
Math Meth Oper Res (2013) 77:407–421
DOI 10.1007/s00186-012-0406-5

ORIGINAL ARTICLE

Shape-preserving dynamic programming

Yongyang Cai · Kenneth L. Judd

Published online: 9 September 2012
© Springer-Verlag 2012

Abstract Dynamic programming is the essential tool in dynamic economic analysis.
Problems such as portfolio allocation for individuals and optimal growth of national
economies are typical examples. Numerical methods typically approximate the value
function and use value function iteration to compute the value function for the opti-
mal policy. Polynomial approximations are natural choices for approximating value
functions when we know that the true value function is smooth. However, numerical
value function iteration with polynomial approximations is unstable because standard
methods such as interpolation and least squares fitting do not preserve shape. We
introduce shape-preserving approximation methods that stabilize value function iter-
ation, and are generally faster than previous stable methods such as piecewise linear
interpolation.

Keywords Numerical dynamic programming · Shape-preserving approximation ·
Multi-stage decision-making problems · Value function iteration

1 Introduction

All dynamic economic problems are multi-stage decision problems, and their non-
linearities make them numerically challenging. Dynamic programming (DP) is the
standard approach for any time-separable problem. If state variables and control vari-
ables are continuous, and the problem is a concave maximization problem, then its
value function is continuous, concave, and often differentiable. Any numerical pro-
cedure needs to approximate the value function, but any such approximation will be
imperfect since computers cannot model the entire space of continuous functions.

Y. Cai · K. L. Judd (B)
Hoover Institution, 424 Galvez Mall, Stanford University, Stanford, CA 94305, USA
e-mail: kennethjudd@mac.com

123

408 Y. Cai, K. L. Judd

Many DP problems are solved by value function iteration, where the period t value
function is computed from the period t + 1 value functions, and the value function is
known at the terminal time T . Smooth approximation methods, such as polynomial or
spline interpolation are natural in that they are smooth functions. However, numerical
value function with polynomials or splines are often unstable. The key problem is
that these methods aim to approximate functions in some L2 norm. Therefore, they
may violate shape properties that describe the true value function, and those shape
violations lead to unstable fluctuations and significant errors in the value function
iterations.

In this paper, we present a shape-preserving DP algorithm with value function
iteration for solving discrete-time decision-making problems with continuous states.
Essentially, we show that imposing basic shape restrictions whenever one approxi-
mates a new value function will stabilize value function iteration in many basic DP
problems. The paper is constructed as follows. Section 2 introduces the parametric
DP algorithm and describes numerical methods in the algorithm. Section 3 presents
the shape-preserving DP algorithm with value function iteration. Sections 4 and 5
give some numerical examples for optimal growth problems and multi-stage port-
folio optimization problems respectively to show the stability and accuracy of the
shape-preserving DP.

2 Numerical methods for DP

If state and control variables in a DP problem are continuous, then the value func-
tion must be approximated in some computationally tractable manner. It is common
to approximate value functions with a finitely parameterized collection of functions;
that is, we use some functional form V̂ (x; c), where c is a vector of parameters,
and approximate a value function, V (x), with V̂ (x; c) for some parameter value c.
For example, V̂ could be a linear combination of polynomials where c would be the
weights on polynomials. After the functional form is fixed, we focus on finding the
vector of parameters, c, such that V̂ (x; c) approximately satisfies the Bellman equation
(Bellman 1957).

Numerical solutions to a finite horizon DP are based on the Bellman equation:

Vt (x) = max
a∈D(x,t)

ut (x, a) + βVt+1(x+),

s.t. x+ = g(x, a),

where Vt (x) is called the value function at time t ≤ T , the terminal value function
VT (x) is given, x+ denotes the state in the next period, where the transition depends
on the current-stage state x and the action a. Furthermore, D(x, t) is a feasible set
of a in state x , and ut (x, a) is the utility function at time t . The following is the
algorithm of parametric DP with value function iteration for finite horizon problems.
[More detailed discussion of numerical DP can be found in Cai (2009), Cai and Judd
(2010), Judd (1998) and Rust (2008).]

123

Shape-preserving dynamic programming 409

Algorithm 1 Numerical Dynamic Programming with Value Function Iteration for
Finite Horizon Problems

Initialization. Choose the approximation nodes, Xt = {xit : 1 ≤ i ≤ mt } for every
t < T , and choose a functional form for V̂ (x; c). Let V̂ (x; cT) ≡ VT (x). Then for
t = T − 1, T − 2, . . . , 0, iterate through steps 1 and 2.

Step 1. Maximization step. Compute

vi = max
ai ∈D(xi ,t)

ut (xi , ai) + β V̂
(

x+
i ; ct+1

)

s.t. x+
i = g(xi , ai),

for each xi ∈ Xt , 1 ≤ i ≤ mt .

Step 2. Fitting step. Using an appropriate approximation method, compute the ct such
that V̂ (x; ct) approximates (xi , vi) data.

In the fitting step, a linear approximation scheme consists of two parts: basis functions
and approximation nodes. Approximation methods can be classified as either spectral
methods or finite element methods. A spectral method uses globally nonzero basis
functions φ j (x) and defines V̂ (x; c) = ∑n

j=0 c jφ j (x) to be the degree n approxima-
tion. In our examples, we use Chebyshev polynomial interpolation, which is a spectral
method. In contrast, a finite element method uses locally basis functions φ j (x) that are
nonzero over sub-domains of the approximation domain. Examples of finite element
methods include piecewise linear interpolation, Schumaker interpolation (Schumaker
1983), cubic splines, and B-splines. See Cai (2009) and Judd (1998) for more details.

Here we give a brief introduction of Chebyshev polynomials. Chebyshev basis
polynomials on [−1, 1] are defined as Tj (x) = cos(j cos−1(x)), and the general
Chebyshev basis polynomials on [a, b] are defined as Tj ((2x − a − b)/(b − a)) for
j = 0, 1, 2, . . . , n, implying that the degree n Chebyshev polynomial approximation
for V (x) is

V̂ (x; c) =
n∑

j=0

c j Tj ((2x − a − b)/(b − a)) . (1)

We use the recursive form to evaluate Chebyshev polynomials: T0(z) = 1, T1(z) = z,
and Tj+1(z) = 2zTj (z) − Tj−1(z), for j = 1, 2, . . . , n − 1, and any z ∈ [−1, 1].
With a set of Chebyshev nodes xi and the Lagrange data set {(xi , vi) : i = 1, . . . , m},
the coefficients c j can be calculated by the Chebyshev regression algorithm. See Cai
(2009) and Judd (1998) for details on these points.

Algorithm 1 seems like a general solution of DP problems, but it has limitations.
In the maximization step, a fast local optimizer will require that the objective func-
tion should be smooth and concave and the feasible constrained domain should be
convex. However, while the true value function may be concave and the Lagrange
data {(xi , vi) : i = 1, . . . , mt } may be consistent with concavity, simple methods of
fitting a curve to the data, like Chebyshev polynomial approximation, may produce a

123

410 Y. Cai, K. L. Judd

nonconcave value function approximation, which in turn may lead to nonconcavity of
the objective function in the maximization step and then instability in Algorithm 1.

We suspect that this explains the tendency of economists to use piecewise linear
approximations of value functions since piecewise linear approximations automati-
cally preserve shape. However, if one uses piecewise linear approximations when the
true solution is a smooth function, then one needs to use many nodes to construct a
good approximation, and the optimization problems in DP cannot use fast Newton-
type solvers, because the piecewise linear approximation V̂ (x; c) appearing in the
objective function is only continuous but not differentiate at the nodes xi and then
incurs too many kinks for Newton-type optimizers.

3 Shape-preserving DP

Economics problems often have increasing and concave value functions in their utility
or payoff maximization DP problems, and many operations research problems have
decreasing and convex value functions in their cost minimization DP problems (see
Bertsekas 2005, 2007). If the value function approximation method preserves the shape
of the data, then the optimization step will be a smooth convex optimization problem
for which it is easy to find the global optimum. Discretization methods and piecewise
linear interpolation preserve shape but create nonsmooth problems in the optimization
step. Another shape-preserving method is the so-called Schumaker shape-preserving
interpolation method (Schumaker 1983). A revised version of Schumaker interpolation
is given in Cai (2009). Judd and Solnick (1994) discussed some theoretical proper-
ties of the shape-preserving splines in numerical DP and applied them in optimal
growth problems. Wang and Judd (2000) applied a bivariate shape-preserving spline
interpolation method in numerical DP to solve a savings allocation problem. Cai and
Judd (2012) used a shape-preserving rational function spline Hermite interpolation in
numerical DP to solve a multi-stage portfolio problem with kinks.

These shape-preserving methods do not produce smooth functions, while most
smooth approximation methods, such as Chebyshev interpolation, do not preserve
shape. We introduce a general shape-preserving approximation method by adding
shape constraints such that the shape properties still hold, and then we apply it in
numerical DP.

3.1 Shape-preserving Chebyshev interpolation

One problem for Chebyshev interpolation is the absence of shape-preservation in the
algorithm. To solve this, we create an optimization problem that modifies the Cheby-
shev coefficients so that concavity and monotonicity of the value function will be
preserved. We begin with the Lagrange data {(xi , vi) : 1 ≤ i ≤ m} generated by
the maximization step of Algorithm 1. If theory tells us that the true value function
is strictly increasing and concave, then add constraints to the fitting criterion that will
impose shape restrictions.

123

Shape-preserving dynamic programming 411

Specifically, we approximate the value function using the functional form

V̂ (x; c) =
n∑

j=0

(
c+

j − c−
j

)
Tj ((2x − a − b)/(b − a)) ,

where we replaced c j in the Eq. (1) by c+
j −c−

j with c+
j , c−

j ≥ 0. We choose some points

yi ′(i ′ = 1, . . . , m′), called shape nodes, and impose the requirement that V̂ (x; c) sat-
isfies the shape conditions at the shape nodes. We want to choose the parameters c
to minimize approximation errors but also satisfy the shape conditions. We can get
a perfect fit and satisfy shape conditions if we allow n to be sufficiently large, but
the problem may have too many solutions. We can be sure to get a shape-preserving
Chebyshev interpolant by adding enough shape-preserving constraints and using a
sufficiently high degree (bigger than (m − 1)) polynomial, but we again could have
multiple solutions and end up with a more complex polynomial than necessary.

To allow for the flexibility necessary to have both interpolation and shape proper-
ties, we penalize the use of high-order polynomials. Therefore, we solve the following
linear programming problem:

min
c j ,c

+
j ,c−

j

m−1∑
j=0

(
c+

j + c−
j

)
+

n∑
j=m

(j + 1 − m)2
(

c+
j + c−

j

)
, (2)

s.t.
n∑

j=0

c j T
′
j (yi ′) > 0, i ′ = 1, . . . , m′,

n∑
j=0

c j T
′′
j (yi ′) < 0, i ′ = 1, . . . , m′,

n∑
j=0

c j Tj

(
2xi − a − b

b − a

)
= vi , i = 1, . . . , m,

c j − ĉ j = c+
j − c−

j , j = 0, . . . , m − 1,

c j = c+
j − c−

j , j = m, . . . , n,

c+
j , c−

j ≥ 0, j = 1, . . . , n.

This problem includes interpolation among the constraints as well as the shape con-
ditions, but chooses the polynomial with the smallest total weighted penalty, and is
biased towards low-degree polynomials since a higher degree term is penalized more.
The expression c+

j − c−
j represents c j with c+

j , c−
j ≥ 0, implying |c j | = c+

j + c−
j .

The simple Chebyshev interpolation coefficients ĉ j give us a good initial guess. There-
fore, we actually solve for the deviations of the Chebyshev coefficients from the simple
Chebyshev interpolation coefficients.

The yi ′ are pre-specified shape nodes in [−1, 1] for shape-preserving constraints.
Usually we need m′ > m so that the shape preservation on the shape nodes implies

123

412 Y. Cai, K. L. Judd

that shape is preserved everywhere. We may not know how many we need, so one must
test the resulting solution on many more points, and increase the set of shape nodes if
shape has not been preserved. Moreover, the interpolation constraints imply that the
number of Chebyshev polynomials being used should not be smaller than the number
of interpolation nodes. That is, we should let n ≥ m − 1 so that both m interpolation
equality constraints and 2m′ shape-preserving constraints could hold in the model (2).
We use the recursive formulas for evaluating the Chebyshev polynomials, Tj (y), and
their derivatives, T ′

j (y) and T ′′
j (y) for y ∈ [−1, 1].

4 Optimal growth example

We first illustrate our methods with a discrete-time optimal growth problem with one
good and one capital stock 1. It is to find the optimal consumption function and the
optimal labor supply function such that the total utility over the T -horizon time is
maximal, i.e.,

V0(k0) = max
c,l

T −1∑
t=0

β t u(ct , lt) + βT VT (kT), (3)

s.t. kt+1 = F(kt , lt) − ct , 0 ≤ t < T,

k ≤ kt ≤ k̄, 1 ≤ t ≤ T,

ct , lt ≥ ε, 0 ≤ t < T,

where kt is the capital stock at time t with k0 given, ct is the consumption of the good,
lt is the labor supply, k and k̄ are given lower and upper bound of kt , β is the discount
factor, F(k, l) = k + f (k, l) with f (kt , lt) the aggregate net production function,
VT (x) is a given terminal value function, and u(ct , lt) is the utility function, and ε is
a small positive number to avoid the nonpositive consumption or labor supply.

We use the following numerical examples of the finite horizon optimal growth
model to illustrate the importance of the shape-preserving property. In the following
examples, we let α = 0.25, β = 0.99, γ = 8, η = 1, A = (1 − β)/(αβ) and T = 20.
Let the range of k be [0.1, 1.9], i.e., k = 0.1 and k̄ = 1.9. And we choose ε = 10−6 in
the model (3). The production function is f (k, l) = Akαl1−α , and the utility function
is a power utility with the following form

u(c, l) = (c/A)1−γ − 1

1 − γ
− (1 − α)

l1+η − 1

1 + η
.

Thus the steady state of the infinite horizon deterministic optimal growth problems
is kss = 1 while the optimal consumption and the optimal labor supply at kss are
respectively css = A and lss = 1. Moreover, the utility at the steady state is 0 and then
the true value function at the steady state is also 0. This normalization of the typical

1 Please see Judd (1998) for a detailed description of this.

123

Shape-preserving dynamic programming 413

power utility from the economic literature not only helps avoid scaling issues but only
gives us a simple criterion to check if a numerical solution is close to the true solution.

We choose the terminal value function as

VT (k) = u(f (k, 1), 1)

1 − β
.

We see that the terminal value function is smooth and concave, and the optimal controls
will not be binding at least at the next-to-the-last stage t = T −1. Thus, it is supposed
that polynomial approximation methods could approximate the value functions well.
However, in our numerical examples in this section, we found that shape-preservation
is still very important in numerical DP: shape-preserving Chebyshev interpolation has
more stable and accurate solutions than the one without shape-preservation.

4.1 Solve test problem exactly

For the finite horizon optimal growth problem (3), when T is small, we can use a good
large-scale optimization package to solve the problem directly, and its solution could
be better than the solution of the DP model (4) given by numerical DP algorithms
because of the numerical approximation errors. But when T is large, the solution of
(4) given by numerical DP algorithms is usually better than the solution of (3) given
by a large-scale numerical optimization package directly. In addition, if the prob-
lem becomes stochastic, i.e., the value function form becomes Vt (x, θt) where θt is
a discrete time Markov chain, then it usually becomes infeasible for an optimization
package to solve the stochastic problem directly with high accuracy when T > 20.
But numerical DP algorithms can still solve it well, see Cai (2009).

In the examples of this section, we choose to solve finite horizon deterministic
optimal growth problems with T ≤ 100, so we will use the solutions of the model (3)
given by SNOPT (Gill et al. 2005) in GAMS code (McCarl et al. 2011) as the true
solutions.

4.2 DP solution

The DP version of the discrete-time optimal growth problem is the Bellman equation:

Vt (k) = max
c,l

u(c, l) + βVt+1(k
+), (4)

s.t. k+ = F(k, l) − c,

k ≤ k+ ≤ k̄, c, l ≥ ε,

for t < T , where VT (x) is the previously given terminal value function. Here k is the
state variable and (c, l) are the control variables.

The program code is written in GAMS, and we choose SNOPT as the nonlinear
programming solver in the optimization step, and CPLEX (in the GAMS environ-
ment) as the linear programming solver for the model (2) in the fitting step. We choose

123

414 Y. Cai, K. L. Judd

0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

time t

LInf errors for consumption

interpolation w/o
shape−preservation
shape−preserving
interpolation

0 5 10 15 20
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

time t

L1 errors for consumption

interpolation w/o
shape−preservation
shape−preserving
interpolation

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time t

LInf errors for labor

interpolation w/o
shape−preservation
shape−preserving
interpolation

0 5 10 15 20
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

time t

L1 errors for labor

interpolation w/o
shape−preservation
shape−preserving
interpolation

Fig. 1 Errors of numerical DP with Chebyshev interpolation with/without shape-preservation for growth
problems

m = 10 Chebyshev interpolation nodes xi on [0.1, 1.9], and let the shape-preserving
nodes yi ′ be the equally-spaced nodes in [−1, 1] in the model (2).

Figure 1 shows the relative errors of optimal controls at each time in L∞ and L1

respectively. We use the solutions given by directly applying SNOPT in the model (3)
as the true solutions. The solid lines are errors of solutions of the model (4) computed

123

Shape-preserving dynamic programming 415

by numerical DP algorithm with standard degree-9 Chebyshev polynomial interpo-
lation using m = 10 Chebyshev interpolation nodes. The dashed lines are errors of
solutions of the model (4) computed by numerical DP algorithm with shape-preserv-
ing Chebyshev polynomial interpolation with m = 10 Chebyshev interpolation nodes
and m′ = 20 equally-spaced nodes for shape constraints in the models (2).

From Fig. 1, we see that the solid lines for optimal controls are much higher than
the corresponding dashed lines at the first steps, and then they are close each other.
This means that the shape-preservation really helps a lot in obtaining more stable and
accurate solutions in numerical DP algorithms.

5 Multi-stage portfolio optimization example

We also illustrate our methods with a multi-stage portfolio optimization problem. Let
Wt be an amount of money planned to be invested at time t . Assume that available
assets for trading are n stocks and a bond, where the stocks have a random return
vector R = (R1, . . . , Rn) and the bond has a risk-free return R f for each period. If
St = (St,1, . . . , St,n)� is a vector of money invested in the n risky assets at time t ,
then money invested in the riskless asset is Bt = Wt − e�St , where e is a column
vector of 1s. Thus, the wealth at the next stage is

Wt+1 = R f (Wt − e�St) + R�St , (5)

for t = 0, 1, . . . , T − 1.
A simple multi-stage portfolio optimization problem is to find an optimal portfolio

St at each time t such that we have a maximal expected terminal utility, i.e.,

V0(W0) = max
St ,0≤t<T

E{u(WT)},

where WT is the terminal wealth derived from the recursive formula (5) with a given
W0, and u is the terminal utility function, and E{·} is the expectation operator.

In this section, we present a numerical example with one stock and one bond avail-
able for investment. We assume that the number of periods is T = 6, the bond has a
risk-free return R f = 1.04, and the stock has a discrete random return

R =
{

0.9, with probability 1/2,

1.4, with probability 1/2.

Let the range of initial wealth W0 as [0.9, 1.1]. The terminal utility function is

u(W) = (W − K)1−γ

1 − γ

with γ = 2 and K = 0.2 so that the terminal wealth should be always bigger than
0.2. Moreover, we assume that borrowing or shorting is not allowed in this example,
i.e., Bt ≥ 0 and St ≥ 0 for all t .

123

416 Y. Cai, K. L. Judd

5.1 Tree method

In the portfolio optimization problem, if we discretize the random returns of n stocks
as R = R(j) = (R1, j , . . . , Rn, j) with probability q j for 1 ≤ j ≤ m, then it becomes
a tree. Figure 2 shows one simple tree with m = 2 and T = 2 for a portfolio with
one bond and one stock (n = 1). The stock’s random return has a probability q1 to
have a return R1,1, and the probability q2 = 1 − q1 to have a return R1,2. So there are
two scenarios at time 1: (W1,1, P1,1) and (W1,2, P1,2), and four scenarios at time 2:
(W2,1, P2,1), . . ., (W2,4, P2,4).

In a mathematical formula, the probability of scenario k at time t + 1 is

Pt+1,k = Pt,[(k−1)/m]+1 · qmod(k,m)+1,

and the wealth at scenario k and time t + 1 is

Wt+1,k = Wt,[(k−1)/m]+1

(
R f Bt,[(k−1)/m]+1 +

n∑
i=1

Ri,mod(k,m)+1Si,t,[(k−1)/m]+1

)
,

for 1 ≤ k ≤ mt+1 and 0 ≤ t < T . Here, W0,1 = W0 is a given initial wealth, P0,1 = 1,
mod(k, m) is the remainder of division of k by m, and [(k − 1)/m] is the quotient
of division of (k − 1) by m. The goal is to choose optimal bond allocations Bt,k and
stock allocations St,k to maximize the expected terminal utility, i.e.,

max
mT∑
k=1

(PT,k · u(WT,k)). (6)

W
0

P
0,1

q
1

q
2

W
1,1

P
1,1

W
1,2

P
1,2

q
1

q
2

q
1

q
2

W
2,1

P
2,1

W
2,2

P
2,2

W
2,3

P
2,3

W
2,4

P
2,4

Fig. 2 A binary tree with two periods

123

Shape-preserving dynamic programming 417

1 1.5 2 2.5 3
0

0.05

0.1

bond allocation at times

Wealth

t=5
t=4
t=3
t=2
t=1
t=0

Fig. 3 Exact optimal bond allocations

We should add Bt,k ≥ 0 and St,k ≥ 0 for all t, k as bound constraints in the tree model,
if neither shorting stock or borrowing bond is allowed.

This tree method resembles the stochastic programming method (Birge and
Louveaux 1997). But this tree method includes all possible scenarios with their
assigned probabilities. The disadvantage of the tree method is that when m or T
is large, the problem size will exponentially increase and it will be a big challenge
for an optimizer to find an accurate solution. But our DP algorithms have no such
disadvantage. Since the numerical example in this section is not large for the above
tree model, the exact optimal allocations can be calculated by the tree model and
MINOS optimization package (Murtagh and Saunders 1982) in AMPL code (Fourer
et al. 1990) via the NEOS server (Czyzyk et al. 1998).

Figure 3 shows the optimal bond allocation Bt for t = 0, 1, . . . , 5, computed by
the tree method for the numerical example. Next, we will use the optimal allocations
computed by the tree method to test stability and accuracy of our shape-preserving
algorithms.

5.2 DP solution

The DP model of this multi-stage portfolio optimization problem is

Vt (W) = max
B,S

E{Vt+1(R f B + R�S)}, (7)

s.t. B + e�S = W,

123

418 Y. Cai, K. L. Judd

for t = 0, 1, . . . , T − 1, where W is the state variable and S is the control variable
vector, and the terminal value function is VT (W) = u(W). We should add B ≥ 0
and S ≥ 0 as bound constraints in the above DP model, if neither shorting stock nor
borrowing bond is allowed.

Since the terminal utility function is u(WT) = (WT −K)1−γ /(1−γ), we know that
the terminal wealth WT must be always larger than K . It follows that we should have
Wt > K Rt−T

f . Thus, since shorting or borrowing is not allowed and R is bounded,

we choose the ranges [W t , W t] for approximating value functions as

W t+1 = max
{

min(R)W t , K Rt−T
f + ε

}
,

W t+1 = max(R)W t ,

with a given initial wealth bound [W 0, W 0], where ε > 0 is a small number.
Specifically, for the numerical example with K = 0.2, R f = 1.04, min(R) = 0.9

and max(R) = 1.4, after we choose W 0 = 0.9 and W 0 = 1.1, we have

[
W 1, . . . , W 6

] = [0.81, 0.729, 0.656, 0.590, 0.531, 0.478],[
W 1, . . . , W 6

] = [1.54, 2.156, 3.018, 4.226, 5.916, 8.282].

We see that the ranges are expanding exponentially along time t . If we use a fixed
range along time t in our numerical DP algorithms, then it will definitely reduce the
accuracy of solutions. So here we choose the above ranges at times t = 0, 1, . . . , 5 in
Algorithm 1.

We choose m = 10 Chebyshev interpolation nodes in [W t , W t] for earlier times
t = 0, 1, 2, and then choose m = 20 Chebyshev interpolation nodes for the latter times
t = 3, 4, 5 (having wider ranges than the earlier times). The computational results of
numerical DP algorithms are given by our GAMS code. We choose SNOPT as the
optimization solver of the nonlinear programming problems in the maximization step
of Algorithm 1, and CPLEX as the solver of the linear programming problems for
shape-preserving Chebyshev interpolation in the fitting step of Algorithm 1.

Figure 4 shows the relative errors of numerical DP algorithms with Chebyshev
interpolation with/without shape-preservation. The vertical axis values of plotted
x-marks and squares for their corresponding horizontal axis value Wt (wealth), are
given as log of errors of optimal bond allocation fractions, i.e.,

log10

⎛
⎝10−6 +

∣∣∣B∗
t,DP − B∗

t

∣∣∣
Wt

⎞
⎠ ,

where B∗
t are true optimal bond allocations for the wealth Wt at time t which are given

by the tree method (6), and B∗
t,DP are computed optimal bond allocation from the DP

model (7) by numerical DP algorithms with Chebyshev interpolation with/without
shape-preservation. The squares are errors of solutions of (7) computed by numeri-
cal DP algorithm with standard degree-9 (for earlier times t = 0, 1, 2) or degree-19

123

Shape-preserving dynamic programming 419

1 2 3 4

−6

−5

−4

−3

−2

−1

Wealth, t=4

log
10

(errors of B
4
/W

4
)

0.5 1 1.5 2 2.5 3

−6

−5

−4

−3

−2

−1

Wealth, t=3

log
10

(errors of B
3
/W

3
)

1 1.5 2

−6

−5

−4

−3

−2

−1

Wealth, t=2

log
10

(errors of B
2
/W

2
)

0.8 1 1.2 1.4 1.6

−6

−5

−4

−3

−2

−1

Wealth, t=1

log
10

(errors of B
1
/W

1
)

0.9 0.95 1 1.05 1.1

−6

−5

−4

−3

−2

−1

Wealth, t=0

log
10

(errors of B
0
/W

0
)

Errors for Chebyshev interpolation
without shape−preservation

Errors for shape−preserving
Chebyshev interpolation

Fig. 4 Errors of optimal bond allocations from numerical DP with Chebyshev interpolation with/without
shape-preservation

123

420 Y. Cai, K. L. Judd

(for latter times t = 3, 4, 5) Chebyshev polynomial interpolation using m = 10
(for earlier times t = 0, 1, 2) or m = 20 (for latter times t = 3, 4, 5) Chebyshev inter-
polation nodes. The x-marks are errors of solutions of (7) computed by numerical DP
algorithm with shape-preserving Chebyshev polynomial interpolation with m = 10
(for earlier times t = 0, 1, 2) or m = 20 (for latter times t = 3, 4, 5) Chebyshev
interpolation nodes and m′ = 20 equally-spaced nodes for shape constraints in the
model (2).

From Fig. 4, we see that most of x-marks (errors for shape-preserving Cheby-
shev interpolation) have higher accuracy than their corresponding squares (errors for
standard Chebyshev interpolation), at all times t = 0, 1, 2, 3, 4. This means that shape-
preservation significantly improves the performance of numerical DP algorithms in
stability and accuracy.

6 Conclusion

Value function iteration is the basic tool of dynamic optimization but simple methods
suffer from instability or slow speed. A key reason for instability is that value func-
tion approximation methods may not preserve the shape of the true value function,
and a key reason for the slow speed of other methods is the use of nonsmooth value
function approximation methods. This paper presents a general shape-preserving DP
algorithm with smooth approximations of the value function. It is built around a linear
programming approach to the fitting step in dynamic programming, making it easy
and reliable to implement.

This shape-preserving approach to DP was illustrated with two simple example, but
is clearly applicable to a wide class of problems in economics, finance, and operations
research where we often have shape information about the true value function. Further
research will implement the same ideas to continuous-time problems, and ones with
higher dimension.

Acknowledgments We gratefully acknowledge the financial support from National Science Foundation
(Grant Number SES-0951576), and thank two anonymous referees for their helpful comments.

References

Bellman R (1957) Dynamic programming. Princeton University Press, Princeton
Bertsekas D (2005) Dynamic programming and optimal control, vol I. Athena Scientific, Belmont
Bertsekas D (2007) Dynamic programming and optimal control, vol II. Athena Scientific, Belmont
Birge J, Louveaux FV (1997) Introduction to stochastic programming. Springer, New York
Cai Y (2009) Dynamic programming and its application in economics and finance. PhD thesis, Stanford

University
Cai Y, Judd KL (2010) Stable and efficient computational methods for dynamic programming. J Eur Econ

Assoc 8(2–3):626–634
Cai Y, Judd KL (2012) Dynamic programming with shape-preserving rational spline Hermite interpolation.

Econ Lett 117(1):161–164
Czyzyk J, Mesnier M, Moré J (1998) The NEOS Server. IEEE J Comput Sci Eng 5:68–75
Fourer R, Gay DM, Kernighan BW (1990) Modeling language for mathematical programming. Manag Sci

36:519–554
Gill P, Murray W, Saunders M (2005) SNOPT: an SQP algorithm for largescale constrained optimization.

SIAM Rev 47(1):99–131

123

Shape-preserving dynamic programming 421

Judd KL (1998) Numerical methods in economics. MIT Press, Cambridge
Judd KL, Solnick A (1994) Numerical dynamic programming with shape-preserving splines. Hoover Insti-

tution, Stanford
McCarl B et al. (2011) McCarl Expanded GAMS user guide version 23.6. http://www.gams.com/mccarl/

mccarlhtml/. Accessed 6 Sept 2012
Murtagh B, Saunders M (1982) A projected Lagrangian algorithm and its implementation for sparse non-

linear constraints. Math Program Study 16:84–117
Rust J (2008) Dynamic programming. In: Durlauf SN, Blume LE (eds) New Palgrave dictionary of eco-

nomics. 2. Palgrave Macmillan, Basingstoke
Schumaker L (1983) On shape-preserving quadratic spline interpolation. SIAM J Numer Anal 20:854–864
Wang S-P, Judd KL (2000) Solving a savings allocation problem by numerical dynamic programming with

shape-preserving interpolation. Comput Oper Res 27(5):399–408

123

http://www.gams.com/mccarl/mccarlhtml/
http://www.gams.com/mccarl/mccarlhtml/

	Shape-preserving dynamic programming
	Abstract
	1 Introduction
	2 Numerical methods for DP
	3 Shape-preserving DP
	3.1 Shape-preserving Chebyshev interpolation

	4 Optimal growth example
	4.1 Solve test problem exactly
	4.2 DP solution

	5 Multi-stage portfolio optimization example
	5.1 Tree method
	5.2 DP solution

	6 Conclusion
	Acknowledgments
	References

