic and anisotropic versions of the
Smolyak method. Again, the “iso-function-count” curves show the number of the Smolyak elements.

Gains from anisotropic constructions may vary depending on the anisotropy of specific decision or value functions in
economic models. In our example, the savings are sizable when d and μ are large. For example, when d¼6 and μ¼ 5 for
dimension 1, the number of grid points and basis functions is reduced by about 4 times compared to the isotropic grid.

5. Smolyak method with adaptive domain

The Smolyak construction tells us how to represent and interpolate functions defined on a normalized d-dimensional
hypercube. However, the solution domain of a typical dynamic economic model does not have the shape of a hypercube but
can be a set of any shape in a d-dimensional space. We now describe how to effectively adapt a multidimensional Smolyak
hypercube to an unstructured solution domain of a given economic model.

5.1. Adaptive parallelotope

The ergodic set (i.e., the support of the ergodic distribution) of a dynamic economic model can have any shape in a
d-dimensional space. It may be even an unbounded set such as Rd

þ . We must first construct a d-dimensional parallelotope
to enclose the relevant area of the state space of the studied model, typically, a high-probability area of the ergodic set.
We must then match the parallelotope to a normalized hypercube ½$1;1,d used by the Smolyak method.

As an example, in Fig. 6, we plot a simulation of 10,000 observations for capital and productivity level in a representative-
agent neoclassical stochastic growth model with a closed-form solution (see Section 6.1 for a detailed description of this
model).
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Fig. 5. The ratio of the number of basis functions under isotropic and anisotropic versions of the Smolyak method.
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Fig. 6. Two rectangular domains enclosing a set of simulated points.
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We show two possible rectangles in the figure that enclose the given set of simulated point: one is a conventional
rectangle in the original coordinates, and the other is a rectangle obtained after a change of variables (both rectangles are
minimized subject to including all the simulated points).

Our example shows that the way in which the rectangle is adapted to the state space of an economic model can
matter a lot for the size of the resulting rectangle. How much the rectangle can be reduced by changing the system of
coordinates will depend on the shape of the high-probability set. In particular, all rectangles will have the same size
when simulated data are of the shape of a perfect sphere, however, the reduction in size can be fairly large if such high-
probability set is inclined (as is shown in the figure). The reduction in size can be especially large in problems with high
dimensionality.

5.2. Smolyak grid on principal components

There are many ways to match a parallelotope into a normalized hypercube in the context of the Smolyak method. We
propose an approach that relies on a principle component (PC) transformation and that is convenient to use in economic
applications. Namely, we first use simulation to determine the high-probability area of the model's state space (for a
sufficiently accurate initial guess), and we then build a parallelotope surrounding the cloud of simulated points. The PC
approach was previously used by Judd et al. (2010) and Maliar and Maliar (2014b) in the context of simulation-based
methods in order to define a distance between simulated points. In the present paper, the PC approach is used to
re-orientate the parallelotope.

Let X & ðx1;…; xLÞART*L be a set of simulated data, i.e., we have T observations on L variables. Let the variables ðx1;…; xLÞ
be normalized to zero mean and unit variance. Consider the singular value decomposition of X, defined as X ¼ USV > , where
UART*L and VARL*L are orthogonal matrices, and SARL*L is a diagonal matrix with diagonal entries s1Zs2Z⋯ZsLZ0,
called singular values of X. Perform a linear transformation of X using the matrix of singular vectors V as follows: Z & XV ,
where Z ¼ ðz1;…; zLÞART*L. The variables z1;…; zL are called principal componentsof X, and are orthogonal (uncorrelated),
ðzℓ0 Þ> zℓ ¼ 0 for any ℓ0aℓ and ðzℓÞ> zℓ ¼ s2ℓ. The sample variance of zℓ is s2ℓ=T , and, thus, z

1 and zL have the largest and
smallest sample variances, respectively.

In Fig. 7, we illustrate the four steps of construction of the adaptive parallelotope using PCs.
In the upper-left panel, we show a set of simulated points; in the upper-right panel, we translate the origin to the center

of the cloud, rotate the system of coordinates, renormalize the principal components to have a unit variance in both
dimensions and surround it with a hypercube ½$1;1,2. In the lower-left panel, we show thirteen Smolyak points with the
approximation level μ¼ 2 for the PCs of the data. Finally, in the lower-right panel, we plot the corresponding thirteen
Smolyak points for the original data after computing an inverse PC transformation. In Appendix C, we provide additional
details on how to construct the rectangular domain for this particular example.
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5.3. Advantages and possible pitfalls of adaptive parallelotopes

The size of a parallelotope on which a function is approximated is translated into either higher quality or lower
costs of the resulting approximation. For a fixed cost of approximation (i.e., for a given level of approximation), fitting a
polynomial on a relevant domain gives us a better fit inside the relevant domain than fitting a polynomial on a large
but partially irrelevant domain; this is because in the latter case we face a trade-off between the fit inside and outside
the relevant domain. In turn, if we solve the model on a larger domain, we can attain the given quality of
approximation in the relevant domain by computing a more expensive approximation (characterized by a higher
approximation level).

However, the technique of an adaptive parallelotope has also a potential pitfall. Specifically, in addition to the size of the
domain on which a function is approximated, the accuracy of the Smolyak method depends critically on the relative
importance of cross terms. In particular, a Smolyak method with the level of approximation μ¼ 1 has no cross terms and
cannot accurately approximate decision or value functions with non-negligible cross-variable interactions. In certain
economic models, such interactions can be either absent or small in the original coordinates but may become important
when we rotate the system of coordinates and as a result, the quality of approximation can decrease rather than increase. It
is also possible to have the opposite effect, namely, the importance of cross terms can decrease after we rotate the system of
coordinates. Some experimentation may help us to decide whether to use the adaptive parallelotope technique or not.
Finally, we should point out that it is possible to combine an asymmetric treatment of variables with an adaptive
parallelotope. This could be a potentially useful extension for some applications but we do not pursue it in the
present paper.

6. Smolyak method for solving dynamic economic models

The Smolyak method for interpolation is just one specific ingredient of a method for solving dynamic economic
models. We need to complement it with other ingredients, such as a procedure for approximation of integrals, a
procedure that solves for fixed point coefficients, a procedure that updates the functions along iterations, a procedure
that maps the state space of a given economic model into the Smolyak hypercube, etc. In this section, we incorporate
the Smolyak method for interpolation into a projection methods for solving dynamic economic models. We assess the
performance of the studied Smolyak-based solution method in the context of one- and multi-agent optimal growth
models.

6.1. The representative agent model

Our first example is the standard representative agent neoclassical stochastic growth model:

max
fct ;kt þ 1g

1
t ¼ 0

E0 ∑
1

t ¼ 1
βtuðctÞ ð38Þ

s:t:ctþktþ1 ¼ ð1$δÞktþθt f ðktÞ; ð39Þ

ln θt ¼ ρ ln θt$1þsεt ; εt -N ð0; s2Þ; ð40Þ

where ct ; ktþ1Z0, and k0 and θ0 are given. Here, ct and kt are consumption and capital, respectively; βAð0;1Þ is the discount
factor; uðctÞ is the utility function, which is assumed to be increasing and concave; δAð0;1, is the depreciation rate of capital;
f ðkt ; θtÞ is the production function with αAð0;1Þ being the capital share in production; and Et is the operator of expectation
conditional on state ðkt ; θtÞ. The productivity level θt in (40) follows a first-order autoregressive process with ρA ð$1;1Þ and
s40.

6.2. Time iteration versus fixed-point iteration

Our implementation of the Smolyak method also differs from the one in Krueger and Kubler (2004) and Malin et al.
(2011) in the technique that we use to iterate on decision functions. Specifically, they use time iteration that solves a system
of non-linear equations using a numerical solver, whereas we use derivative-free fixed-point iteration that does so using
only straightforward calculations. As an illustration, suppose we need to solve a non-linear equation f ðxÞ ¼ x; then time
iteration finds minxjf ðxÞ$xj using a solver, while fixed-point iteration constructs a sequence like xðiþ1Þ ¼ f ðxðiÞÞ, i¼ 0;1;…,
starting from some initial guess xð0Þ with the hope that this sequence will converge to a true solution. See Wright and
Williams (1984), Miranda and Helmberger (1988), Marcet (1988) for early applications of fixed-point iteration to economic
problems. Den Haan (1990) proposed a way to implement fixed-point iteration in models with multiple Euler equations; see
also Marcet and Lorenzoni (1999) for related examples. Gaspar and Judd (1997) pointed out that fixed-point iteration is a
cheap alternative to time iteration in high-dimensional applications. Finally, Judd et al. (2010, 2011) and Maliar and Maliar
(2014b) show a variant of fixed-point iteration, which performs particularly well in the context of the studied models; we
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adopt their variant in the present paper. Below, we illustrate the difference between time-iteration and fixed-point iteration
methods using the model (38)–(40) as an example.

6.2.1. Time iteration
Time iteration solves a system of three equilibrium conditions with respect to bk

0
in each point of the Smolyak grid. It

parameterizes the capital decision function by Smolyak polynomial bk
0
¼ Kðk; θ; bÞ, where b is the coefficients vector. It

iterates on b by solving for current capital bk
0
given the Smolyak interpolant for future capital Kðbk

0
; θ0; bÞ (it mimics time

iteration in dynamic programming where we solve for a current value function given a future value function):

u0ðcÞ ¼ βE½u0ðc0jÞð1$δþθ0j f
0ðbk

0
ÞÞ,; ð41Þ

c¼ ð1$δÞkþθf ðkÞ$bk
0
; ð42Þ

c0j ¼ ð1$δÞbk
0
þθ0j f ðbk

0
Þ$Kðbk

0
; θ0j; bÞ: ð43Þ

The system (41)–(43) must be solved with respect to bk
0
using a numerical solver. Observe that Smolyak interpolation

Kðbk
0
; θ0j; bÞ must be performed for each subiteration on bk

0
using a numerical solver, which is expensive. Time iteration has a

high cost even in a simple unidimensional problem.
Time iteration becomes far more expensive in more complex settings. For example, in the multi-agent version of the

model, one needs to solve a system of N Euler equations with respect to N unknown capital stocks. A high cost of time
iteration procedure accounts for a rapid increase in the cost of the Smolyak method of Malin et al. (2011) with the
dimensionality of the problem.

6.2.2. Fixed-point iteration
We also parameterize the capital function using Smolyak polynomial bk

0
¼ Kðk; θ; bÞ. Before performing any computation,

we rewrite the Euler equation of the problem (38)–(40) in a way, which is convenient for implementing a fixed-point
iteration:

k0 ¼ βE
u0ðc0Þ
u0ðcÞ

1$δþθ0f 0 k0
+ ,+ ,

k0
) *

: ð44Þ

In the true solution, k0 on both sides of (44) takes the same values and thus, cancels out. In the fixed-point iterative process,
k0 on the two sides of (44) takes different values. To proceed, we substitute k0 ¼ bK ð); bÞ in the right side of (44), and we get a
different value in the left side of (44); we perform iterations until the two sides coincide.7

Using parameterization (44), we represent the system of (equations (41)–(43)) as follows:

k0 ¼ Kðk; θ; bÞ and k″j ¼ Kðk0; θ0; bÞ; ð45Þ

c¼ ð1$δÞkþθf ðkÞ$k0; ð46Þ

c0 ¼ ð1$δÞk0þθ0f ðk0Þ$k″; ð47Þ

bk
0
¼ βE

u0ðc0Þ
u0ðcÞ

1$δþθ0f 0 k0
+ ,+ ,

k0
) *

: ð48Þ

In each iteration, given b, we compute k0; k″; c; c0, substitute them into (48), get bk
0
and continue iterating until convergence is

achieved.
In Appendix D, this approach is extended to a multi-agent version of the model to perform iterations on N Euler

equations. Even in the multidimensional case, our fixed-point iterative procedure requires only trivial calculations and
avoids the need of a numerical solver, unlike the time-iteration method.

Some theoretical arguments suggest that time iteration may possess better convergence properties than fixed-point
iteration. In particular, for some simple models, it is possible to show that time iteration has a contraction mapping
property locally, which is similar to the one observed for value function iteration; see Judd (1998, p.553) for details.
However, the local contraction mapping property is not preserved in more complicated models like the multi-agent
model studied later in the paper. It is therefore unknown which iterative scheme has better convergence properties in
general. Our simple fixed-point iteration method was reliable and stable in all experiments if appropriate damping
was used.

7 This kind of parameterization was used by Den Haan (1990) as a technique to implement the parameterized expectations algorithm in a model with
several Euler equations.
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6.3. Algorithm

Below, we show a Smolyak-based projection algorithm for solving the model (38)–(40).

Algorithm 1. Smolyak-based projection method.

Initialization.

a. Choose the approximation level, μ.
b. Construct the Smolyak grid H2;μ ¼ fðxn ; ynÞgn ¼ 1;…;M on ½$1;1,2.
c. Compute the Smolyak basis functions P2;μ in each grid point n.

The resulting M*M matrix is B.
d. Fix Φ: ðk; θÞ-ðx; yÞ, where ðk; θÞAR2

þ and ðx; yÞA ½$1;1,2.
Use Φ$1 to compute ðkn; θnÞ that corresponds to ðxn ; ynÞ in H2;μ .

e. Choose integration nodes, ϵj, and weights, ωj , j¼ 1;…; J.
f. Construct future productivities, θ0n;j ¼ θρn expðϵjÞ for all j;
g. Choose an initial guess bð1Þ .

Step 1. Computation of a solution for K.

a. At iteration i, for n¼ 1;…;M, compute
– k0n ¼ Bnb

ðiÞ , where Bn is the nth raw of B.
– ðx0n ; y

0
n;jÞ that corresponds to ðk0n ; θ

0
n;jÞ using Φ.

– Compute the Smolyak basis functions in each point ðx0n ; y0n;jÞ
– The resulting M *M * J matrix is B0 .
– k″n;j ¼ B0

n;jb
ðiÞ , where B0

n;j is the nth raw of B0 in state j.
– cn ¼ ð1$δÞknþθnf ðknÞ$k0n;
– c0n;j ¼ ð1$δÞk0nþθρn expðϵjÞf ðk

0
nÞ$k″n;j for all j;

– bk
0
n & β∑J

j ¼ 1ωj )
u0 ðc0n;j Þ
u0 ðcn Þ

1$δþθρn exp ϵj
+ ,

f 0 k0n
+ ,- .

k0n
h i

b. Find b that solves the system in Step 1a.
– Compute bb that solves bk

0
¼ Bbb , i.e., bb ¼ B$1bk

0
n .

– Use damping to compute bðiþ1Þ ¼ ð1$ξÞbðiÞ þξbb , where ξAð0;1,:
– Check for convergence: end Step 1 if 1

Mξ∑
M
n ¼ 1

ðk0n Þ
ðiþ 1Þ $ ðk0n Þ

ðiÞ

ðk0n Þ
ðiÞ

///
///oϖ.

Iterate on Step 1 until convergence.

6.4. Relation to other solution methods in the literature

We now describe the relation between the Smolyak solution method and other numerical methods for solving dynamic
economic models in the literature; see Maliar and Maliar (2014a) for a survey of numerical methods for solving large-scale
dynamic economic models. First, the baseline version of the Smolyak method is similar to conventional projection methods
in that it relies on a fixed grid, orthogonal polynomials and deterministic integration methods; see Judd (1992), Gaspar and
Judd (1997), Christiano and Fisher (2000), and Aruoba et al. (2006), among others. The difference is that conventional
projection methods build on tensor-product rules and their cost grows rapidly with the dimensionality of the problem,
whereas the Smolyak method uses non-product rules and its cost grows far more slowly. Second, the anisotropic variant of
the Smolyak method is similar to solution methods that use different number of grid points for different variables (e.g., few
grid points for shocks and many grid points for capital as in Aiyagari, 1994, Huggett, 1993, Rios-Rull, 1997, and Krusell and
Smith, 1998) and other numerical methods that rely on discretization of shocks in line with Tauchen and Hussey (1991).
Third, the variant of the Smolyak method with an adaptive domain is related to simulation-based and learning methods;
see, e.g., Marcet (1988), Marcet and Sargent (1989), Smith (1991, 1993), Rust (1997), Maliar and Maliar (2005) and Powell
(2011). The advantage of simulation-based methods is that they focus on the relevant area of the state space; the
shortcoming is that their accuracy is limited by a low rate of convergence of Monte Carlo integration. The Smolyak method
with an adaptive domain does not rely on Monte Carlo integration: it uses simulations only for constructing the solution
domain, and it uses projection techniques to accurately solve the model on this domain; in this respect, it is similar to
combinations of projection and simulation methods studied in Judd et al. (2010) and Maliar and Maliar (2005, 2014b).
Fourth, in contrast to perturbation methods, the Smolyak method is a global solution method: its accuracy does not decline
rapidly away from the steady state, and it can be used to accurately solve models with strong non-linearities. Fifth, in our
examples, we focus on equilibrium problems, however, the techniques described in the paper can be also used in the context
of dynamic programming problems. Winschel and Krätzig (2010) show how to use the conventional Smolyak method in the
context of canonical value function iteration, however, the Smolyak method can be used in the context of an endogenous
grid method of Carroll (2005) and an envelope condition method of Maliar and Maliar (2013) both of which can significantly
reduce the cost of conventional value function iteration. Finally, Brumm and Scheidegger (2013) parallelize a sparse grid
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method using piecewise local basis functions, and Valero et al. (2013) parallelize a Smolyak method using a global
polynomial function. In particular, the latter paper parallelizes the Smolyak method on a desktop computer using multiple
CPUs and GPUs and on Blacklight supercomputer; see Maliar (2013) for additional experiments assessing gains from
parallelization on Blacklight.

Finally, the anisotropic-grid and adaptive-domain constructions, which we propose in the context of the Smolyak
method, will also work for any projection solution method that operates on a hypercube domain including those based
on tensor-product rules, e.g., Judd (1992). Also, these construction can be effectively used in the context of low-
dimensional problems. However, there are many ways to increase accuracy in problems with low dimensionality, in
particular, one can increase the degree of polynomial approximations. In high-dimensional applications, increasing the
polynomial degree might be too costly. Anisotropic grid or adaptive domain or their combination may be the only
feasible alternative. This is why we advocate these techniques in the context of the Smolyak method applied to
problems with high dimensionality.

6.5. Implementation details

Our algorithm builds on techniques that are used in the related literature. To approximate expectation functions, we use
a ten-node Gauss–Hermite quadrature rule. We find that for this particular class of examples, the choice of the number of
integration nodes plays a very minor effect on the properties of the solution, for example, the results will be the same up to
6 digits of precision if instead of ten integration nodes we use just two. We could have used Monte Carlo integration but this
would reduce the accuracy dramatically; see Judd et al. (2011) for a discussion.

We consider two mappings Φ:X-½$1;1,2 that transform each possible value of state variables ðk; θÞAXDR2 into a
hypercube (which is a square in the two-dimensional case) ðx; yÞA ½$1;1,2. One is a conventional rectangular domain
for capital and productivity, and the other is a rectangular domain constructed on principal components of simulated
series. The rectangles are chosen to enclose the cloud of simulated data as shown in Fig. 6. (That is, we solve the model
two times: we first compute a solution starting from some initial guess about the ergodic range, we then simulate time
series, and we finally recompute solutions more accurately using the rectangular domains that enclose the cloud of
simulated data). In Appendix C, we provide further details on the construction of the two mappings.

We use extrema of Chebyshev polynomials as unidimensional grid points, and we use a Chebyshev polynomial family as
unidimensional basis functions; in this respect, we are similar to Krueger and Kubler (2004) and Malin et al. (2011). We use
the damping parameter ξ¼ 0:05, and we use the convergence criterion ϖ ¼ 10$7.

Finally, as a measure of accuracy, we report the mean and maximum of unit-free Euler equation errors on a stochastic
simulation of 10,000 observations. Our computer code is written in MATLAB 2012a, and we use a desktop computer with
Intel(R) Core(TM) i7-2600 CPU (3.40 GHz) with RAM 12 GB. At the initial stage of this project, we benefited from consulting
the Fortran code of Malin et al. (2011).

6.6. Results for the representative agent model

We parameterize the model (38)–(40) by uðcÞ ¼ ðc1$ γ$1Þ=ð1$γÞ, f ðkÞ ¼ kα and ln θ0 ¼ ρ ln θþsε, where the parameters
are fixed at ρ¼ 0:95, β¼ 0:99 and α¼ 1=3. We set the benchmark values of δ¼ 1, γ ¼ 1 and s¼ 0:01, and we consider
variations in γ, s and δ one-by-one, holding the remaining parameters at the benchmark values. Specifically, we
consider

δ¼
0;0:01;0:02;0:025;0:03;0:04;0:05;0:06;0:07;0:08;

0:09;0:1;0:2;0:3;0:4;0:5;0:6;0:7;0:8;0:9;1

( )

;

γ ¼ f1;5;10;15;20g;

s¼ f0:001;0:005;0:01;0:02;0:03;0:04;0:05g:

We use these parameterizations to test the performance of different versions of the Smolyak method introduced in
the paper.

6.6.1. Conventional isotropic Smolyak grids under different approximation levels
We first solve the model (38)–(40) using a baseline version of the Smolyak method under four approximation levels

μ¼ 1;2;3;4. Our baseline version is isotropic, i.e., has the same number of grid points for capital and productivity, and it
operates on a rectangular domain in the original system of coordinates. The algorithm was able to converge in a wide range
of the parameters and to produce highly accurate solutions.

In Fig. 8, we report the (unit-free) maximum residuals in the Euler equation (44) (expressed in log 10 units). The
residuals vary from about 1% under μ¼ 1–10$8% under μ¼ 4. Therefore, the quality of approximation consistently increases
with the value of μ.
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6.6.2. Anisotropic Smolyak grids
We next consider anisotropic variants of the Smolyak method that use different numbers of grid points for different

variables. We consider two possibilities ðμ1; μ2Þ ¼ ð3;1Þ and ðμ1; μ2Þ ¼ ð1;3Þ. With these constructions, we have nine elements
in the first dimension and three elements in the second dimension, which results in nineteen elements in total
(i.e., nineteen grid points and nineteen basis functions); these are the elements distinguished in Section 4.2.2.

In Fig. 9, we compare the maximum residuals in the Euler equation with anisotropic grids and isotropic grids. The
medium line (the one with triangles) is our benchmark isotropic case μ¼ 2 that contains 13 polynomial terms.

We observe that if we use more grid points in dimension of capital than in dimension of productivity, the anisotropic
Smolyak method produces more accurate solutions than the benchmark isotropic Smolyak method, but if we have more grid
points in productivity than in capital, the opposite is true. The difference in accuracy between two anisotropic solutions can
be as large as two orders of magnitude. These results illustrate the potential usefulness of anisotropic grids in economic
applications.
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Fig. 8. Accuracy of the Smolyak method under different approximation levels.
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Fig. 9. Accuracy of the Smolyak method with anisotropic grid.
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6.6.3. Adaptive domain
We next assess how the performance of the Smolyak method depends on the choice of the solution domain. We compare

the accuracy of solutions of the Smolyak method that operates on the conventional hypercube with that of the Smolyak
technique that operates on the adaptive rectangular domain. We compare the maximum residuals in the Euler equation
under the conventional and adaptive domains in Fig. 10.

The maximum residuals in the Euler equation are about a half order of magnitude (i.e., about 5 times) lower under the
adaptive Smolyak domain than under the conventional Smolyak domain for the range of values for γ, s and δ considered.
We observe a visible improvement in the quality of approximation due to an adaptive domain under both μ¼ 1 and μ¼ 2.
In Section 3.5, we argued that there could be a potentially negative effect of cross term on accuracy after we rotate the
system of coordinates. Our numerical results suggest that this effect does not play a significant role in our example except
when γ becomes very large.

6.6.4. Computational expense
We finally assess savings due to our more efficient disjoint-set implementation of the Smolyak method (recall that we

avoid forming lists with repeated basis functions when constructing the Smolyak interpolant). In the comparison analysis,
we apply an isotropic variant of the Smolyak method to the model parameterized by δ¼ 1, γ ¼ 1 and s¼ 0:01. To implement
the conventional Smolyak method with a nested-set construction, we use software by Gordon (2011), which we find reliable
and easy to use; see https://sites.google.com/site/greygordon/code.

In our experiments, we also study how the savings depend on a specific iterative scheme, namely, we compare time
iteration in line with Malin et al. (2011) to our baseline fixed point iteration, see Sections 6.2.1 and 6.2.2, respectively. To
solve for capital choices under time iteration, we use a solver “csolve.m” by Chris Sims. In Fig. 11, we show the running time
for four considered cases referred to as “FPI with disjoint sets”, “FPI with nested sets”, “TI with disjoint sets” and “TI with
nested sets”, where FPI and TI stand for fixed-point iteration and time iteration, respectively.

Two tendencies can be seen from the figure. First, the conventional nested-set implementation of the Smolyak method is
always more expensive than our disjoint-set implementation. This is true under both time iteration and fixed-point iteration
schemes. In the case of fixed point iteration, the savings increase with the level of approximation μ and can reach two orders
of magnitude even in our simple two-dimensional example. For the time iteration scheme, the savings are more modest but
still visible. Second, time iteration performs faster than fixed-point iteration in our example. This is because the cost of a
numerical solver is relatively low for small problems like ours, while the convergence rate of time iteration is higher than
that of fixed-point iteration. This finding is in line with the analysis of Gaspar and Judd (1997) and Malin et al. (2011)
in which time iteration methods are very fast in small-scale models but their cost increases dramatically with the size of the
problem. Fixed-point iteration will be a competitive alternative for larger problems as we will see in the next section, Section 6.7.
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Fig. 10. Accuracy of the Smolyak method with adaptive domain.
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6.7. Results for the multicountry model

We now explore the performance of the Smolyak-based projection method in the context of problems with high
dimensionality. To this purpose, we extend the one-agent model (38)–(40) to include multiple agents. This is a simple way
to expand the size of the problem and to have a control over its dimensionality.

There are N agents, interpreted as countries, that differ in initial capital endowment and productivity level. The countries'
productivity levels are affected by both country-specific and worldwide shocks. We study the social planner's problem. If
agents are identical in preferences, the planner will allocate identical consumption to all agents. However, we do not make
use of the symmetric structure of the economy, and we approximate the planner's solution in the form of N capital policy
functions, each of which depends on 2N state variables (N capital stocks and N productivity levels). We solve for N policy
functions ðk0Þh ¼ Bbh, where B is a matrix of Smolyak basis functions evaluated in the Smolyak grid points, and bh is a vector
of the polynomial coefficients for h¼ 1;…N. For each country, we use essentially the same computational procedure as the
one used for the representative-agent model. The Gauss–Hermite quadrature method builds on product rules and is not
tractable in problems with high dimensionality. We replace it with monomial rules combined with Cholesky decomposition;
see Judd et al. (2011) for a detailed description of these techniques. For a description of the multicountry model and details
of the computational procedure, see Appendix D.

In Fig. 12, we compare four different solutions to the multicountry model, namely, the conventional solutions with μ¼ 2
and μ¼ 3, the anisotropic solution with μh1 ¼ 3 for the capital stocks and μh2 ¼ 2 for the productivity levels of all countries,
h¼ 1;…N (in the figure, we denote this case as ðμ1; μ2Þ ¼ ð3;2Þ which means ðμ11;…; μN1 ; μ

1
2;…; μN2 Þ ¼ ð3;…;3;2;…;2Þ). Finally,

we report the solution with μ¼ 2 for the Smolyak method with an adaptive domain.
We observe the following results from the figure. First, the difference between the isotropic solution with μ¼ 3 and that

with μ¼ 2 is about two orders of magnitude. Second, by using an anisotropic grid, we can make half of the way between
μ¼ 2 and μ¼ 3 in terms of the average residuals, and we obtain essentially identical maximum residuals. Third, the effect
of an adaptive domain is also quite sizable, namely, we can reduce the residuals up to one order of magnitude. Finally,

Fig. 12. Accuracy and running time for the multicountry model.
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we should draw attention to the computational expense of our solution method. We observe a clearly concave pattern for
the running time in the logarithmic scale. This means that the expense grows slower than an exponential function, i.e., our
implementation does not appear to be subject to the curse of dimensionality in the sense of Bellman (1961).

Malin et al. (2011) also solve models with up to 10 countries (20 state variables); in particular, a symmetric specification
of Model I in their analysis is similar to the model studied in the present paper. For this model, their cost in seconds is 1, 59,
916, 7313, 38150 when the number of countries is 2, 4, 6, 8, 10, respectively, which grows faster than the exponential
function. They use the approximation level μ¼ 2, and their program is written in Fortran. We differ in two respects: first, we
implement the Smolyak method for interpolation by avoiding the repetitions, and second, we use a much cheaper version of
fixed-point iteration than time iteration used in Malin et al. (2011). We solve a similar model with 10 countries in about
45 min using MATLAB. However, the third-level Smolyak approximation is expensive even for our efficient implementation:
we need almost 45 h to solve a model with 10 countries, which increases accuracy by two orders of magnitude.

Thus, the adaptive domain allows us to make about 1/3 way in terms of accuracy between μ¼ 2 and μ¼ 3 without a visible
increase in cost. The anisotropic grid with ðμ1; μ2Þ ¼ ð3;2Þ gives us essentially the same accuracy as μ¼ 3 but uses a considerably
smaller number of grid points and basis function. However, our current implementation of the anisotropic Smolyak method does
not allow us to translate a reduction in the number of Smolyak elements in a sizable cost reduction in this particular example. We
first construct an isotropic Smolyak interpolant, and we next remove the terms accordingly to arrive to the target anisotropic
construction. This procedure requires additional running time which reduces the savings from anisotropy.

7. Conclusion

The Smolyak method is designed to deal with high-dimensional applications. However, the cost of the Smolyak method
still grows rapidly with dimensionality of the problem. In this paper, we propose a more efficient implementation of the
Smolyak method that reduces its computational expense, and we present extensions of the Smolyak method that allow us to
increase its accuracy level while maintaining a fixed computational cost. The analytical and numerical techniques developed
in the present paper are not limited to economic applications but can be used in other fields.

First, we propose a more efficient implementation of the Smolyak method than the conventional one, namely, we avoid
unnecessary repeated evaluations of basis functions when forming a Smolyak interpolant. Efficient implementation of interpolation
is especially important in the context of numerical methods for solving dynamic economic models in which decision or value
functions must be interpolated a very large number of times during the solution procedure, i.e., in each grid point, integration node
or time period.

Second, we propose an anisotropic version of the Smolyak grid which allows us to vary the number of grid points and
basic functions by dimension. In a typical economic application, we know some properties of decision and value functions,
and we may use this knowledge to represent such functions more efficiently using the proposed anisotropic constructions.
Maliar et al. (2014) discuss further strategies for improving the performance of the anisotropic Smolyak method.

Third, we show an effective transformation of the state space of a given economic model into a normalized hypercube
used by the Smolyak method. We find that the best accuracy of approximations is attained when we use a minimum
hypercube that encloses the high-probability set of a given economic model.

The above three improvements are related to interpolation. Our last improvement is concerned with an iterative
procedure for solving dynamic economic models. Time iteration used in the existing Smolyak methods relies on a numerical
solver while a version of fixed-point iteration used in the present paper involves only a straightforward computation. This
improvement, although minor in substance, allows us to achieve substantial economizing on cost, especially, in high-
dimensional applications.
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Appendix

This section contains some supplementary results. In Appendix A, we describe how to construct unidimensional Smolyak
grid points and basis functions. In Appendix B, we develop the formula for the Smolyak interpolant in the two-dimensional
example with μ¼ 2. In Appendix C, we show an example of constructing adaptive domain. Finally, in Appendix D, we
describe the multicountry model and the solution algorithm.
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Appendix A. Unidimensional Smolyak grid points and basis functions

To construct multidimensional Smolyak grid points and basis functions, we must first specify unidimensional grid points
and basis functions. Many choice are possible. For example, we can consider a family of ordinary polynomials, f1; x; x2;…g
and grid points generated by dividing the interval [$1,1] into 2i$1 equal parts, iZ2 (for i¼1 we assume a grid point 0). In
this manner, for i¼2, we have grid points f0; $1;1g and we have basis functions f1; x; x2g; for i¼3 we have grid points
f0; $1;1; $1=2;1=2g, and we use basis functions f1; x; x2; x3; x4g, etc.

Another possibility is to use Chebyshev polynomials as basis functions and extrema of such polynomials as grid points.
Approximations based on Chebyshev polynomials have two useful properties. First, there always exists a unique set of
coefficients such that a Chebyshev polynomial function matches M given values at M grid points. Second, approximations
are uniformly accurate, and error bounds are established. We stick to this choice in our analysis.

Chebyshev polynomials are defined in the interval [$1,1] with a recursive relation: T0ðxÞ ¼ 1, T1ðxÞ ¼ x, and
TnðxÞ ¼ 2xTn$1ðxÞ$Tn$2ðxÞ for nZ2.8 Chebyshev polynomial of degree n$1 has n extrema. Let ζnj be a jth extremum of
Chebyshev polynomial of degree n$1 with j¼ 1;…;n,

ζnj ¼ $ cos
πðj$1Þ
n$1

% &
:

Table 6 presents Chebyshev polynomials of degree n$1 and their n extrema (for the polynomial of degree 0, the extremum
is assumed to be 0). Note that the sequence of unidimensional Chebyshev polynomials and their extrema cannot be used in
Smolyak formula (5) because such sequence does not satisfy Conditions 1 and 2 of Section 2.5, namely, the number of
extrema is equal to i, with i¼1, 2, 3,…, and not to 2i$1þ1 as required by Condition 1, and the consecutive sets are not nested
as required by Condition 2. However, there is a subsequence of this sequence that satisfies both Conditions 1 and 2, and is
suitable for the conventional interpolation formula. Namely, we select a subsequence in which the number of extrema is
m(i) ¼1, 3, 5, 9, 17, … for i¼1, 2, 3, 4, 5…, respectively (the first three sets of such a sequence are in-boxed elements in the
last column of the table).

Therefore, the unidimensional Smolyak basis functions and grid points are as follows: for i¼1, a grid point is f0g and a
basis function is f1g; for i¼2, grid points are f0; $1;1g and basis functions are f1; x;2x2$1g; for i¼3, grid points are
f0; $1;1; $1=

ffiffiffi
2

p
;1=

ffiffiffi
2

p
g and basis functions are f1; x;2x2$1;4x3$3x;8x4$8x2þ1g, etc.

Appendix B. Smolyak interpolant under μ¼2

We compare two alternative formulas for Smolyak interpolation in the two-dimensional case under the approximation
level μ¼ 2. One is the conventional formula with repeated basis functions and the other is an alternative formula introduced
in the present paper.

Conventional Smolyak interpolation formula: We consider the conventional Smolyak formula for interpolation in the two-
dimensional case, d¼2, under the approximation level μ¼ 2. Condition maxðd; μþ1Þr jijrμþd in (5) becomes
2r i1þ i2r4. We use (7) to form pi1 ;i2 . In particular, p1;1, p1;2 and p2;1 are given by (8)–(10), respectively. For the remaining
polynomials, p2;2, p3;1 and p1;3, we have

p2;2 ¼ ∑
mð2Þ

ℓ1 ¼ 1
∑
mð2Þ

ℓ2 ¼ 1
bℓ1ℓ2ψℓ1 ðxÞψℓ2

ðyÞ ¼ b11þb21ψ2ðxÞþb31ψ3ðxÞþb12ψ2ðyÞþb22ψ2ðxÞψ2ðyÞþb32ψ3ðxÞψ2ðyÞ

þb13ψ3ðyÞþb23ψ2ðxÞψ3ðyÞþb33ψ3ðxÞψ3ðyÞ;

p3;1 ¼ ∑
mð3Þ

ℓ1 ¼ 1
∑
mð1Þ

ℓ2 ¼ 1
bℓ1ℓ2ψℓ1 ðxÞψℓ2

ðyÞ ¼ b11þb21ψ2ðxÞþb31ψ3ðxÞþb41ψ4ðxÞþb51ψ5ðxÞ;

Table 6
Extrema of Chebyshev polynomials and construction of Smolyak points in the unidimensional case.

8 In terms of basis function ψ that was used in the main text and that is used later in Appendix B, we have Tn$1ðxÞ ¼ ψnðxÞ.
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p1;3 ¼ ∑
mð1Þ

ℓ1 ¼ 1
∑
mð3Þ

ℓ2 ¼ 1
bℓ1ℓ2ψℓ1

ðxÞψℓ2 ðyÞ ¼ b11þb12ψ2ðyÞþb13ψ3ðyÞþb14ψ4ðyÞþb15ψ5ðyÞ:

Furthermore, pj2j and pj3j are defined before in (11) and (12), respectively. A new combination of polynomials with
jij¼ i1þ i2 ¼ 4 is given by

pj4j & p2;2þp3;1þp1;3:

Smolyak polynomial function (7) for the case μ¼ 2 is given by

bf 2;2 x; y; bð Þ ¼ ∑
maxðd;μþ1Þr jijrdþμ

ð$1Þdþμ$ jij d$1
dþμ$ jij

 !
pjij

¼ ∑
3r jijr4

ð$1Þ4$ jij 1
4$ jij

 !
pjij ¼ ∑

3r jijr4
ð$1Þ4$ jij 1

ð4$ jijÞ
pjij

¼ $1 ) pj3jþ1 ) pj4j ¼ $1 ) ðp2;1þp1;2Þþ1 ) ðp2;2þp3;1þp1;3Þ
¼ b11þb21ψ2ðxÞþb31ψ3ðxÞþb12ψ2ðyÞþb22ψ2ðxÞψ2ðyÞ
þb32ψ3ðxÞψ2ðyÞþb13ψ3ðyÞþb23ψ2ðxÞψ3ðyÞþb33ψ3ðxÞψ3ðyÞ
þb41ψ4ðxÞþb51ψ5ðxÞþb14ψ4ðyÞþb15ψ5ðyÞ:

As expected, the conventional Smolyak formula gives us the same thirteen basis functions as distinguished in (19).
Smolyak interpolation formula without repeated basis functions: Let us now illustrate the use of interpolation formula (25)

without repetitions. Here, we have dr jijrμþd, which means 2r i1þ i2r4. We use formula (27) to form qi1 ;i2 . In particular,
q1;1, q1;2 and q2;1 are given by (28)–(30), respectively. For the remaining polynomials, q2;2, q3;1 and q1;3, we obtain

q2;2 ¼ ∑
mð2Þ

ℓ1 ¼ mð1Þþ1
∑
mð2Þ

ℓ2 ¼ mð1Þþ1
bℓ1ℓ2ψℓ1 ðxÞψℓ2

ðyÞ ¼ b22ψ2ðxÞψ2ðyÞþb32ψ3ðxÞψ2ðyÞ

þb13ψ3ðyÞþb23ψ2ðxÞψ3ðyÞþb33ψ3ðxÞψ3ðyÞ;

q3;1 ¼ ∑
mð3Þ

ℓ1 ¼ mð2Þþ1
∑
mð1Þ

ℓ2 ¼ mð0Þþ1
bℓ1ℓ2ψℓ1

ðxÞψℓ2 ðyÞ ¼ b41ψ4ðxÞþb51ψ5ðxÞ;

q1;3 ¼ ∑
mð1Þ

ℓ1 ¼ mð0Þþ1
∑
mð3Þ

ℓ2 ¼ mð2Þþ1
bℓ1ℓ2ψℓ1

ðxÞψℓ2 ðyÞ ¼ b14ψ4ðyÞþb15ψ5ðyÞ:

Furthermore, qj2j and qj3j are defined before in (31) and (32), respectively. A new sum with jij¼ i1þ i2 ¼ 4 is given by

qj4j & q2;2þq3;1þq1;3:

The Smolyak polynomial function (27) for the case of μ¼ 2 is given by

bf ðx; y; bÞ ¼ ∑
dr jijrdþμ

qjij ¼ qj2jþqj3jþqj4j ¼ b11þb21ψ2ðxÞþb31ψ3ðxÞþb12ψ2ðyÞþb22ψ2ðxÞψ2ðyÞ

þb32ψ3ðxÞψ2ðyÞþb13ψ3ðyÞþb23ψ2ðxÞψ3ðyÞþb33ψ3ðxÞψ3ðyÞ
þb41ψ4ðxÞþb51ψ5ðxÞþb14ψ4ðyÞþb15ψ5ðyÞ:

Again, as expected, our interpolation formula gives the same 13 basis functions as those distinguished in (19) for the
conventional Smolyak interpolation formula.

Appendix C. Adaptive domain

We show how to adapt the Smolyak hypercube to the high-probability area of the state space in the context of the
representative agent model (38)–(40). Our objective is to define a mapping Φ that transforms each possible value of state
variables ðk; θÞ into ðx; yÞA ½$1;1,2. Below, we show two ways of constructing the mapping Φ, one uses the original
coordinates and the other uses principal components of the original coordinates.

Standard hypercube: Consider a cloud of simulated data fkt ; θtgt ¼ 1;…;T shown in Fig. 6. Let us define ½k; k, and ½θ ; θ, as
intervals for the state variables that we observe in simulation (the rectangle ½k; k, * ½θ ; θ , is the larger rectangle shown in
Fig. 6. Consider the following linear transformation of ðk; θÞA ½k; k, * ½θ ; θ , into ðx; yÞA ½$1;1,2

x¼ 2
k$k

k$k
$1 and y¼ 2

θ$θ

θ$θ
$1: ð49Þ

By using (49) and its inverse, we can move from ½k; k, * ½θ ; θ , to ½$1;1,2. Malin et al. (2011) set bounds exogenously at
½k; k, ¼ ½0:8;1:2, and ½θ ; θ , ¼ ½expð$0:8s=ð1$ρÞÞ; expð0:8s=ð1$ρÞÞ,, where the steady state of both capital and productivity
level is one. Our own analysis shows that the best accuracy is attained if the intervals ½k; k, and ½θ ; θ, are chosen to enclose
the set of simulated data as shown in Fig. 6.

Adaptive parallelotope: We now describe how to construct the adaptive (inclined) rectangle in Fig. 6. To map the state
variables into a unit square, we use a principal component (PC) transformation of the time series as described in Section 5
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and illustrated in Fig. 7. We first normalize the simulated data fkt ; θtgt ¼ 1;…;T to have zero mean and unit variance by

~kt ¼
kt$μk
sk

and ~θ t ¼
θt$μθ
sθ

; ð50Þ

where μk and μθ are means, and sk and sθ are standard deviations of of capital and shock, respectively. We then compute the
SVD decomposition Y ¼USV > , where

Y &

~k1 ~θ1
⋮ ⋮
~kT ~θT

2

64

3

75;

UART*2 and VAR2*2 are orthogonal matrices, and SAR2*2 is a diagonal matrix of singular values. We find Z & YV , where

Z ¼

zx1 zy1
⋮ ⋮
zxT zyT

2

64

3

75ART*2:

Let ½zx; zx, and ½zy; zy, be the intervals for the resulting principal components fzxt ; z
y
t gt ¼ 1;…;T . We map each ðzx; zyÞA ½zx; zx, *

½zy; zy, into ðx; yÞA ½$1;1,2 using

x¼ 2
zx$zx

zx$zx
$1 and y¼ 2

zy$zy

zy$zy
$1: ð51Þ

To go back to the state space of the model, we first find ðzx; zyÞ that correspond to a given pair ðx; yÞ using (51), we then apply
an inverse PC transformation to get ð ~k; ~θÞ> ¼ V $1ðzx; zyÞ> and finally, we compute ðk; θÞ using the inverse of (50).

In our experiments, we typically recompute solutions two times: first, we solve the model using the standard rectangular
domain in the original system of coordinates for some guess ½k; k, * ½θ ; θ,. After the decision functions were computed, we
simulate the model and use the time series solution fkt ; θtgt ¼ 1;…;T either to refine the guess on the bounds k, k, θ and θ for
constructing the conventional domain or to compute μk, μθ , sk, sθ, V , zx, z

x, zy and zy for constructing the adaptive domain.

Appendix D. Smolyak-based projection methods for problems with high dimensionality

We describe the multicountry model studied in Section 6.7 and provide further computational details about the Smolyak
method that was used to produce numerical solutions in that section.

D.1. Multicountry model

We test the performance of the Smolyak-based projection method in the context of the multi-agent model studied in
Judd et al. (2010, 2011) and Maliar and Maliar (2014b). This allows us to compare the performance of the Smolyak method
with other approaches tractable in high-dimensional applications.

A world economy consists of a finite number of agents N, interpreted as countries. Each country hAf1;…;Ng is populated
by a representative consumer. A social planner solves the following maximization problem:

max
fcht ;k

h
tþ 1g

h ¼ 1;…;N

t ¼ 0;…;1

E0 ∑
N

h ¼ 1
λh½ ∑

1

t ¼ 0
βtuhðcht Þ, ð52Þ

subject to the aggregate resource constraint,

∑
N

h ¼ 1
cht þ ∑

N

h ¼ 1
khtþ1 ¼ ∑

N

h ¼ 1
kht ð1$δÞþ ∑

N

h ¼ 1
θht Af

hðkht Þ; ð53Þ

and to the process for the countries’ productivity levels,

ln θhtþ1 ¼ ρ ln θht þϵhtþ1; h¼ 1;…;N; ð54Þ

where initial condition fkh0; θ
h
0g

h ¼ 1;…;N
is exogenously given, and the productivity shocks follow a multivariate Normal

distribution ðϵ1tþ1;…; ϵNtþ1Þ
> -N ð0N ;ΣÞ with 0NARN being a vector of zero means and ΣARN*N being a variance-covariance

matrix. We assume that shocks of different countries are given by ϵhtþ1 ¼ ςht þςt , h¼ 1;…;N, where ςht -N ð0; s2Þ is a country-
specific component, and ςt -N ð0; s2Þ is a worldwide component. The resulting variance covariance matrix is

Σ ¼
2s2 ⋯ s2

⋯ ⋱ ⋯
s2 ⋯ 2s2

0

B@

1

CA:

In the problem (52)–(54), Et is the operator of conditional expectation; cht , k
h
t , θ

h
t and λh are a country's h consump-

tion, capital, productivity level and welfare weight, respectively; βAð0;1Þ is the discount factor; δAð0;1, is the
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depreciation rate; A is a normalizing constant in the production function; ρA ð$1;1Þ is the autocorrelation coefficient. The
utility and production functions, uh and f h, respectively, are strictly increasing, continuously differentiable and concave. We
assume that all countries have identical preferences and technology, i.e. uh ¼ u and f h ¼ f for all h. Under these assumptions,
the planner assigns equal weights, λh ¼ 1, and therefore, equal consumption to all countries, cht ¼ ct for all h¼ 1;…;N.

D.2. Algorithm for the multicountry model

The solution to the model (52)–(54) satisfies N Euler equations:

khtþ1 ¼ Et β
u0ðctþ1Þ
u0ðctÞ

1$δþθhtþ1Af
0 khtþ1

' (h i
khtþ1

" #
; h¼ 1;…;N; ð55Þ

where u0 and f 0 are the first derivatives of u and f, respectively.

We approximate the planner's solution as N capital policy functions Khðfkht ; θ
h
t g

h ¼ 1;…;N
Þ. Note that our approximating

functions bK
h
ðfkht ; θ

h
t g

h ¼ 1;…;N
; bhÞ, h¼ 1;…;N, are country-specific. In effect, we treat countries as completely heterogeneous

even if they are identical in fundamentals and have identical optimal policy functions. This allows us to assess costs
associated with computing solutions to models with heterogeneous preferences and technology.

Steps of the Smolyak-based projection method: The Smolyak method, described for the representative agent model in the
main text, can be readily extended to the multicountry case.

( Initialization:

(a) Choose the level of approximation, μ.
(b) Parameterize ðkhÞ0 ¼ Khðfkht ; θ

h
t g

h ¼ 1;…;N
Þ with bK

h
ðfkht ; θ

h
t g

h ¼ 1;…;N
; bhÞ which is a Smolyak interpolant constructed using

Chebyshev unidimensional basis functions.

(c) Construct a Smolyak grid H2N;μ ¼ fxhn; y
h
ng

h ¼ 1;…;N
n ¼ 1;…;M on the hypercube ½$1;1,2N , as described in Sections 3 and 4 for

isotropic and anisotropic cases, respectively.
(d) Compute Smolyak basis functions P2N;μ in each grid point n as described in Section 3 for the isotropic case or in

Section 4 for the anisotropic case. The resulting M *M matrix is B.
(e) Choose the relevant ranges of values for fkht ; θ

h
t g

h ¼ 1;…;N
on which a solution is computed. The resulting hypercube is

½k1; k
1
, *⋯* ½θN ; θN,.

(f) Construct a mapping between points fkhn; θ
h
ng

h ¼ 1;…;N
in the original hypercube ½k1; k

1
, *⋯* ½θN ; θN, and points

fxhn; y
h
ng

h ¼ 1;…;N in the normalized hypercube ½$1;1,2N using either a linear change of variables of type (49) or
principal component transformation of type (51); see Section 5.

Φ: ½k1; k
1
, *⋯* ½θN ; θN,-½$1;1,2N : ð56Þ

(g) Choose integration nodes, fϵhj g
h ¼ 1;…;N , and weights, ωj, j¼ 1;…; J.

(h) Construct next-period productivity, fðθhn;jÞ
0g
h ¼ 1;…;N

with ðθhn;jÞ
0 ¼ ðθhnÞ

ρ expðϵhj Þ for all j and n.
(k) Make an initial guess on the coefficients vectors ðb1Þð1Þ;…; ðbNÞð1Þ.

( Iterative cycle: At iteration i, given ðb1ÞðiÞ;…; ðbNÞðiÞ, perform the following steps.
( Step 1: Computation of the capital choice.

Compute ðkhnÞ
0 ¼ Bnðb

hÞðiÞ, where Bn is the nth raw of B for n¼ 1;…;M.
( Step 2: Computation of the consumption choice.

Compute fchng
h ¼ 1;…;N satisfying (53) given fkhn; θ

h
n; ðk

h
nÞ

0g
h ¼ 1;…;N

for n¼ 1;…;M.
( Step 3: Approximation of conditional expectation.

For n¼ 1;…;M,

(a) compute:

○ fðxhn;jÞ
0; ðyhn;jÞ

0g
h ¼ 1;…;N that correspond to fðkhnÞ

0; ðθhn;jÞ
0g
h ¼ 1;…;N

using the inverse of transformation (56);
○ Smolyak basis functions P2N;μ in each point fðxhn;jÞ

0; ðyhn;jÞ
0g
h ¼ 1;…;N; the resulting M *M * J matrix is B0

n;j;

○ ðkhn;jÞ
″ ¼ B0

n;jðb
hÞðiÞ, where B0

n;j are basis functions evaluated in fðkhnÞ
0; ðθhn;jÞ

0g
h ¼ 1;…;N

using the transformation (56) for
all j;

○ fðchn;jÞ
0g
h ¼ 1;…;N satisfying (53) given fðkhnÞ

0; ðθhn;jÞ
0; ðkhn;jÞ

″g
h ¼ 1;…;N

for n¼ 1;…;M;
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(b)

evaluate conditional expectation:

ehn & β ∑
J

j ¼ 1
ωj

uh
1ððc

h
n;jÞ

0Þ

u1ðchnÞ
1$δþðθhn;jÞ

0f h1 ðkhnÞ
0

' (h i
ðkhnÞ

0

 !( )
:

(
Step 4: Computation of the coefficients.

Find fbb
h
gh ¼ 1;…;N that solves ehn ¼ Bn

bb
h
, i.e., bb

h
¼ B$1

n ehn.
( Step 5: Updating of the coefficients vectors.

For each h¼ 1;…;N, compute the coefficients vector for the subsequent iteration iþ1 using fixed-point iteration,
ðbhÞðiþ1Þ ¼ ð1$ξÞðbhÞðiÞ þξbb

h
: ð57Þ

where ξA 0;1ð Þ is a damping parameter.
Iterate on Steps 1–5 until convergence of the solution,

1
MNξ

∑
M

n ¼ 1
∑
N

h ¼ 1

ððkhnÞ
0Þðiþ1Þ $ððkhnÞ

0ÞðiÞ

ððkhnÞ
0ÞðiÞ

/////

/////oϖ; ð58Þ

where ððkhnÞ
0Þðiþ1Þ and ððkhnÞ

0ÞðiÞ are the hth country's capital choices on the grid obtained on iterations iþ1 and i, respectively,
and ϑ40.

Computational details: To solve the model, we assume uðctÞ ¼ ðc1$ γ
t $1Þ=ð1$γÞ, f ðktÞ ¼ kαt with α¼ 0:36, β¼ 0:99, ρ¼ 0:95

and we vary γ, δ and s. We start iterations from an arbitrary initial guess on the capital decision function,
khtþ1 ¼ 0:9kht þ0:1θht for all h¼ 1;…N (this guess matches the steady-state level of capital). To approximate integrals, we
use a monomial integration rule with 2N nodes combined with Cholesky decomposition; see Judd et al. (2011) for a
description of these techniques. We set the damping parameter in (57) at ξ¼ 0:05, and we set the tolerance parameter in
convergence criterion (58) at ϖ.
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