
CHAPTER EIGHT

Advances in Numerical Dynamic
Programming and New Applications
Yongyang Cai and Kenneth L. Judd
Hoover Institution & NBER, USA

Contents

1. Introduction 480
2. Theoretical Challenges 481
3. Numerical Methods for Dynamic Programming 483

3.1 Outline of the Basic Value Function Iteration Algorithm 483
3.2 Typical Applications 484

3.2.1 Optimal Growth Example 485

3.2.2 Multistage Portfolio Optimization Example 486

4. Tools from Numerical Analysis 488
4.1 Optimization 488
4.2 Numerical Integration 488

4.2.1 Gauss-Hermite Quadrature 489

4.3 Approximation 489
4.3.1 Chebyshev Polynomial Approximation 490

4.3.2 Multidimensional Complete Chebyshev Polynomial Approximation 490

4.3.3 Shape-Preserving Chebyshev Interpolation 491

4.3.4 Shape-Preserving Hermite Interpolation 493

5. Shape-preserving Dynamic Programming 494
5.1 Application in Optimal Growth Problems 494
5.2 Application in Multistage Portfolio Optimization Example 496

5.2.1 Numerical Results of Shape-Preserving Rational Spline Hermite Interpolation 497

5.2.2 Other Shape-preservingMethods 499

6. Parallelization 500
6.1 The Variety of Parallel Programming Architectures 500
6.2 Parallel Dynamic Programming 502
6.3 Application to Stochastic Optimal Growth Models 504

6.3.1 Dynamic ProgrammingModel 505

6.3.2 Numerical Example 505

6.3.3 Parallelization Results 506

7. Dynamic Portfolio Optimization with Transaction Costs 507
7.1 Numerical Example 509

8. Dynamic Stochastic Integration of
Climate and Economy 510
8.1 A Stochastic IAM with Epstein-Zin Preferences 510
8.2 Dynamic Programming with Epstein-Zin Preferences 511

Handbook of Computational Economics, Volume 3 © 2014 Elsevier B.V.
ISSN 1574-0021, http://dx.doi.org/10.1016/B978-0-444-52980-0.00008-6 All rights reserved. 479

http://dx.doi.org/10.1016/B978-0-444-52980-0.00008-6


480 Yongyang Cai and Kenneth L. Judd

8.3 Numerical Examples 512
9. Conclusions 514
Acknowledgments 515
References 515

1. INTRODUCTION

All dynamic economic problems are multistage decision problems, and their non-
linearities make them numerically challenging. Dynamic programming is the standard
approach for any time-separable problem. If state variables and control variables are con-
tinuous, and the problem is a concave maximization problem, then its value function is
continuous, concave, and often differentiable. Any numerical procedure needs to approx-
imate the value function, but any such approximation will be imperfect since computers
cannot model the entire space of continuous functions. Many dynamic programming
problems are solved by value function iteration, where the period t value function is
computed from the period t + 1 value function, and the value function at the terminal
time T is known.

Dynamic programming problems can generally be formulated by the following Bell-
man equation (Bellman, 1957):

Vt(x, θ ) = max
a∈D(x,θ ,t)

ut(x, a) + βE
{
Vt+1(x+, θ+) | x, θ , a

}
,

s.t. x+ = gt(x, θ , a,ω),

θ+ = ht(θ , ε), (1)

where x is the vector of continuous state variables in R
d , and θ is an element of the

set of discrete state vectors,� = {θ j : 1 ≤ j ≤ D} ⊂ R
d′

(where D is the number of
different discrete state vectors in R

d′
). Vt(x, θ ) is the value function at time t ≤ T , and

the terminal value function, VT (x, θ ), is given. The decision maker chooses a vector of
action variables, a, where the choice is constrained by a ∈ D(x, θ , t). We let x+ denote
the value of the continuous state variables in the next period, and assume that the law of
motion is a time-specific function gt at time t. Similarly,θ+ is the next-stage discrete state
vector in � with a transition function ht at time t. The state transitions may be affected
by random shocks,ω and ε. At time t, the payoff flow is ut(x, a), and the overall objective
is to maximize the expected discounted sum of utility, using β as the discount factor.We
let E{·} denote the expectation operator.

To explain computational ideas that arise often in applications of dynamic program-
ming in economics, we will often use the simple case with no discrete states and no
random shocks, assumptions that simplify the Bellman equation (1) to

Vt(x) = � (Vt+1) (x) := max
a∈D(x,t)

ut(x, a) + βVt+1(x+),

s.t. x+ = gt(x, a), (2)



Advances in Numerical Dynamic Programming and New Applications 481

where � is the Bellman operator that maps the period t + 1 value function Vt+1 to the
period t value function Vt .The Bellman operator is possibly different at each time t, and
should be denoted �t .

This chapter focuses on the computational challenges of solving dynamic program-
ming problems. We first address the concerns over the “curse of dimensionality” often
raised in theoretical discussions of the computational complexity of solving dynamic pro-
gramming problems. If the curse of dimensionality were present in nearly all dynamic
programming problems then there would be little point in even attempting to solve mul-
tidimensional problems. We review the results in the complexity literature but point out
the features of a dynamic programming problem that may keep it from being a victim of
the curse of dimensionality. Sections 3 and 4 review the range of methods from numer-
ical analysis that we can use to construct efficient algorithms. Section 5 discusses the
importance of shape-preservation for constructing stable numerical implementations of
value function iteration. Section 6 discusses the use of massive parallelism to solve large
dynamic programming problems.

The combination of shape-preserving approximation methods and massive parallelism
allows us to solve problems previously considered too challenging for dynamic program-
ming. These ideas are being incorporated in work that extends the range of problems
analyzed by stochastic dynamic programming models. Section 7 discusses recent work
on portfolio decision making when there are transaction costs. The multidimensional
finite-horizon analysis of Section 7 shows us that we can now analyze life-cycle prob-
lems far more realistically than is currently the practice in quantitative economic analysis.
Section 8 presents a stochastic dynamic general equilibrium extension of DICE, a basic
model of interactions between climate and the economy. Previous analyses have been
limited by computational tools to examine only deterministic models of global climate
change. Section 8 shows that we can now analyze models that come far closer to analyzing
risks and uncertainty that are inherent in any discussion of climate change policy.

2. THEORETICAL CHALLENGES

There are two challenges in solving difficult dynamic programming problems. First,
numerical methods do not necessarily inherit the contraction properties of the Bellman
operator. This creates stability problems that become increasingly challenging as one
increases dimension. Second, dynamic programming is often said to suffer from the
“curse of dimensionality”; that is, the cost of solving a dynamic programming problem
may grow exponentially as the dimension increases. In this section we describe recent
theoretical work on these issues.

Rust (1997) and Rust et al. (2002) are two recent papers that prove that the curse of
dimensionality is a problem for large classes of dynamic programming problems. How-
ever, before one becomes too pessimistic about solving high-dimensional dynamic pro-
gramming problems, he should remember how the curse of dimensionality is defined.
First, it is always a statement about a set of dynamic programming problems, and,



482 Yongyang Cai and Kenneth L. Judd

second, it says that there is a sequence of problems in that set where the cost explodes
exponentially as the dimension rises.The underlying approach is the worst-case analysis.
More precisely, it means that for any algorithm, there is a sequence of dynamic pro-
gramming problems of increasing dimension such that the cost rises exponentially in the
dimension. Even if there is only one such example, we still say that there is a curse of
dimensionality.

This need not be a major concern. A proof of exponential complexity says nothing
about the average cost of using an algorithm to solve a problem. One way to pro-
ceed is to find algorithms that grow polynomially on average as dimension increases.
This would be a difficult direction, requiring the development of deep mathemati-
cal analysis. The other, and more practical, way to proceed is to find formulations of
economics problems that avoid the curse of dimensionality. Complexity theory pro-
vides guidance on that issue. While the literature is large, a very general treatment is
in Griebel and Wozniakowski (2006) which shows that, as long as an unknown func-
tion has sufficient smoothness, then there is no curse of dimensionality in computing its
derivatives or in approximating it from a finite sample of its values. Therefore, problems
with smooth payoffs, smooth transitions, and smooth value functions can avoid the curse
of dimensionality. Many problems in economics have no difficulty in satisfying these
requirements.

A second problem that arises in numerical solutions is that numerical value function
iteration may not be stable. To understand this issue, we need to recall the key property
of the Bellman operator. Assume that the Bellman operator � maps a bounded value
function V to a bounded function, where the state space of V is compact. The critical
feature of value function iteration is that� is a contraction in L∞,i.e.,

∥∥�( f ) − �( g)
∥∥∞ ≤

β
∥∥ f − g

∥∥∞, for any continuous and bounded functions f and g on the compact state
space, if β ∈ (0, 1). Numerical methods cannot represent V perfectly. Let L denote
the method used to approximate �(V ), implying that the approximation of �(V ) is
denoted by �̂ := L ◦�.Various errors in approximation and computing expectations can
prevent �̂ from being a contraction even though � is. This can lead to nonconvergence
or even divergence for numerical value function iteration based on �̂. Stachurski (2008)
discusses approximation structures in dynamic programming problems and their impact
on the stability of value function iteration. Stachurski shows that if L is nonexpansive,
i.e.,

∥∥L( f ) − L( g)
∥∥ ≤ ∥∥f − g

∥∥, then the operator �̂ is also a contraction mapping.
He exploits the contractiveness of �̂ to obtain error bounds for the approximate value
functions for general nonexpansive approximation methods.

Even though Stachurski discusses stationary infinite-horizon problems, these con-
siderations are equally important in finite-horizon dynamic programming, which is the
focus of this chapter. Even if the Bellman operator �t is different at each time t, it is still
a contraction operator on its domain. We still want each approximate Bellman operator
�̂t to have that same property. If, instead, the approximation method implies a possi-
bly expansive operator L, then successive applications of the �̂t operators may generate



Advances in Numerical Dynamic Programming and New Applications 483

spurious numerical errors and prevent accurate approximations of the value and pol-
icy functions. Therefore, the expansiveness considerations in Stachurski (2008) apply to
stability issues in finite-horizon dynamic programming.

Nonexpansiveness is related to the concept of shape-preserving approximation. Judd
and Solnick (1994) highlighted the computational advantages of such approximations,
where the “shapes” of greatest interest are monotonicity and convexity (or concavity).
Piecewise linear interpolation is an example of an approximation method which is both
nonexpansive and shape-preserving in one dimension. Stachurski (2008) points out that
some shape-preserving quasi-interpolants are also nonexpansive.

3. NUMERICALMETHODS FOR DYNAMIC PROGRAMMING

If state and control variables in a dynamic programming problem are continuous,
then the value function is a function in R

d , and must be approximated in some compu-
tationally tractable manner. It is common to approximate value functions with a finitely
parameterized collection of functions; that is, we choose some functional formV̂ (x; b),
where b is a vector of parameters, and approximate a value function, V (x), withV̂ (x; b)
for some parameter value b. For example,V̂ could be a linear combination of polyno-
mials where b would be the weights on polynomials. After the functional form is fixed,
a numerical method focuses on finding the vector of parameters, b, such thatV̂ (x; b)
approximately satisfies the Bellman equation for all times t.

3.1 Outline of the Basic Value Function Iteration Algorithm
Algorithm 1 presents the traditional value function iteration for solving the simple Bell-
man equation (2). In Algorithm 1, a numerical solution needs only to approximate the
value function and solve the optimization problem at a finite number of values for the
state variable.

Algorithm 1. Value Function Iteration for the Simple Dynamic Programming Model (2)

Initialization. Choose the approximation nodes, Xt = {xi
t : 1 ≤ i ≤ Nt} ⊂ R

d, for
every t < T, and choose a functional form forV̂ (x; b). Let V̂ (x; bT ) ≡ VT (x).Then for
t = T − 1, T − 2, . . . , 0, iterate through steps 1 and 2.

Step 1. Maximization step. Compute

vi = max
a∈D(xi ,t)

ut(xi, a) + βV̂ (x+; bt+1)

s.t. x+ = gt(xi, a),

for each xi ∈ Xt , 1 ≤ i ≤ Nt .
Step 2. Fitting step. Using an appropriate approximation method, compute the bt such that

V̂ (x; bt) approximates (xi, vi) data.



484 Yongyang Cai and Kenneth L. Judd

The more general case of stochastic dynamic programming and discrete state variables
is presented in Algorithm 2. The presence of stochastic disturbances implies the need to
compute the expected value function at the next period, which presents a new com-
putational challenge. The presence of discrete states does not create new computational
challenges because the representation of the value function is to create an approximation
over the continuous states x for each distinct discrete state. In particular, discrete states do
not increase the number of dimensions of the continuous portions of the value function.

Algorithm 2. Value Function Iteration for the General Dynamic Programming Model (1)

Initialization. Given a finite set of θ ∈ � = {θ j : 1 ≤ j ≤ D} ⊂ R
d′

and the probability
transition matrix P = (

pj, j′
)

D×D where pj, j′ is the transition probability from θ j ∈ � to

θ j′ ∈ � for 1 ≤ j, j′ ≤ D,choose a functional form forV̂ (x, θ; b) for all θ ∈ �,and choose
the approximation nodes, Xt = {xi

t : 1 ≤ i ≤ Nt} ⊂ R
d. LetV̂ (x, θ; bT ) = VT (x, θ ).

Then for t = T − 1, T − 2, . . . , 0, iterate through steps 1 and 2.
Step 1. Maximization step. Compute

vi, j = max
a∈D(xi ,θ j ,t)

ut(xi, θ j , a) + βE{V̂ (x+, θ+; bt+1)}, (3)

for each xi ∈ Xt and θ j ∈ �, 1 ≤ i ≤ Nt , 1 ≤ j ≤ D, where the next-stage discrete state
θ+ is random with probability mass function Pr(θ+ = θ j′ | θ j) = pj, j′ for each θ j′ ∈ �,
and x+ is the next-stage state transition from xi and may be also random.

Step 2. Fitting step. Using an appropriate approximation method, for each 1 ≤ j ≤ D,
compute bt

j , such that V̂ (x, θj; bt
j ) approximates {(xi, vi, j) : 1 ≤ i ≤ Nt} data, i.e.,

vi, j ≈V̂ (xi, θ j; bt
j ) for all xi ∈ Xt . Let bt = {

bt
j : 1 ≤ j ≤ D

}
.

Algorithm 2 includes three types of numerical problems. First, we need to solve a
maximization problem at each node xi ∈ Xt and θ j ∈ �. Second, the evaluation of the
objective requires us to compute an expectation. Third, we need to efficiently take the
data and compute the best fit for the new value function. The challenge is not only to
use good numerical methods for each of these steps but also to choose methods that are
compatible with each other and jointly lead to efficient algorithms. The next section
describes these choices in more detail. More detailed discussion can be found in Cai
(2010), Judd (1998), and Rust (2008).

3.2 Typical Applications
Dynamic programming has been applied to numerous economic problems. For the pur-
poses of this chapter, we use two basic applications familiar to readers. These examples
will allow us to later illustrate numerical methods in a clear manner.



Advances in Numerical Dynamic Programming and New Applications 485

3.2.1 Optimal Growth Example
We first illustrate our methods with a discrete-time optimal growth problem with one
good and one capital stock.1 The objective is to find the optimal consumption function
and the optimal labor supply function such that the total utility over the T -horizon time
is maximal, i.e.,

V0(k0) = max
c,l

T−1∑
t=0

β tu(ct , lt) + βT VT (kT ),

s.t. kt+1 = F(kt , lt) − ct , 0 ≤ t < T ,

k ≤ kt ≤ k̄, 1 ≤ t ≤ T ,

ct , lt ≥ ε, 0 ≤ t < T , (4)

where kt is the capital stock at time t with k0 given, ct is the consumption of the good,
lt is the labor supply, k and k̄ are given lower and upper bound of kt ,β is the discount
factor,F(k, l) = k + f (k, l) with f (kt , lt) the aggregate net production function,VT (x) is a
given terminal value function, and u(ct , lt) is the utility function, and ε is a small positive
number to avoid the nonpositive consumption or labor supply.

The dynamic programming version of the discrete-time optimal growth problem is
the Bellman equation:

Vt(k) = max
c,l

u(c, l) + βVt+1(k+),

s.t. k+ = F(k, l) − c,

k ≤ k+ ≤ k̄, c, l ≥ ε, (5)

for t < T , where VT (x) is the previously given terminal value function. Here k is the
state variable and (c, l) are the control variables.

Using dynamic programming does not make more traditional methods obsolete; in
fact, careful applications of dynamic programming will use traditional methods to check
solutions. For the finite-horizon optimal growth problem (4), when T is small, we can
use a good large-scale optimization package to solve the problem directly, and its solu-
tion could be better than the solution of the dynamic programming model (5) given by
numerical dynamic programming algorithms because of the numerical approximation
errors. Numerical dynamic programming is a problem in infinite-dimensional function
spaces and we do not know a priori how flexible our finite-dimensional approximations
need to be. Comparing our dynamic programming solution to the solutions from con-
ventional optimization methods can help us determine the amount of flexibility we need
to solve for the value function.

When we turn to stochastic versions of the growth model,dynamic programming must
be used since conventional optimization methods can no longer be used when either the

1 Please see Judd (1998) for a detailed description of this.



486 Yongyang Cai and Kenneth L. Judd

horizon or number of random states is large. However, as long as the complexity of
the value function is only moderately affected by the stochastic terms, the information
obtained from conventional methods applied to the deterministic problem will tell us
much about the value function for the stochastic problem.

3.2.2 Multistage Portfolio Optimization Example
We also illustrate our methods with a multistage portfolio optimization problem. Let
Wt be an amount of money planned to be invested at time t. Assume that available
assets for trading are k stocks and a bond, where the stocks have a random return vector
R = (R1, . . . , Rk) and the bond has a risk-free return Rf for each period. If St =
(St,1, . . . , St,k)� is a vector of money invested in the k risky assets at time t, then money
invested in the riskless asset is Bt = Wt − e�St , where e is a column vector of 1 s. Thus,
the wealth at the next stage is

Wt+1 = Rf (Wt − e�St) + R�St , (6)

for t = 0, 1, . . . , T − 1.
A simple multistage portfolio optimization problem is to find an optimal portfolio St

at each time t such that we have a maximal expected terminal utility, i.e.,

V0(W0) = max
St ,0≤t<T

E{u(WT )}, (7)

where WT is the terminal wealth derived from the recursive formula (6) with a given
W0, and u is the terminal utility function, and E{·} is the expectation operator.

The dynamic programming model of this multistage portfolio optimization problem is

Vt(W ) = max
B,S

E{Vt+1(Rf B + R�S)},
s.t. B + e�S = W , (8)

for t = 0, 1, . . . , T −1,where W is the state variable and S is the control variable vector,
and the terminal value function is VT (W ) = u(W ). We should add B ≥ 0 and S ≥ 0 as
bound constraints in the above dynamic programming model, if neither shorting stock
nor borrowing bond is allowed.

For small portfolio problems, conventional methods can be used. In the portfolio
optimization problem (7), if we discretize the random returns of k stocks as R = R( j) =
(R1, j , . . . , Rk, j) with probability qj for 1 ≤ j ≤ m, then it becomes a tree. Figure 1 shows
one simple tree with m = 2 and T = 2 for a portfolio with one bond and one stock.
The stock’s random return has a probability q1 to have a return R1,1, and the probability
q2 = 1 − q1 to have a return R1,2. So there are two scenarios at time 1: (W1,1, P1,1) and
(W1,2, P1,2), and four scenarios at time 2: (W2,1, P2,1), . . . , (W2,4, P2,4).



Advances in Numerical Dynamic Programming and New Applications 487

W0

P0,1

q1

q2

W1,1
P1,1

W1,2
P1,2

q1

q2

q1

q2

W2,1

P2,1

W2,2

P2,2

W2,3

P2,3

W2,4

P2,4

Figure 1 A binary tree with two periods.

In a mathematical formula, the probability of scenario j at time t + 1 is

Pt+1, j = Pt, [( j−1)/m]+1 · qmod( j, m)+1,

and the wealth at scenario j and time t + 1 is

Wt+1, j = Wt, [( j−1)/m]+1

(
Rf Bt, [( j−1)/m]+1 +

n∑
i=1

Ri, mod( j, m)+1Si, t, [( j−1)/m]+1

)
,

for 1 ≤ j ≤ mt+1 and 0 ≤ t < T . Here, W0,1 = W0 is a given initial wealth, P0,1 = 1,
mod( j, m) is the remainder of division of j by m, and [( j − 1)/m] is the quotient of
division of ( j − 1) by m. The goal is to choose optimal bond allocations Bt, j and stock
allocations St, j to maximize the expected terminal utility, i.e.,

max
mT∑
j=1

(PT , j · u(WT , j)). (9)

We should add Bt, j ≥ 0 and St, j ≥ 0 for all t, j as bound constraints in the tree model,
if neither shorting stock or borrowing bond is allowed. This tree method includes all
possible scenarios with their assigned probabilities.

The disadvantage of the tree method is that when m or T is large, the problem size will
exponentially increase and it will not be feasible for a solver to find an accurate solution.



488 Yongyang Cai and Kenneth L. Judd

In contrast, dynamic programming algorithms have no such disadvantage. As with the
growth model example, the cases where we can solve the portfolio problem exactly can
be used to evaluate the quality of our numerical dynamic programming methods.

Both of these examples are simple one-dimensional problems. Our examples below
will also discuss solutions to multidimensional versions of both the growth model and
the portfolio model.

4. TOOLS FROMNUMERICAL ANALYSIS

The previous section outlined the basic numerical challenges. In this section, we
review the tools from numerical analysis that we use to produce stable and efficient
algorithms.There are three main components in numerical dynamic programming:opti-
mization, approximation, and numerical integration.

4.1 Optimization
For value function iteration, the most time-consuming portion is the optimization step.
There are Nt optimization tasks at time t in Algorithm 1, one for each approximation
node. If the number of value function iterations is T , then the total number of optimiza-
tion tasks is

∑T
t=1 Nt . All these optimization tasks are relatively small problems with a

small number of choice variables. Algorithm performance depends on how quickly these
problems are solved.

If the value function approximation is not smooth, then the objective function of the
optimization problem in the maximization step is not smooth, forcing us to use methods
that can solve nonsmooth problems. If the value function approximation is smooth, we
can use Newton’s method and related methods for constrained nonlinear optimization
problems, which have a locally quadratic convergence rate.

We often use NPSOL (Gill et al., 1994), a set of Fortran subroutines for minimizing
a smooth function subject to linear and nonlinear constraints. The NPSOL libraries
may be called from a driver program in Fortran, C/C++, or MATLAB. NPSOL is an
appropriate optimization solver for dynamic programming applications in economics and
finance, since the optimization tasks in numerical dynamic programming are small-size
smooth problems.

4.2 Numerical Integration
In the objective function of the Bellman equation, we often need to compute the con-
ditional expectation of V (x+). When the random variable is continuous, we have to use
numerical integration to compute the expectation. Gaussian quadrature rules are often
applied in computing the integration.



Advances in Numerical Dynamic Programming and New Applications 489

4.2.1 Gauss-Hermite Quadrature
In the expectation operator of the objective function of the Bellman equation, if the
random variable has a normal distribution, then it will be good to apply the Gauss-
Hermite quadrature formula to compute the numerical integration. That is, if we want
to compute E{ f (Y )} where Y has a distribution N (μ, σ 2), then

E{ f (Y )} = (2πσ 2)−1/2
∫ ∞

−∞
f (y)e−(y−μ)2/(2σ 2)dy

= (2πσ 2)−1/2
∫ ∞

−∞
f (

√
2 σ x + μ)e−x2√

2σ dx

.= π− 1
2

m∑
i=1

ωi f (
√

2σxi + μ),

where ωi and xi are the Gauss-Hermite quadrature with m weights and nodes over
(−∞, ∞). If Y is log normal, i.e., log(Y ) has a distribution N (μ, σ 2), then we can
assume that Y = eX , where X ∼ N (μ, σ 2), thus

E{ f (Y )} = E{ f (eX )} .= π− 1
2

m∑
i=1

ωi f
(
e
√

2σxi+μ
)
.

See Judd (1998) for more details.
If we want to compute a multidimensional integration, we could apply the product

rule. For example,suppose that we want to compute E{ f (X )},where X is a random vector
with multivariate normal distribution N (μ,
) over R

n, where μ is the mean column
vector and 
 is the covariance matrix, then we could do the Cholesky factorization first,
i.e., find a lower triangular matrix L such that 
 = LL�. This is feasible as 
 must be a
positive semi-definite matrix from the covariance property.

4.3 Approximation
An approximation scheme consists of two parts: basis functions and approximation nodes.
Approximation nodes can be chosen as uniformly spaced nodes, Chebyshev nodes, or
some other specified nodes. From the viewpoint of basis functions, approximation meth-
ods can be classified as either spectral methods or finite element methods. A spectral
method uses globally nonzero basis functions φj(x) such thatV̂ (x; b) = ∑n

j=0 bjφj(x) is
a degree-n approximation. Examples of spectral methods include ordinary polynomial
approximation, Chebyshev polynomial approximation, and shape-preserving Chebyshev
polynomial approximation (Cai and Judd, 2013). In contrast, a finite element method
uses locally basis functions φj(x) that are nonzero over subdomains of the approxima-
tion domain. Examples of finite element methods include piecewise linear interpolation,
cubic splines, and B-splines. See Cai (2010), Cai and Judd (2010), and Judd (1998) for
more details.



490 Yongyang Cai and Kenneth L. Judd

4.3.1 Chebyshev Polynomial Approximation
Chebyshev polynomials on [−1, 1] are defined as Tj(z) = cos( j cos−1(z)). Economics
problems typically live on an interval [xmin, xmax]; if we let

Z (x) = 2x − xmin − xmax

xmax − xmin
,

then Tj(Z (x)) are Chebyshev polynomials adapted to [xmin, xmax] for j = 0, 1, 2, . . .These
polynomials are orthogonal under the weighted inner product:

〈
f , g

〉 = ∫ xmax

xmin
f (x)g(x)

w(x)dx with the weighting function w(x) = (
1 − Z(x)2

)−1/2
. A degree n Chebyshev

polynomial approximation for V (x) on [xmin, xmax] is

V̂ (x; b) =
n∑

j=0

bjTj(Z (x)), (10)

where b = {
bj
}

are the Chebyshev coefficients.
If we choose the Chebyshev nodes on [xmin, xmax]:xi = (zi +1)(xmax −xmin)/2+xmin

with zi = − cos ((2i − 1)π/(2m)) for i = 1, . . . , m, and Lagrange data {(xi, vi) : i =
1, . . . , m} are given (where vi = V (xi)), then the coefficients bj in (10) can be easily
computed by the following formula,

b0 = 1
m

m∑
i=1

vi,

bj = 2

m

m∑
i=1

viTj(zi), j = 1, . . . , n. (11)

The method is called the Chebyshev regression algorithm in Judd (1998).
When the number of Chebyshev nodes is equal to the number of Chebyshev coeffi-

cients, i.e., m = n + 1, then the approximation (10) with the coefficients given by (11)
becomes Chebyshev polynomial interpolation (which is a Lagrange interpolation), as
V̂ (xi; b) = vi, for i = 1, . . . , m.

4.3.2 Multidimensional Complete Chebyshev Polynomial Approximation
In a d-dimensional approximation problem, let the domain of the value function be{

x = (x1, . . . , xd) : xmin
j ≤ xj ≤ xmax

j , j = 1, . . . , d
}

,

for some real numbers xmin
j and xmax

j with xmax
j > xmin

j for j = 1, . . . , d. Let xmin =
(xmin

1 , . . . , xmin
d ) and xmax = (xmax

1 , . . . , xmax
d ).Then we denote [xmin, xmax] as the domain.



Advances in Numerical Dynamic Programming and New Applications 491

Let α = (α1, . . . ,αd) be a vector of nonnegative integers. Let Tα(z) denote the product
Tα1 (z1) · · · Tαd (zd) for z = (z1, . . . , zd) ∈ [−1, 1]d . Let

Z(x) =
(

2x1 − xmin
1 − xmax

1

xmax
1 − xmin

1
, . . . ,

2xd − xmin
d − xmax

d

xmax
d − xmin

d

)

for any x = (x1, . . . , xd) ∈ [xmin, xmax].
Using these notations, the degree-n complete Chebyshev approximation for V (x) is

V̂ n(x; b) =
∑

0≤|α|≤n

bαTα (Z(x)) , (12)

where |α| = ∑d
j=1 αj for the nonnegative integer vector α = (α1, . . . ,αd). So the number

of terms with 0 ≤ |α| = ∑d
j=1 αi ≤ n is

( n+d
d

)
for the degree-n complete Chebyshev

approximation in R
d .

4.3.3 Shape-Preserving Chebyshev Interpolation
One problem for Chebyshev interpolation is the absence of shape-preservation in the
algorithm.To solve this,Cai and Judd (2013) create an optimization problem that modifies
the Chebyshev coefficients so that concavity and monotonicity of the value function will
be preserved. We begin with the Lagrange data {(xi, vi) : 1 ≤ i ≤ m} generated by the
maximization step of Algorithm 1, where xi are the approximation nodes and vi is the
value of the unknown function at xi. If theory tells us that the true value function is strictly
increasing and concave, then add constraints to the fitting criterion that will impose shape
restrictions.

Specifically, we approximate the value function using the functional form

V̂ (x; b) =
n∑

j=0

(
b+

j − b−
j

)
Tj (Z(x)) , (13)

where we replaced bj in the Eq. (10) by b+
j −b−

j with b+
j , b−

j ≥ 0,and we use the Chebyshev
nodes xi as approximation nodes.We choose some points yi′ (i′ = 1, . . . , m′), called shape
nodes, and impose the requirement that V̂ (x; b) satisfies the shape conditions at the shape
nodes. We want to choose the parameters b to minimize approximation errors but also
satisfy the shape conditions. We can get a perfect fit and satisfy shape conditions if we
allow n to be sufficiently large, but the problem may have too many solutions.We can be
sure to get a shape-preserving Chebyshev interpolant by adding enough shape-preserving
constraints and using a sufficiently high degree ( bigger than (m −1)) polynomial, but we
again could have multiple solutions and end up with a more complex polynomial than
necessary.



492 Yongyang Cai and Kenneth L. Judd

To allow for the flexibility necessary to have both interpolation and shape properties,
we penalize the use of high-order polynomials. Therefore, we solve the following linear
programming problem:

min
bj ,b

+
j ,b−

j

m−1∑
j=0

(b+
j + b−

j ) +
n∑

j=m

( j + 1 − m)2(b+
j + b−

j ),

s.t.
n∑

j=0

bjT ′
j (yi′ ) > 0, i′ = 1, . . . , m′,

n∑
j=0

bjT ′′
j (yi′ ) < 0, i′ = 1, . . . , m′,

n∑
j=0

bjTj (zi) = vi, i = 1, . . . , m,

bj − b̂j = b+
j − b−

j , j = 0, . . . , m − 1,

bj = b+
j − b−

j , j = m, . . . , n,

b+
j , b−

j ≥ 0, j = 1, . . . , n, (14)

where zi = − cos ((2i − 1)π/(2m)) = Z(xi) for i = 1, . . . , m.
This problem includes interpolation among the constraints as well as the shape con-

ditions, but chooses the polynomial with the smallest total weighted penalty, and is biased
toward low-degree polynomials since a higher degree term is penalized more.The expres-
sion b+

j −b−
j represents bj with b+

j , b−
j ≥ 0,implying |bj| = b+

j +b−
j .The simple Chebyshev

interpolation coefficients b̂j give us a good initial guess. Therefore, we actually solve for
the deviations of the Chebyshev coefficients from the simple Chebyshev interpolation
coefficients.

The yi′ are pre-specified shape nodes in [−1, 1] for shape-preserving constraints. We
often need to use more shape points than just the m approximation nodes since polynomial
approximation need not preserve shape. There is no obvious best way to choose these
points. One logical possibility is to use Chebyshev nodes corresponding to the zeroes
of a degree m′ > m Chebyshev polynomial; however, we have no reason to think this is
the best. The strong approximation properties of Chebyshev interpolation do not apply
directly since shape-preservation is a one-sided inequality condition whereas Chebyshev
interpolation is excellent for L∞ approximation, a two-sided concept. Another choice,
one that we use in our examples, is to use m′ > m equally spaced points. For any method
we use, we may not know how many we need when we begin, so one must test the
resulting solution on many more points, and increase the set of shape nodes if shape has
not been preserved. As long as the value function has bounded derivatives, it is obvious
that there is some finite number of shape constraints that will impose shape.



Advances in Numerical Dynamic Programming and New Applications 493

Moreover, the interpolation constraints imply that n + 1, the number of Chebyshev
polynomials used in the value function approximation, needs to be greater than the
number of interpolation nodes since we need to satisfy m interpolation equality constraints
and 2m′ shape-preserving constraints in (14).

4.3.4 Shape-Preserving Hermite Interpolation
The shape-preserving Chebyshev interpolation imposes many additional shape-preserving
constraints in the fitting problem and are computationally more demanding than desir-
able.There has been much effort developing shape-preserving and Hermite interpolation;
see, for example, the survey paper in Goodman (2001). Most methods produce splines and
are global, with all spline parameters depending on all the data. Judd and Solnick (1994)
applied Schumaker shape-preserving polynomial splines (Schumaker, 1983) in optimal
growth problems, but Schumaker splines are costly because they require creating new
nodes each time a value function is constructed.

Cai and Judd (2012a) present an inexpensive shape-preserving rational function spline
Hermite interpolation for a concave,monotonically increasing function. Suppose we have
the Hermite data {(xi, vi, si) : i = 1, . . . , m}, where xi are the approximation nodes, vi

is the value of the unknown function at xi, and si is its slope at xi. With these data, we
approximate the value function on the interval [xi, xi+1] with

V̂ (x; b) = bi1 + bi2(x − xi) + bi3bi4(x − xi)(x − xi+1)
bi3(x − xi) + bi4(x − xi+1)

, (15)

for x ∈ [xi, xi+1], where

bi1 = vi,

bi2 = vi+1 − vi

xi+1 − xi
,

bi3 = si − bi2,

bi4 = si+1 − bi2, (16)

for i = 1, . . . , m − 1.V̂ (x; b) is obviously C∞ on each interval (xi, xi+1), and C1 globally.
This is a local method because the rational function interpolant on each interval

[xi, xi+1] depends only on the level and slope information at the endpoints. Moreover,
V̂ (x; b) is shape-preserving. If the data is consistent with a concave increasing value
function, i.e., si > bi2 > si+1 > 0, then straightforward computations show thatV̂

′
(x; b) >

0 and V̂
′′
(x; b) < 0 for all x ∈ (xi, xi+1), that is, it is increasing and concave in the interval

(xi, xi+1). It is also cheaply computed since the approximation on each interval depends
solely on the data at its endpoints. This approach does not require adding new nodes
to the spline or the determination of free parameters, features that are common in the
shape-preserving polynomial spline literature.



494 Yongyang Cai and Kenneth L. Judd

5. SHAPE-PRESERVING DYNAMIC PROGRAMMING

Algorithm 1 is a general method for solving deterministic dynamic programming
problems,but it may fail.Theory tells us that if Vt+1(x) is concave and monotone increas-
ing then Vt(x) is also concave and monotone increasing. However, this may fail in Algo-
rithm 1.Theory assumes that we solve the maximization step at each state butAlgorithm 1
solves the maximization step at only a finite number of states and produce a finite amount
of Lagrange data {(xi, vi) : i = 1, . . . , mt}. This data may be consistent with concavity,
but many methods of fitting a curve to the data will produce approximations for Vt(x)
that violate either monotonicity or concavity, or both. If Vt(x) is not concave or mono-
tone increasing, then those errors will produce errors when we compute Vt−1(x). These
problems may create significant errors in approximating the value functions as we iterate
backward in time. This is not just a theoretical possibility; an example in Section 5.1
illustrates how these problems can arise easily. In any case, if the value function approxi-
mations violate basic shape properties that we know are satisfied by the true solution, we
know that we have bad approximations.

This possibly explains the tendency of economists to use piecewise linear approxi-
mations of value functions since piecewise linear approximations automatically preserve
shape. While this may solve the shape problems, it causes other problems. If one uses
piecewise linear approximations, then one needs to use many nodes to construct a good
approximation, and the optimization problems in Algorithm 1 have nondifferentiable
objective functions, a feature that rules out the use of fast Newton-type solvers. The
alternatives, such as bisection, will be much slower. Also, the piecewise linear approxima-
tion approach only works for one-dimensional problems.

Dynamic programming problems in economics often make assumptions that imply
monotone increasing, concave, and C3 value functions. It is natural to impose those prop-
erties on the value function approximations inAlgorithm 1.The optimization step will be
a smooth convex optimization problem for which it is easy to find the global optimum.

5.1 Application in Optimal Growth Problems
We use the following numerical examples of the finite-horizon optimal growth model (4)
to illustrate the importance of the shape-preserving property. In the following examples,
we let α = 0.25,β = 0.99, γ = 8, η = 1, A = (1−β)/(αβ), and T = 20. Let the range
of k be [0.1, 1.9], i.e., k = 0.1 and k̄ = 1.9. And we choose ε = 10−6 in the model (4).
The production function is f (k, l) = Akα l1−α, and the utility function is a power utility
with the following form

u(c, l) = (c/A)1−γ − 1
1 − γ

− (1 − α)
l1+η − 1
1 + η

.



Advances in Numerical Dynamic Programming and New Applications 495

0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

time t

LInf errors for consumption

interpolation w/o
shape−preservation
shape−preserving
interpolation

0 5 10 15 20
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

time t

L1 errors for consumption

interpolation w/o
shape−preservation
shape−preserving
interpolation

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time t

LInf errors for labor

interpolation w/o
shape−preservation
shape−preserving
interpolation

0 5 10 15 20
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

time t

L1 errors for labor

interpolation w/o
shape−preservation
shape−preserving
interpolation

Figure 2 Errors of numerical dynamic programming with Chebyshev interpolation with/without
shape-preservation for growth problems.



496 Yongyang Cai and Kenneth L. Judd

Thus the steady state of the infinite-horizon deterministic optimal growth problems is
kss = 1 while the optimal consumption and the optimal labor supply at kss are,respectively,
css = A and lss = 1. Moreover, the utility at the steady state is 0 and then the true value
function at the steady state is also 0.This normalization of the typical power utility from
the economic literature not only helps avoid scaling issues but also gives us a simple
criterion to check if a numerical solution is close to the true solution.

We choose the terminal value function as

VT (k) = u( f (k, 1), 1)
1 − β

.

We see that the terminal value function is smooth and concave, and the optimal controls
will not be binding at least at the next-to-the-last stage t = T − 1. Thus, it is supposed
that polynomial approximation methods could approximate the value functions well.We
use the solutions given by directly applying SNOPT (Gill et al., 2005) in the model (4)
as the true solutions.

Figure 2 illustrates how Chebyshev interpolation without shape-preservation pro-
duces bad approximations. Figure 2 contains four graphs corresponding to combinations
of L∞ and L1 norms with the controls, consumption, and labor supply. Each graph
contains two lines; the solid line displays errors for Chebyshev interpolation without
shape-preservation, and the broken line displays errors with shape-preservation. Each
line shows the relative errors of consumption or labor supply using either the L∞ or the
L1 norm. Shape was imposed at m′ = 20 equally spaced nodes in (14).

Figure 2 first shows that the errors are substantial when we ignore shape constraints.
The errors are particularly large for later periods, and do decrease as we iterate backwards
in time but they do not disappear.This example is a relatively easy problem,with infinitely
smooth utility and production functions.

The second conclusion from Figure 2 is that shape-preservation substantially reduces
the errors. Furthermore, the errors are uniformly small across time.The functional form
of the approximation is a degree-9 polynomial for both methods in Figure 2; hence,
the problem when we ignore shape constraints is not that there is no good degree-9
polynomial approximation of the value function. The only difference between the two
procedures is the imposition of shape constraints, constraints that we know are satisfied
by the true value function.

5.2 Application in Multistage Portfolio Optimization Example
We use the multistage portfolio optimization model (7) with one stock and one bond
available for investment to show the shape-preservation is even more crucial when there
is a kink in the optimal solutions. We assume that the number of periods is T = 6, the



Advances in Numerical Dynamic Programming and New Applications 497

bond has a risk-free return Rf = 1.04, and the stock has a discrete random return

R =
{

0.9, with probability 1/2,
1.4, with probability 1/2.

(17)

Let the range of initial wealth W0 be [0.9, 1.1]. The terminal utility function is

u(W ) = (W − K )1−γ

1 − γ

with γ = 2 and K = 0.2 so that the terminal wealth should be always bigger than
0.2. Moreover, we assume that borrowing or shorting is not allowed in this example, i.e.,
Bt ≥ 0 and St ≥ 0 for all t.

Since the terminal utility function is u(WT ) = (WT − K )1−γ /(1 − γ ), we know that
the terminal wealth WT must be always larger than K . It follows that we should have
Wt > KRt−T

f . Thus, since shorting or borrowing is not allowed and R is bounded, we
choose the ranges [W t , W t] for approximating value functions as

W t+1 = max
{
min(R)W t , KRt−T

f + ε
}

,

W t+1 = max(R)W t , (18)

with a given initial wealth bound [W 0, W 0], where ε > 0 is a small number.
Specifically, for the numerical example with K = 0.2, Rf = 1.04, min(R) = 0.9, and

max(R) = 1.4, after we choose W 0 = 0.9 and W 0 = 1.1, we have[
W 1, . . . , W 6

] = [0.81, 0.729, 0.656, 0.590, 0.531, 0.478],[
W 1, . . . , W 6

] = [1.54, 2.156, 3.018, 4.226, 5.916, 8.282].

We see that the ranges are expanding exponentially along time t. If we use a fixed
range along time t in our numerical dynamic programming algorithms, then it will
definitely reduce the accuracy of solutions. So here we choose the above ranges at times
t = 0, 1, . . . , 5.

5.2.1 Numerical Results of Shape-Preserving Rational Spline
Hermite Interpolation

We use the shape-preserving rational function spline Hermite interpolation (15) to solve
the multistage portfolio optimization problem (7), and compare it with earlier methods.
To evaluate the accuracy of our method, we compare it to the true solution. The value
function has no closed-form expression because of the borrowing constraints.An example
with a closed-form solution would have been too easy for our method to solve. The
borrowing constraint makes this more challenging because the bond strategy has a kink
at the largest wealth where it binds. However, we can compute the true solution for any



498 Yongyang Cai and Kenneth L. Judd

0.9 0.95 1 1.05 1.1

−6

−5

−4

−3

−2

−1

0

Wealth, t=0

lo
g 10

(e
rro

rs
 o

f B
0/W

0)

Chebyshev interpolation using Lagrange data
Chebyshev−Hermite interpolation using Hermite Data
Rational spline interpolation using Hermite Data

Figure 3 Errors of optimal bond allocations from numerical dynamic programming.

initial wealth using the tree method (9).The tree method solves for the state-contingent
values of all variables at all nodes in the decision tree. We solve the tree model using
MINOS (Murtagh and Saunders,1982) inAMPL code (Fourer et al.,1990) via the NEOS
server (Czyzyk et al., 1998). We use the true solution to measure the accuracy of our
dynamic programming algorithm and compare it with the accuracy of other methods.
The presence of a borrowing constraint also means we should approximate the value
function, which will be C2, not the policy function which may only be C0. Polynomial
approximation theory tells us to focus on approximating the smoother function.

Figure 3 shows relative errors for bond allocations of alternative dynamic program-
ming algorithms. The squares are errors of solutions of dynamic programming with
Chebyshev interpolation using Lagrange data, the x-marks are errors of dynamic pro-
gramming with Chebyshev-Hermite interpolation using Hermite data, and the solid
points are errors of dynamic programming with the rational function spline interpola-
tion using Hermite data. All the computational results are given by MINOS (Murtagh
and Saunders, 1982) in AMPL (Fourer et al., 1990) via the NEOS server (Czyzyk et al.,
1998). For dynamic programming with Chebyshev interpolation or dynamic program-
ming with Chebyshev-Hermite interpolation, we use m = 10 Chebyshev nodes and
degree-9 or degree-19 Chebyshev polynomials, respectively. For the rational function
spline interpolation, we use m = 10 equally spaced nodes.



Advances in Numerical Dynamic Programming and New Applications 499

Table 1 Errors of optimal bond allocations for various γ .

γ Number of approximation nodes Errors at time t = 1

2 10 1.1 × 10−6

4 20 7.3 × 10−4

40 1.1 × 10−4

8 20 3.9 × 10−3

40 5.3 × 10−4

We see that the errors are about O(10−1) or O(10−2) for Chebyshev interpolation
using Lagrange data, while they are about O(10−3) or O(10−4) for Chebyshev-Hermite
interpolation (Cai and Judd, 2012b) using Hermite data. However, the errors of the
rational function spline Hermite interpolation is always about O(10−6), showing that it
has the best performance for approximating value functions.

Table 1 lists numerical errors of optimal bond allocations from dynamic programming
with the rational function spline interpolation, for various values of γ . We see that even
for large γ , the solutions from dynamic programming with the rational function spline
interpolation are still good.

Our new approximation method was always as fast as any of the other algorithms.
Therefore, the shape-preserving rational function spline Hermite interpolation is reliable
and often substantially better than other approximation methods.

5.2.2 Other Shape-preservingMethods
There are many methods for preserving shape (see Goodman,2001) but many are not suit-
able for our purposes. The one-dimensional Schumaker shape-preserving interpolation
method (Schumaker, 1983) was applied to dynamic programming in Judd and Solnick
(1994) and Cai (2010). However, the approximation is more complex than the ones dis-
cussed above, and is at best C1 whereas Newton solvers really prefer C2 or smoother value
function approximations. Wang and Judd (2000) applied a bivariate shape-preserving
spline interpolation method (Costantini and Fontanella, 1990) in numerical dynamic
programming to solve a savings allocation problem. However, the bivariate method only
preserved shape along the coordinate axes, whereas the shape-preserving Chebyshev
interpolation method (Cai and Judd, 2013) can be generalized to higher dimensions
and impose shape restrictions in any direction. The mathematics literature on shape-
preserving approximation is mostly focused on one- or two-dimensional problems, forc-
ing economists to develop their own methods when solving higher dimensional dynamic
programming problems.



500 Yongyang Cai and Kenneth L. Judd

6. PARALLELIZATION

Many dynamic programming problems in economics involve many states, and solv-
ing them will face the “curse of dimensionality.” Even if one uses approximation and
quadrature methods that avoid the curse of dimensionality, dynamic programming prob-
lems with many states are expensive to solve. If parallelization can be used, it is the natural
way to make otherwise intractable problems tractable. Many modern computer systems
now offer researchers parallel computing tools. Fortunately,dynamic programming prob-
lems do have a structure that facilitates the use of parallelization.

Cai et al. (2013b) implement a parallel dynamic programming algorithm on a com-
putational grid consisting of loosely coupled processors, possibly including clusters and
individual workstations. The grid changes dynamically during the computation, as pro-
cessors enter and leave the pool of workstations.The algorithm is implemented using the
Master-Worker library running on the HTCondor grid computing platform.We imple-
ment value function iteration for large optimal growth problems. We present examples
that solve in hours on HTCondor but would take weeks if executed on a single work-
station.The use of HTCondor can increase a researcher’s computational productivity by
at least two orders of magnitude.

In the value function iteration,a set of discrete and approximation nodes will be chosen
and the period t value function at those nodes will be computed and then we can use some
approximation methods to approximate the value function. For every approximation
node, there is a time-consuming optimization problem to be solved. Moreover, these
optimization problems are independent, allowing them to be solved efficiently in parallel.

6.1 The Variety of Parallel Programming Architectures
There are three basic approaches to massive parallelism. Supercomputing is a well-known
example of massive parallelism. Supercomputers combine large numbers of identical pro-
cessors with specialized communication hardware that allows for rapid communication
among processors. This is called high-performance computing (HPC). Supercomput-
ers are able to solve some very large problems at high efficiency. However, attaining
these speeds puts rigid requirements on problems. Users of supercomputers are gener-
ally given a fixed block of processors for a fixed amount of time. This structure requires
that users reserve supercomputer time, and the lag time between requests and the actual
allocation will increase with the number of desired processors and requested time. More-
over, economists face substantial bureaucratic hurdles in getting access to supercomputer
time because the people who control supercomputers impose requirements that are met
by few economists. In particular, the authors have been told that US Department of
Energy supercomputers available to the general scientific community are not available to
economists who want to analyze policy issues, such as taxation problems.



Advances in Numerical Dynamic Programming and New Applications 501

Second, there is high-throughput computing (HTC) which may be slower but is a
paradigm with much greater flexibility and lower cost. HTCondor is an example of
HTC and a valuable alternative to HPC. The HTCondor system is an open-source
software framework for distributed parallelization of computationally intensive tasks on a
cluster of computers. HTCondor accumulates a set of desired tasks from users, and then
allocates them to those computers that are not being used at the moment. HTCondor
acts as a management tool for identifying, allocating, and managing available resources
to solve large distributed computations. For example, if a workstation on a network is
currently unused, HTCondor will detect that fact, and send it a task. HTCondor will
continue to use that workstation until a higher-priority user (such as a student sitting
at the keyboard) appears, at which time HTCondor ends its use of the workstation.
This is called “cycle scavenging” and allows a system to take advantage of essentially free
computing time.The marginal social cost of CPU time used in HTCondor is essentially
zero because it is using CPU time that otherwise would go unused. HTCondor manages
the number of processors being used in response to processor availability and the needs of
the computational procedure. HTC is opportunistic, utilizing any resource that becomes
available and does not force the user to make reservations.The disadvantage of HTC is that
interprocessor communication will be only as fast as communication among computers
in a cluster, a speed considerably slower than that in supercomputers. While this does
limit the amount of parallelization that can be exploited, HTC environments can still
efficiently use hundreds of processors for many problems.

The HTCondor team at the University of Wisconsin-Madison has developed several
“flavors” of HTCondor, each fine-tuned for some specific type of parallel programming.
For our dynamic programming problems,we used the HTCondor Master-Worker (MW)
system.The HTCondor MW system consists of two entities:a master process and a cluster
of worker processes. The master process decomposes the problem into small tasks and
puts those tasks in a queue. Each worker process first examines the queue, takes the
“top” problem off the queue, and solves it. The worker then sends the results to the
master, examines the queue of unfinished tasks, and repeats this process until the queue
is empty. The workers’ execution is a simple cycle: take a task off master’s queue, do the
task, and then send the results to the master. While the workers are solving the tasks, the
master collects the results and puts new tasks on the queue. This is a file-based, remote
I/O scheme that serves as the message-passing mechanism between the master and the
workers.

Third, there is grid computing which spreads work across computers connected only
by the Internet. While the authors are not aware of any economics applications of grid
computing,it is used extensively in the sciences. See BOINC ( http://boinc.berkeley.edu)
for a discussion of grid computing applied to scientific projects.

Based on our experiences,we believe that all three forms of massive parallelism can be
used to solve large dynamic programming problems. Our discussion below will focus on

http://boinc.berkeley.edu


502 Yongyang Cai and Kenneth L. Judd

our use of HTCondor, but the same basic approach will work on both supercomputers
and grid computing.

6.2 Parallel Dynamic Programming
The numerical dynamic programming algorithms can be applied easily in the HTCondor
MW system for dynamic programming problems with multidimensional continuous and
discrete states. To solve these problems, numerical dynamic programming algorithms
with value function iteration have the maximization step that is mostly time-consuming
in numerical dynamic programming. Equation (3) in Algorithm 2 computes vi, j for
each approximation point xi in the finite set Xt ⊂ R

n and each discrete state vector
θ j ∈ �, where Nt is the number of points of Xt and D is the number of points of �,
resulting in Nt × D small maximization problems. If the Nt × D is large, as it is for
high-dimensional problems, then these maximization steps will consume most of the
time used in any algorithm. However, these Nt × D small-size maximization problems
can be naturally parallelized in the HTCondor MW system, in which one or several
maximization problem(s) could be treated as one task.

We first present an example where we parallelize the problem across the discrete states.
After that presentation, we will indicate how to parallelize in the continuous dimensions
of the state space.

When D is large but the number of approximation nodes, Nt , is of medium size,
it is natural to separate the Nt × D maximization problems into D tasks, where each
task corresponds to a discrete state vector θ j and all continuous state nodes set Xt .
Algorithm 3 is the architecture for the master processor, and Algorithm 4 is the cor-
responding architecture for the workers.

Algorithm 3. Parallel Dynamic Programming with Value Function Iteration for the
Master

Initialization. Given a finite set of θ ∈ � = {θ j : 1 ≤ j ≤ D} ⊂ R
d′

. Set bT as the
parameters of the terminal value function. For t = T − 1, T − 2, . . . , 0, iterate
through steps 1 and 2.

Step 1. Separate the maximization step into D tasks, one task per θ ∈ �. Each task
contains parameters bt+1, stage number t, and the corresponding task identity for
some θ j . Then send these tasks to the workers.

Step 2. Wait until all tasks are done by the workers. Then collect parameters bt
j from

the workers, for all 1 ≤ j ≤ D, and let bt = {bt
j : 1 ≤ j ≤ D}.



Advances in Numerical Dynamic Programming and New Applications 503

Algorithm 4. Parallel Dynamic Programming with Value Function Iteration for the
Workers

Initialization. Given a finite set of θ ∈ � = {θ j : 1 ≤ j ≤ D} ⊂ R
d′

and the
probability transition matrix P = (

pj, j′
)

D×D where pj, j′ is the transition probability

from θ j ∈ � to θ j′ ∈ � for 1 ≤ j, j′ ≤ D. Choose a functional form forV̂ (x, θ; b)
for all θ ∈ �.

Step 1. Get parameters bt+1, stage number t, and the corresponding task identity for
one θ j ∈ � from the master, and then choose the approximation grid, Xt = {xi

t :
1 ≤ i ≤ Nt} ⊂ R

d .
Step 2. For this given θ j , compute

vi, j = max
a∈D(xi ,θ j ,t)

u(xi, θ j , a) + βE{V̂ (x+, θ+; bt+1)},

for each xi ∈ Xt , 1 ≤ i ≤ Nt ,where the next-stage discrete state θ+ ∈ � is random
with probability mass function P(θ+ = θ j′ | θ j) = pj, j′ for each θ j′ ∈ �, and x+ is
the next-stage state transition from xi and may be also random.

Step 3. Using an appropriate approximation method, compute bt
j such that

V̂ (x, θ j; bt
j ) approximates {(xi, vi, j): 1 ≤ i ≤ Nt}, i.e., vi, j ≈ V̂ (xi, θ j; bt

j ) for all
xi ∈ Xt .

Step 4. Send bt
j and the corresponding task identity for θ j to the master.

Algorithm 3 describes the master’s function. Suppose that the value function for time
t + 1 is known, and the master wants to solve for the value function at period t. For
each point θ ∈ �, the master gathers all the Bellman optimization problems associated
with that θ , together with the solution for the next period’s value function, and sends
that package of problems to a worker processor. It does this until all workers are working
on some such package. When the master receives the solutions from a worker, it records
those results and sends that worker another package of problems not yet solved. This
continues until all θ specific packages have been solved, at which point the master repeats
this for period t − 1.

Algorithm 4 describes the typical worker task. It takes the θ j package from the master,
solves the Bellman optimization problem for each node in Xt , and computes the new
value for bt

j , the coefficients for the value function in the θ j dimension, and sends those
coefficients back to the master.

The case where we parallelize only across the discrete dimensions is easy to implement,
and is adequate if the number of available workers is small relative to the number of points
in �. If we have access to more workers, then we will also parallelize across points in Xt .
The key difference in that case is that each worker can only compute some of the vi, j values



504 Yongyang Cai and Kenneth L. Judd

needed to determine bt
j . One way to proceed is to send all the vi, j values to the master

which then executes the fitting step, or, if that is too demanding, the master will send
that task to a worker to compute bt

j . See Cai et al. (2013b) for more details on this case.
Our parallelization examples of economic problems, as described above, have used

only the most basic techniques for coordinating computation among processors. There
are many other places where parallelization might be useful. For example, if the Bellman
optimization problem corresponding to a single point (xi, θ j) in the state space were itself
a large problem, and we had a large number of processors, then it might be useful to use
a parallel algorithm to solve each such state-specific problem. There are many possible
ways to decompose the big problem into smaller ones and exploit the available processors.
We have discussed only the first two layers of parallelization that can be used in dynamic
programming. How fine we go depends on the number of processors at our disposal and
the communication times across computational units.

6.3 Application to Stochastic Optimal Growth Models
We consider a multidimensional stochastic optimal growth problem.We assume that there
are d sectors,and let kt = (kt,1, . . . , kt,d) denote the capital stocks of these sectors which is a
d-dimensional continuous state vector at time t. Let θt = (

θt,1, . . . , θt,d
) ∈ � = {θ j

t : 1 ≤
j ≤ D} ⊂ R

d denote current productivity levels of the sectors which is a d-dimensional
discrete state vector at time t, and assume that θt follows a Markov process with a stable
probability transition matrix, denoted as θt+1 = g(θt , ξt) where ξt are i.i.d. disturbances.
Let lt = (

lt,1, . . . , lt,d
)

denote elastic labor supply levels of the sectors which is a d-
dimensional continuous control vector variable at time t. Assume that the net production
function of sector i at time t is f (kt,i, lt,i, θt,i), for i = 1, . . . , d. Let ct = (

ct,1, . . . , ct,d
)

and It = (
It,1, . . . , It,d

)
denote, respectively, consumption and investment of the sectors

at time t. We want to find an optimal consumption and labor supply decisions such that
expected total utility over a finite-horizon time is maximized, i.e.,

V0(k0, θ0) = max
kt ,It ,ct ,lt

E

{
T−1∑
t=0

β tu(ct , lt) + βT VT (kT , θT )

}
,

s.t. kt+1, j = (1 − δ)kt,j + It,j + εt,j , j = 1, . . . , d,

�t,j = ζ

2
kt,j

(
It,j

kt,j
− δ

)2

, j = 1, . . . , d,

d∑
j=1

(
ct,j + It,j − δkt,j

) =
d∑

j=1

(
f (kt,j , lt,j , θt,j) − �t,j

)
,

θt+1 = g(θt , ξt),



Advances in Numerical Dynamic Programming and New Applications 505

where k0 and θ0 are given,δ is the depreciation rate of capital,�t,j is the investment adjust-
ment cost of sector j, and ζ governs the intensity of the friction, εt = (

εt,1, . . . , εt,d
)

are
serially uncorrellated i.i.d. disturbances with E{εt,i} = 0, and VT (k, θ ) is a given terminal
value function. This model is the finite-horizon version of the problems introduced in
Den Haan et al. (2011), and Juillard andVillemot (2011).

6.3.1 Dynamic ProgrammingModel
The dynamic programming formulation of the multidimensional stochastic optimal
growth problem is

Vt(k, θ ) = max
c,l,I

u(c, l) + βE
{
Vt+1(k+, θ+) | θ} ,

s.t. k+
j = (1 − δ)kj + Ij + εj , j = 1, . . . , d,

�j = ζ

2
kj

(
Ij

kj
− δ

)2

, j = 1, . . . , d,

d∑
j=1

(
cj + Ij − δkj

) =
d∑

j=1

(
f (kj , lj , θj) − �j

)
,

θ+ = g(θ , ξt),

for t = 0, . . . , T − 1, where k = (k1, . . . , kd) is the continuous state vector and θ =
(θ1, . . . , θd) ∈ � = {(ϑj,1, . . . ,ϑj,d): 1 ≤ j ≤ D} is the discrete state vector, c =
(c1, . . . , cd), l = (l1, . . . , ld), and I = (I1, . . . , Id) are control variables, ε = (ε1, . . . , εd)
are i.i.d. disturbance with mean 0, and k+ = (k+

1 , . . . , k+
d ) and θ+ = (

θ+
1 , . . . , θ+

d

) ∈ �
are the next-stage state vectors. Numerically, V (k, θ ) is approximated with given values
at finite nodes, so the approximation is only good at a finite range. That is, the state
variable must be in a finite range [k, k̄], then we should have the restriction k+ ∈ [k, k̄].
Here k = (k1, . . . , kd), k̄ = (k̄1, . . . , k̄d), and k+ ∈ [k, k̄] denotes that k+

i ∈ [ki, k̄i] for all
1 ≤ i ≤ d. Moreover, we should add c > 0 and l > 0 in the constraints.

6.3.2 Numerical Example
In the following numerical example,we see the application of parallelization of numerical
dynamic programming algorithms for the dynamic programming model of the multi-
dimensional stochastic optimal growth problem. We let T = 5,β = 0.8, δ = 0.025,
ζ = 0.5, [k, k̄] = [0.2, 3.0]d , f (ki, li, θi) = θiAkψi l1−ψ

i with ψ = 0.36 and A =
(1 − β)/(ψβ) = 1, for i = 1, . . . , d, and

u(c, l) =
d∑

i=1

[
(ci/A)1−γ − 1

1 − γ
− (1 − ψ)

l1+η
i − 1
1 + η

]
,

with γ = 2 and η = 1.



506 Yongyang Cai and Kenneth L. Judd

In this example, we let d = 4. So this is a dynamic programming example with four-
dimensional continuous states and four-dimensional discrete states. Here we assume that
the possible values of θi are in {0.85, 0.9, 0.95, 1.0, 1.05, 1.1, 1.15}. We assume that if
the current state is i then there is a 25% chance of moving to i − 1, 25% chance of
moving to i + 1, and 50% chance of staying, except at the boundaries where there is
a reflecting boundary. We assume that θ+

1 , . . . , θ+
d are independent of each other. In

addition, we assume that ε1, . . . , ε4 are i.i.d., and each εi has possible discrete values in
{−0.01, 0.0, 0.01}, while their probabilities are 0.25, 0.5, and 0.25, respectively.

The continuous value function approximation is the complete degree-6 Chebyshev
polynomial approximation method (12) with 74 = 2401 Chebyshev nodes for continuous
state variables, the optimizer is NPSOL (Gill et al., 1994), and the terminal value function
is chosen as

VT (k, θ ) = u( f (k, e, e), e)/(1 − β),

where e is the vector with 1’s everywhere. Here e is chosen because it is the steady-state
labor supply for the corresponding infinite-horizon problem and is also the average value
of θ .

6.3.3 Parallelization Results
We use the master Algorithm 3 and the worker Algorithm 4 to solve the optimal growth
problem. Since the number of possible values of θi is 7 for i = 1, . . . , 4, the total number
of HTCondor-MW tasks for one value function iteration is 74 = 2401, and each task
computes 2401 small-size maximization problems as there are 2401 Chebyshev nodes.

Under HTCondor, we assign 50 workers to do this parallel work. Table 2 lists some
statistics of our parallel dynamic programming algorithm under HTCondor-MW system
for the growth problem after running three value function iterations (VFI).The last line of
Table 2 shows that the parallel efficiency of our parallel numerical dynamic programming
method is very high (up to 98.6%) for this example. We see that the total CPU time
used by all workers to solve the optimal growth problem is nearly 17 days, i.e., it will
take nearly 17 wall clock days to solve the problem without using parallelism. However,
it takes only 8.28 wall clock hours to solve the problem if we use the parallel algorithm
and 50 worker processors.

Table 3 gives the parallel efficiency with various numbers of worker processors for
this optimal growth model.We see that it has an almost linear speed-up when we add the
number of worker processors from 50 to 200. We see that the wall clock time to solve
the problem is only 2.26 h now if the number of worker processors increases to 200.

Parallel efficiency drops from 99% to 92% when we move from 100 processors to
200.This is not the critical fact for a user.The most important fact is that requesting 200



Advances in Numerical Dynamic Programming and New Applications 507

processors reduced the waiting time from submission to final output by 1.6 h. Focusing
on the user’s waiting time is one of the values of the HTC approach to parallelization.

7. DYNAMIC PORTFOLIO OPTIMIZATION
WITH TRANSACTION COSTS

Any investment strategy involves dynamic management of assets, spelling out when
one trades assets for other assets—rebalancing a portfolio—or for cash to finance con-
sumption. Conventional theory assumes there are no costs to asset trades. This is not
true of real markets. Even if conventional brokerage fees are small, the presence of any
bid-ask spread is essentially a transaction cost since the sale price is less than the purchase
price.The presence of even small transaction costs can have significant impact on invest-
ment strategies; for example, Judd et al. (2012) show that even infinitesimal transaction
costs reduce bond portfolio rebalancing to nearly zero. Therefore, any examination of
real-world dynamic portfolio management needs to consider these frictions.

Multistage portfolio optimization problems with transaction costs have been studied
in many papers (seeAbrams and Karmarkar,1980;Boyle and Lin,1997;Brown and Smith,
2011; Constantinides, 1976, 1979, 1986; Gennotte and Jung, 1994; Kamin, 1975; Zabel,
1973,etc.).The key insight is that transaction costs create a“no-trade region”(NTR);that
is, no trading is done if the current portfolio is inside the no-trade region, and otherwise
the investor trades to some point on the boundary of the no-trade region.

Multistage portfolio optimization problems with transaction costs assume that there
are k risky assets (“stocks”) and/or a riskless asset (“bank account” paying a fixed interest
rate r) traded during the period [0, T ]. In our discrete-time analysis,portfolio adjustments
are made at time t = 0, 1, . . . , T −1.Trades are made to maximize the investor’s expected
utility over terminal wealth (T is the terminal time) and/or consumption during [0, T ].
If the major transaction cost is the bid-ask spread, then a proportional transaction costs is
the correct case to study.

Cai (2010),Cai and Judd (2010),and Cai et al. (2013c) introduce application of numer-
ical dynamic programming algorithms in multistage portfolio optimization problems with

Table 2 Statistics of parallel dynamic programming
under HTCondor-MW for the growth problem.

Wall clock time for threeVFIs 8.28 h
Total time workers were assigned 16.9 days
Average wall clock time per task 199 s
Number of (different) workers 50
Overall parallel performance 98.6%



508 Yongyang Cai and Kenneth L. Judd

Table 3 Parallel efficiency for various number of worker processors.

# Worker Parallel Average task wall Total wall
processors efficiency (%) clock time (s) clock time (h)

50 98.6 199 8.28
100 97 185 3.89
200 91.8 186 2.26

transaction costs, and showed that the method performs very well for the problems with
three or more risky assets and T ≥ 6 with general utility functions. We assume that an
investor begins with some wealth W0 and initial investment allocation x0 accros several
risky assets, and manages it so as to maximize the expected utility of wealth at time T ,
while there exist transaction costs at each rebalancement time.We assume a power utility
function for terminal wealth, VT (W ) = W 1−γ /(1 − γ ) where γ > 0 and γ �= 1. A
multistage portfolio optimization problem with transaction costs is to find an optimal
portfolio xt at each time t such that we have a maximal expected terminal utility, i.e.,

V0(W0, x0) = max
xt ,0≤t<T

E{VT (WT )},

where WT is the terminal wealth with the given initial wealth W0 and initial allocation
x0 in the risky assets.

Let R = (R1, . . . , Rn) be the random one-period return of n risky assets, and Rf be
the return of the riskless asset.The portfolio share for asset i at the beginning of a period
is denoted xi. The state variables are the wealth W and allocations x = (x1, . . . , xn)�
invested in the risky assets at the beginning of a period. The difference between wealth
and the wealth invested in stocks is invested in bonds.We assume a proportional transaction
cost τ for all sales and purchases of the risky assets. Let δ+

i W denote the amount of asset i
purchased, expressed as a fraction of wealth, and let δ−

i W denote the amount sold,where
δ+, δ− ≥ 0. Let e denote the column vector where ei = 1 for all i.

The dynamic programming problem becomes

Vt(W , x) = max
δ+,δ−≥0

E
{
Vt+1(W +, x+)

}
,

where X+
i ≡ Ri(xi +δ+

i −δ−
i )W is time t +1 wealth in asset i, m ≡ e�(δ+ −δ− +τ (δ+ +

δ−)) where mW is the change in bond holding, W + ≡ e�X+ + Rf (1 − e�x − m)W
is time t + 1 wealth, and x+ ≡ X+/W + is the vector of risky asset allocations. Given
the isoelasticity of VT , we know that Vt(W , x) = W 1−γ gt(x), for some functions gt (x),
t = 0, 1, . . . , T − 1. The numerical task reduces to approximating the gt (x) functions.



Advances in Numerical Dynamic Programming and New Applications 509

7.1 Numerical Example
We assume three stocks and one bond, where the stock returns are log-normally dis-
tributed, log(R) ∼ N (μ,
),μ = (0.0572, 0.0638, 0.07), and


 =
⎡
⎣ 0.0256 0.00576 0.00288

0.00576 0.0324 0.0090432
0.00288 0.0090432 0.04

⎤
⎦ .

We assume a power terminal value function with γ = 3.5, a transaction cost of τ = 0.01
and Rf = 1.0408.We use the degree-7 complete Chebyshev polynomial approximation
method and a multidimensional product Gauss-Hermite quadrature rule with 9 nodes
in each dimension to compute expectations. We assume a T = 6 investment horizon.

The key property of the solution is a no-trade region �t for t = 0, . . . , 5. When
xt ∈ �t , the investor will not trade at all, and when xt /∈ �t , the investor will trade to
some point on the boundary of�t . Since the value function has the form W 1−γ gt (x), the
optimal portfolio rules and the “no-trade” regions �t are independent of W . Figure 4
shows the no-trade regions for periods t = 0, 5.We see that the no-trade region grows as
t approaches T . This corresponds to the intuition that an investor is not likely to adjust
his portfolio if he has to pay transaction costs and the holding time is short.

0.1

0.2

0.3

0.4

0.1

0.2

0.3

0.4

0.1

0.2

0.3

0.4

0.1

0.2

0.3

0.4

0.1

0.2

0.3

0.4

0.1

0.2

0.3

0.4

t= 0 t= 5

Figure 4 No-trade regions.



510 Yongyang Cai and Kenneth L. Judd

8. DYNAMIC STOCHASTIC INTEGRATIONOF
CLIMATE AND ECONOMY

The examples presented above are simple ones that do not require the most advanced
computational tools. In this section we described a far more ambitious use of numerical
dynamic programming, and is a much better demonstration of the potential power of
efficient dynamic programming.

There is growing concern about the impact of human activity on the climate. The
global climate system is complex and its response to future increases in anthropogenic
GHGs is poorly understood. Any rational policy choice must take into account the
uncertainty about the magnitude and timing of climate change on economic produc-
tivity. This section describes the use of numerical dynamic programming algorithms
to solve DSICE (Cai et al., 2012b, 2013a), a model of dynamic stochastic integration
of climate and economy. DSICE is a DSGE extension of the DICE2007 model of
William Nordhaus (Nordhaus, 2008). It is a well-known model used to examine var-
ious issues. One focus of research is estimating the expected social marginal cost of an
extra ton of carbon in the atmosphere. This was, for example, the application of DICE
used by IWG (2010).

The major contribution of DSICE is the ability to flexibly consider the importance
of social attitudes toward risk.We know from the equity premium literature (Mehra and
Prescott, 1985) that the standard, time-separable specifications of consumer preferences
are incapable of modeling how people feel about risk. Kreps and Porteus (1978) have
argued that there could be value in early resolution of uncertainty, and Epstein and Zin
(1989) preferences have explored the implications of this for asset pricing.

Cai et al. (2012b, 2013a) build on Cai et al. (2012a) and combine standard fea-
tures of DSGE models—productivity shocks, dynamic optimizing agents, and short time
periods—with DICE2007, and adds uncertainty about the climate’s response to green-
house gases. Specifically, it examined the impact of “tipping points” (see also Lontzek
et al., 2012). A tipping point is an event that is triggered by warming and has a perma-
nent impact on economic productivity. Lenton et al. (2008) discuss examples of possible
tipping points.

8.1 A Stochastic IAMwith Epstein-Zin Preferences
This section briefly describes the DSICE model and summarizes its conclusions. See Cai
et al. (2012b, 2013a), for more details.

Let Mt = (MAT
t , MUP

t , M LO
t )� be a three-dimensional vector describing the car-

bon concentrations in the atmosphere, and upper and lower levels of the ocean. These
concentrations evolve over time according to:

Mt+1 = �MMt + (Et (kt ,μt) , 0, 0)� ,



Advances in Numerical Dynamic Programming and New Applications 511

where �M is a linear transition matrix, and Et (kt ,μt) is the annual total carbon emissions
dependent on the capital kt and the fraction of potential emissions that are mitigated,μt .
The anthropogenic sources of carbon are represented by the Et , which will be specified
below.The DICE climate system also includes temperatures of the atmosphere and ocean,
represented by Tt = (T AT

t , T LO
t )�. The temperatures follow the law of motion

Tt+1 = �TTt + (
ξ1Ft

(
MAT

t

)
, 0
)�

,

where �T is a linear transition matrix. Atmospheric temperature is affected by the total
radiative forcing, Ft

(
MAT

)
, dependent on the atmospheric carbon concentration.

The impact of global warming on the economy is reflected by a simple damage
function in DICE. Our damage function includes a term Jt which represents damage
to output due to the tipping point. Jt = 0 if tipping has not occurred by time t, and
0 < Jt < 1 at all times t after a tipping event. The likelihood of tipping depends on
current temperature. Thus, the stochastic damage factor in DSICE is

�
(
T AT

t , Jt
) = 1 − Jt

1 + π1T AT
t + π2(T AT

t )2
,

where the denominator represents the standard damage function from the DICE2007
model.

Capital kt follows the rule

kt+1 = (1 − δ)kt + Yt(kt , T AT
t ,μt , Jt) − ct ,

where ct denotes the consumption level and Yt denotes the production function,which is
affected by the damage factor,�

(
T AT

t , Jt
)
, the capital kt , and the emission control rate μt .

8.2 Dynamic Programming with Epstein-Zin Preferences
The standard separable utility function in the finite-horizon DICE2007 class of models is

u(ct , lt) = (ct/lt)
1−ψ

1 − ψ
lt , (19)

where lt is the total labor supply (and population). DSICE assumes a social planner max-
imizes the present-discounted utility stream up to a terminal time T (600 years), using
Epstein-Zin preferences.

The dynamic optimization problem has six continuous state variables: the capital stock,
k, the three-dimensional carbon system,M, and the two-dimensional temperature vector,
T. Furthermore, J is the discrete shock to the climate. The recursive formulation of the



512 Yongyang Cai and Kenneth L. Judd

social planner’s objective is

Ut (k, M, T, J ) = max
c,μ

{
(1 − β) u(ct , lt) +

β
[
E

{(
Ut+1

(
k+, M+, T+, J+))1−γ}] 1−ψ

1−γ
} 1

1−ψ
,

where ψ is the inverse of the intertemporal elasticity of substitution,γ is the risk aversion
parameter, and β is the discount factor. The actual risk premium will depend on inter-
actions between ψ and γ . The special case of ψ = γ is the time-separable specification
where both parameters represent both risk aversion and the elasticity of substitution. In
general, increasing γ will correspond to a greater willingness to sacrifice consumption
to avoid risk. We use Epstein-Zin preferences because they are better at explaining the
willingness to pay to reduce risk.This is the conclusion from the literature on the equity
premium puzzle.

The dynamic optimization problem can be formulated in terms of the value function

Vt (k, M, T, J ) = [Ut (k, M, T, J )]1−ψ

(1 − ψ) (1 − β)
,

which implies the following Bellman equation:

Vt(k, M, T, J ) = max
c,μ

u(ct , lt) + β

1 − ψ
×

[
E

{(
(1 − ψ) Vt+1

(
k+, M+, T+, J+)) 1−γ

1−ψ
}] 1−ψ

1−γ
,

s.t. k+ = (1 − δ)kt + Yt(k, T AT,μ, J ) − ct ,

M+ = �MM + (Et (k,μ) , 0, 0)� ,

T+ = �TT + (
ξ1Ft

(
MAT) , 0

)�
,

J+ = gJ ( J , T,ωJ ), (20)

for t = 0, 1, . . . , 599. The terminal value function V600 is the terminal value function
given in Cai et al. (2012a).

8.3 Numerical Examples
We implement our numerical dynamic programming to analyze how the optimal carbon
tax is affected by different preference parameters combined with various tipping point
events.We first solve a benchmark case with standard parameter assumptions.We cover a
broad range of values for the degree of risk aversion γ and the reciprocal of the intertem-
poral elasticity of substitution ψ , representing empirical work that aims to estimate these



Advances in Numerical Dynamic Programming and New Applications 513

Year

Carbon Tax whenψ=2 

2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
0

20

40

60

80

100

120

140

160

180

200
Range of all sample paths
5% quantile
10% quantile
20% quantile
path with no tipping

Figure 5 Carbon tax in the benchmark scenario.

parameters. In this section, we present the qualitative results of the benchmark case. The
reader is referred to Cai et al. (2013a) for the specific parameter values and results of
other cases.

Figure 5 illustrates the typical dynamic path for the carbon tax. The lower dotted
line represents the optimal carbon tax if no tipping were expected. The upper envelope
in Figure 5 represents at each time t, the carbon tax if there has not yet been a tipping
event. We call this the pre-tipping carbon tax. In contrast, the lower envelope in general
represents the carbon tax in the post-tipping regime. Figure 5 also displays the timing of
some sample tipping events. For example, the first drop (which is at year 2025 in Figure 5)
is the first tipping out of our 1000 simulations. By the middle of this century about 5%
of the simulated paths have generated a tipping point and by the end of the 21st century
more than 20% of the paths have exhibited a tipping point.

The key fact to note in Figure 5 is the effect of the possible tipping event on the carbon
tax. At the initial period (year 2005), the optimal carbon tax is $54, while it is $37 in the
case when the tipping point does not exist, a significant increase. Furthermore, note that
the extra carbon tax due to the anticipated tipping event is roughly constant. Figure 5
illustrates an unexpected decomposition of the optimal carbon tax: the deterministic
component of damages implies a growing carbon tax in the optimal policy, but the



514 Yongyang Cai and Kenneth L. Judd

stochastic damages caused by the uncertain time of tipping imply a near constant increase
in the optimal carbon tax.

Different assumptions about tastes, technology, and climate will produce different
optimal carbon tax paths. However, the example in Figure 5 as well as many others in
Cai et al. (2012a) clearly show that the stochastic component must be modeled explicitly
via stochastic dynamic programming. No certainty equivalent can make the distinction
between the sure damages and the uncertain damages. This is a clear example of where
multidimensional dynamic programming is essential to arrive at an important insight
regarding greenhouse gas policy.

9. CONCLUSIONS

Dynamic economic problems are analyzed with dynamic programming meth-
ods. Solving the complex economic multidimensional problems that economists study
requires reliable and efficient algorithms. This chapter has reviewed a few of the key
elements of any such effort, but recognizes that there is much left to be done regarding
both mathematical methods and efficient utilization of available hardware.

For example, further development of multidimensional approximation methods is
needed. Using sparse grid methods (Malin et al. (2011) contains an informative discussion
of Smolyak’s method,a sparse grid method used in economics) would dramatically reduce
the number of points we use in our state space, but perhaps at the cost of not preserving
shape. Numerical dynamic programming presents novel mathematical challenges due to
the multiple objectives of using few points, computing an approximation that has small
errors in a traditional metric such as L∞, as well as computing an approximation that
satisfies qualitative criteria such as monotonicity and curvature constraints.We suspect that
algorithms that find efficient solutions to such approximation problems will themselves
be computationally intensive, but in developing those methods we should remember
that intensive computations will be worth the effort if the resulting value functions are
evaluated thousands, or even millions, of times in later iterations.

By its definition, computational methods depend on the properties of computers, the
hardware. As hardware changes, we will want to exploit novel features and capabilities.
For example, the newest innovation in basic hardware is the exploding use of graphical
processing units (GPUs) and the potential partnerships between GPUs and conventional
CPUs in supercomputers. Hardware innovations are an essential part of the evolution of
computational methods,and those developing methods will often find that new hardware
alters the tradeoffs that must be balanced when creating numerical methods.

Hopefully this chapter will suffer the same fate as many other such chapters reviewing
the state-of-the-art in computational tools and soon be viewed as being primitive and
hopelessly out of date. Such is the nature of computational science.



Advances in Numerical Dynamic Programming and New Applications 515

ACKNOWLEDGMENTS
Cai and Judd gratefully acknowledge NSF support (SES-0951576), and thank Karl Schmedders and three
anonymous referees for their helpful comments.

REFERENCES
Abrams,R.A.,Karmarkar,U.S.,1980. Optimal multiperiod investment-consumption policies. Econometrica

48 (2), 333–353.
Bellman, R., 1957. Dynamic Programming. Princeton University Press.
Boyle, P.P., Lin, X., 1997. Optimal portfolio selection with transaction costs. North American Actuarial

Journal 1 (2), 27–39.
Brown, D.B., Smith, J.E., 2011. Dynamic portfolio optimization with transaction costs: heuristics and dual

bounds. Management Science 57 (10), 1752–1770.
Cai,Y., 2010. Dynamic Programming and Its Application in Economics and Finance. PhD Thesis, Stanford

University.
Cai,Y., Judd, K.L., 2010. Stable and efficient computational methods for dynamic programming. Journal of

the European Economic Association 8 (2–3), 626–634.
Cai,Y., Judd, K.L., 2012a. Dynamic programming with shape-preserving rational spline Hermite interpola-

tion. Economics Letters 117 (1), 161–164.
Cai,Y., Judd,K.L., 2012b. Dynamic programming with Hermite approximation. NBERWorking Paper No.

18540.
Cai,Y., Judd, K.L., 2013. Shape-preserving dynamic programming. Mathematical Methods of Operations

Research 77 (3), 407–421.
Cai,Y., Judd,K.L.,Lontzek,T.S., 2012a. Continuous-time methods for integrated assessment models. NBER

Working Paper No. 18365.
Cai,Y., Judd, K.L., Lontzek, T.S., 2012b. DSICE: a dynamic stochastic integrated model of climate and

economy. RDCEP Working Paper No. 12-02.
Cai,Y., Judd, K.L., Lontzek,T.S., 2013a.The social cost of stochastic and irreversible climate change. NBER

Working Paper No. 18704.
Cai,Y., Judd,K.L.,Thain,G.,Wright, S., 2013b. Solving dynamic programming problems on a computational

grid. NBER Working Paper No. 18714.
Cai,Y., Judd, K.L., Xu, R., 2013c. Numerical solution of dynamic portfolio optimization with transaction

costs. NBER Working Paper No. 18709.
Constantinides, G.M., 1976. Optimal portfolio revision with proportional transaction costs: extension to

HARA utility functions and exogenous deterministic income. Management Science 22 (8), 921–923.
Constantinides, G.M., 1979. Multiperiod consumption and investment behavior with convex transaction

costs. Management Science 25, 1127–1137.
Constantinides,G.M.,1986. Capital market equilibrium with transaction costs. Journal of Political Economy

94 (4), 842–862.
Costantini, P., Fontanella, F., 1990. Shape-preserving bivariate interpolation. SIAM Journal of Numerical

Analysis 27, 488–506.
Czyzyk, J., Mesnier, M., Moré, J., 1998. The NEOS Server. IEEE Journal on Computational Science and

Engineering 5, 68–75.
Den Haan,W.J., Judd, K.L., Juillard, M., 2011. Computational suite of models with heterogeneous agents II:

multi-country real business cycle models. Journal of Economic Dynamics & Control 35, 175–177.
Epstein, L.G., Zin, S.E., 1989. Substitution, risk aversion, and the temporal behavior of consumption and

asset returns: a theoretical framework. Econometrica 57 (4), 937–969.
Fourer, R., Gay, D.M., Kernighan, B.W., 1990. Modeling language for mathematical programming. Man-

agement Science 36, 519–554.
Gennotte, G., Jung,A., 1994. Investment strategies under transaction costs: the finite horizon case. Manage-

ment Science 40 (3), 385–404.
Gill, P., Murray,W., Saunders, M.A.,Wright, M.H., 1994. User’s Guide for NPSOL 5.0: a Fortran Package

for Nonlinear Programming. Technical Report, SOL, Stanford University.

http://refhub.elsevier.com/B978-0-444-52980-0.00008-6/h0005
http://refhub.elsevier.com/B978-0-444-52980-0.00008-6/h0010
http://refhub.elsevier.com/B978-0-444-52980-0.00008-6/h0015
http://refhub.elsevier.com/B978-0-444-52980-0.00008-6/h0020
http://refhub.elsevier.com/B978-0-444-52980-0.00008-6/h0025
http://refhub.elsevier.com/B978-0-444-52980-0.00008-6/h0030
http://refhub.elsevier.com/B978-0-444-52980-0.00008-6/h0035
http://refhub.elsevier.com/B978-0-444-52980-0.00008-6/h0040
http://refhub.elsevier.com/B978-0-444-52980-0.00008-6/h0075
http://refhub.elsevier.com/B978-0-444-52980-0.00008-6/h0080
http://refhub.elsevier.com/B978-0-444-52980-0.00008-6/h0085
http://refhub.elsevier.com/B978-0-444-52980-0.00008-6/h0090
http://refhub.elsevier.com/B978-0-444-52980-0.00008-6/h0095
http://refhub.elsevier.com/B978-0-444-52980-0.00008-6/h0100
http://refhub.elsevier.com/B978-0-444-52980-0.00008-6/h0105
http://refhub.elsevier.com/B978-0-444-52980-0.00008-6/h0110
http://refhub.elsevier.com/B978-0-444-52980-0.00008-6/h0115


516 Yongyang Cai and Kenneth L. Judd

Gill,P.,Murray,W.,Saunders,M.A.,2005. SNOPT:an SQP algorithm for largescale constrained optimization.
SIAM Review 47 (1), 99–131.

Goodman,T.N.T.,2001. Shape preserving interpolation by curves. In:Proceedings of the 2001 International
Symposium, pp. 24–35.

Griebel, M., Wozniakowski, H., 2006. On the optimal convergence rate of universal and nonuniversal
algorithms for multivariate integration and approximation. Mathematics of Computation 75 (255),
1259–1286.

Interagency Working Group on Social Cost of Carbon, 2010. Social Cost of Carbon for Regula-
tory Impact Analysis under Executive Order 12866. United States Government. <http://www.
whitehouse.gov/sites/default/files/omb/inforeg/for-agencies/Social-Cost-of-Carbon-for-RIA.pdf>.

Judd, K.L., 1998. Numerical Methods in Economics. The MIT Press.
Judd, K.L., Solnick, A., 1994. Numerical dynamic programming with shape-preserving splines. Hoover

Institution.
Judd, K.L., Kubler, F., Schmedders, K., 2012. Bond ladders and optimal portfolios. Review of Financial

Studies 24 (12), 4123–4166.
Juillard, M.,Villemot, S., 2011. Multi-country real business cycle models: accuracy tests and test bench.

Journal of Economic Dynamics & Control 35, 178–185.
Kamin, J.H., 1975. Optimal portfolio revision with a proportional transaction cost. Management Science

21 (11), 1263–1271.
Kreps, D.M., Porteus, E.L., 1978. Temporal resolution of uncertainty and dynamic choice theory. Econo-

metrica 46 (1), 185–200.
Lenton, T.M., Held, H., Kriegler, E., Hall, J., Lucht, W., Rahmstorf, S., Schellnhuber, H.J., 2008. Tipping

elements in the Earth’s climate system. PNAS 105, 1786–1793.
Lontzek,T.S., Cai,Y., Judd, K.L., 2012. Tipping Points in a Dynamic Stochastic IAM. RDCEP Working

Paper No. 12-03.
Malin, B.A., Krueger, D., Kubler, F., 2011. Solving the multi-country real business cycle model using a

Smolyak collocation method. Journal of Economic Dynamics & Control 35, 229–239.
Mehra, R., Prescott, E.C., 1985. The equity premium: a puzzle. Journal of Monetary Economics 15 (2),

145–161.
Murtagh, B., Saunders, M., 1982. A projected Lagrangian algorithm and its implementation for sparse

nonlinear constraints. Mathematical Programming Study 16, 84–117.
Nordhaus, W.D., 2008. A Question of Balance: Weighing the Options on Global Warming Policies. Yale

University Press.
Rust, J., 1997. Using randomization to break the curse of dimensionality. Econometrica 65 (3) 487–516.
Rust, J., 2008. Dynamic programming. In: Durlauf, Steven N., Blume, Lawrence E. (Eds.), New Palgrave

Dictionary of Economics, second ed. Palgrave Macmillan.
Rust, J.,Traub, J.F.,Wozniakowski, H., 2002. Is there a curse of dimensionality for contraction fixed points

in the worst case? Econometrica 70 (1), 285–329.
Schumaker, L., 1983. On shape-preserving quadratic spline interpolation. SIAM Journal of Numerical

Analysis 20, 854–864.
Stachurski, J., 2008. Continuous state dynamic programming via nonexpansive approximation. Computa-

tional Economics 31, 141–160.
Wang,S.-P., Judd,K.L.,2000. Solving a savings allocation problem by numerical dynamic programming with

shape-preserving interpolation. Computers & Operations Research 27 (5), 399–408.
Zabel,E., 1973. Consumer choice, portfolio decisions, and transaction costs. Econometrica 41 (2), 321–335.

http://refhub.elsevier.com/B978-0-444-52980-0.00008-6/h0125
http://refhub.elsevier.com/B978-0-444-52980-0.00008-6/h0135
http://www.whitehouse.gov/sites/default/files/omb/inforeg/for-agencies/Social-Cost-of-Carbon-for-RIA.pdf
http://refhub.elsevier.com/B978-0-444-52980-0.00008-6/h0145
http://refhub.elsevier.com/B978-0-444-52980-0.00008-6/h0150
http://refhub.elsevier.com/B978-0-444-52980-0.00008-6/h0155
http://refhub.elsevier.com/B978-0-444-52980-0.00008-6/h0160
http://refhub.elsevier.com/B978-0-444-52980-0.00008-6/h0165
http://refhub.elsevier.com/B978-0-444-52980-0.00008-6/h0170
http://refhub.elsevier.com/B978-0-444-52980-0.00008-6/h0175
http://refhub.elsevier.com/B978-0-444-52980-0.00008-6/h0185
http://refhub.elsevier.com/B978-0-444-52980-0.00008-6/h0195
http://refhub.elsevier.com/B978-0-444-52980-0.00008-6/h0200
http://refhub.elsevier.com/B978-0-444-52980-0.00008-6/h0205
http://refhub.elsevier.com/B978-0-444-52980-0.00008-6/h0210
http://refhub.elsevier.com/B978-0-444-52980-0.00008-6/h0215
http://refhub.elsevier.com/B978-0-444-52980-0.00008-6/h0220
http://refhub.elsevier.com/B978-0-444-52980-0.00008-6/h0225
http://refhub.elsevier.com/B978-0-444-52980-0.00008-6/h0230
http://refhub.elsevier.com/B978-0-444-52980-0.00008-6/h0235
http://refhub.elsevier.com/B978-0-444-52980-0.00008-6/h0240

	8 Advances in Numerical Dynamic Programming and New Applications
	1 Introduction
	2 Theoretical Challenges
	3 Numerical Methods for Dynamic Programming
	3.1 Outline of the Basic Value Function Iteration Algorithm
	3.2 Typical Applications
	3.2.1 Optimal Growth Example
	3.2.2 Multistage Portfolio Optimization Example


	4 Tools from Numerical Analysis
	4.1 Optimization
	4.2 Numerical Integration
	4.2.1 Gauss-Hermite Quadrature

	4.3 Approximation
	4.3.1 Chebyshev Polynomial Approximation
	4.3.2 Multidimensional Complete Chebyshev Polynomial Approximation
	4.3.3 Shape-Preserving Chebyshev Interpolation
	4.3.4 Shape-Preserving Hermite Interpolation


	5 Shape-preserving Dynamic Programming
	5.1 Application in Optimal Growth Problems
	5.2 Application in Multistage Portfolio Optimization Example
	5.2.1 Numerical Results of Shape-Preserving Rational Spline Hermite Interpolation
	5.2.2 Other Shape-preserving Methods


	6 Parallelization
	6.1 The Variety of Parallel Programming Architectures
	6.2 Parallel Dynamic Programming
	6.3 Application to Stochastic Optimal Growth Models
	6.3.1 Dynamic Programming Model
	6.3.2 Numerical Example
	6.3.3 Parallelization Results


	7 Dynamic Portfolio Optimization with Transaction Costs
	7.1 Numerical Example

	8 Dynamic Stochastic Integration of Climate and Economy
	8.1 A Stochastic IAM with Epstein-Zin Preferences
	8.2 Dynamic Programming with Epstein-Zin Preferences
	8.3 Numerical Examples

	9 Conclusions
	Acknowledgments
	References


