
STABLE AND EFFICIENT COMPUTATIONAL
METHODS FOR DYNAMIC PROGRAMMING

Yongyang Cai
Stanford University

Kenneth L. Judd
Hoover Institution

Abstract
Dynamic programming is the foundation of dynamic economic analysis and often requires
numerical solution methods. Standard methods are either slow or unstable. These instabilities
are avoided when one uses modern methods from numerical optimization and approximation.
Furthermore, large dynamic programming problems can be solved by using modern parallel
computing architectures. (JEL: K23, L26, L51)

1. Introduction

Dynamic programming (DP) is the foundation of dynamic economic analysis.
Numerical solutions are often the only way to solve DP problems but most meth-
ods are either slow, particularly for multidimensional problems, or are unreliable
and numerically unstable. In this paper, we discuss some new ideas that stabilize
numerical methods for dynamic programming, use information more efficiently,
and exploit modern computing environments to make possible the solution of
large DP problems. We illustrate these ideas with a basic dynamic portfolio prob-
lem. This paper gives a short overview of our recent work on DP. For a more
extensive description of this work, see Cai (2009).

DP is based on the observation by Bellman (1957) that “[a]n optimal pol-
icy has the property that whatever the initial state and initial decision are, the
remaining decisions must constitute an optimal policy with regard to the state
resulting from the first decision.” This reduces multi-period sequential decision
problems to a sequence of one-period optimal control problems. We examine
only finite horizon problems in this paper but the numerical ideas also apply to
infinite-horizon problems. The recursive principle of DP implies that the solution
can be characterized by value functions, Vt(x), defined by the Bellman equation

The editor in charge of this paper was George Marios Angeletos.
Acknowledgments: We acknowledge the comments of the referee and editor of JEEA, and the
participants of the August 2009 conference of the EEA.
E-mail addresses: Cai: yycai@stanford.edu; Judd: kennethjudd@mac.com

Journal of the European Economic Association April–May 2010 8(2–3):626–634
© 2010 by the European Economic Association

Cai and Judd Stable and Efficient Computational Methods for DP 627

Vt(x) = max
a∈Dt (x)

ut (x, a) + βE{Vt+1(x
+) | x, a},

for t = 0, 1, . . . , T − 1, where T is finite, x is the state and a is the action
choice (x and a can be vectors), ut (x, a) is the utility function at time t < T , and
uT (x) = VT (x) is the terminal utility function, β is the discount factor, Dt(x) is
a feasible set of at at time t , x+ is the (possibly random) state at time t + 1 if the
state is x at time t and action a is chosen at time t , and E{·} is the expectation
operator.

This paper describes the critical numerical challenges that must be met by
methods that aim to solve for the value functions. We give a quick overview
of those methods, describe our new methods, and illustrate them for a simple
portfolio example.

2. A Portfolio Example

We illustrate our methods with a dynamic portfolio problem with transaction
costs. We assume that an investor begins with some wealth, invests it in several
assets, and manages it so as to maximize the expected utility of wealth at time T .
We assume a power utility function for terminal wealth,

VT (W) = W 1−γ /(1 − γ),

where γ > 0 and γ �= 1. Let R = (R1, . . . , Rn) be the random one-period return
of n risky assets, and Rf be the return of the riskless asset. The portfolio share
for asset i at the beginning of a period is denoted xi . The state variables are the
wealth W and allocations x = (x1, . . . , xn)

� invested in the risky assets at the
beginning of a period. The difference between wealth and the wealth invested
in stocks is invested in bonds. We assume a proportional transaction cost τ for
all sales and purchases of the risky assets. Let δ+

i W denote the amount of asset
i purchased, expressed as a fraction of wealth, and let δ−

i W denote the amount
sold, where δ+, δ− ≥ 0. Let e denote the column vector where ei = 1 for all i.

The DP problem becomes

Vt(W, x) = max
δ+,δ−≥0

E{Vt+1(W
+, x+)},

where X+
i ≡ Ri(xi+δ+

i −δ−
i)W is time t+1 wealth in asset i, m ≡ e�(δ+−δ−+

τ(δ+ + δ−)) where mW is the change in bond holding, W+ ≡ e�X+ + Rf (1 −
e�x − m)W is time t + 1 wealth, and x+ ≡ X+/W+ is the vector of risky asset
allocations. Given the isoelasticity of VT , we know that Vt(W, x) = W 1−γ gt (x),
for some functions gt (x), t = 0, 1, . . . , T − 1. The numerical task reduces to
approximating the gt (x) functions.

628 Journal of the European Economic Association

3. Numerical Methods for DP

Multi-stage decision-making problems are numerically challenging. Judd (1998)
and Rust (2008) review numerical methods used in economics for solving DP
problems. In this section, we present the basic approach for parametric DP with
value function iteration. These algorithms adopt the backward recursion approach,
but are generally applied only to very low dimensional problems because of the
“curse of dimensionality.”

If state and control variables are continuous, and if the value function is
continuous, it is natural to use a continuous approximation for the value functions.
Because computers cannot model the entire space of continuous functions, we
must instead use a finitely parameterizable collection of functions to approximate
value functions, V (x) ≈ V̂ (x; c), where c is a vector of parameters. There are
many options for the functional form V̂ but we focus on using linear combinations
of polynomials. Algorithm 1 describes the standard approach.

Algorithm 1. (Value Function Iteration (VFI) for Finite Horizon Problems)
Initialization. Choose the approximation nodes, X = {xi : 1 ≤ i ≤ m}, and

a functional form for V̂ (x; c). Let V̂ (x; cT) ≡ uT (x). Then for t = T − 1, T −
2, . . . , 0, iterate through steps 1 and 2.

Step 1. Maximization step. Compute

vi = max
ai∈D(xi)

u(xi, ai) + βE{V̂ (x+; ct+1) | xi, ai}

for each xi ∈ X, 1 ≤ i ≤ m.

Step 2. Fitting step. Using an appropriate approximation method, compute
the ct such that V̂ (x; ct) approximates the (xi, vi) data; that is, choose ct so that
V̂ (xi; ct) ≈ vi .

Algorithm 1 includes three types of numerical problems. First, we need to
solve a maximization problem at each node xi . Second, the evaluation of the
objective requires us to compute an expectation. Third, we need to efficiently
take the data and compute the best fit for the new value function. The challenge
is not only to use good numerical methods for each of these steps but also to
choose methods that are compatible with each other and jointly lead to efficient
algorithms. The next section describes these choices in more detail.

4. Tools from Numerical Analysis

The previous section outlined the basic numerical challenges. In this section, we
review the tools from numerical analysis that we use to produce stable and efficient
algorithms. There are three main components in numerical DP: optimization,
numerical integration, and approximation.

Cai and Judd Stable and Efficient Computational Methods for DP 629

4.1. Optimization

For each VFI, the most time-consuming part is the optimization step. There are m

optimization tasks, one for each node. If the number of VFIs is T , then the total
number of optimization tasks is T × m. All these optimization tasks are usually
small problems with a low number of control variables.

If the value function approximation is not smooth, then the objective function
of the optimization problem in the maximization step is not smooth, forcing
us to use methods that can solve non-smooth problems. If the value function
approximation is smooth, we can use Newton’s method and related methods
for constrained nonlinear optimization problems, which have a locally quadratic
convergence rate.

We used NPSOL (see Gill et al. 1994), a set of Fortran subroutines for mini-
mizing a smooth function subject to linear and nonlinear constraints. The NPSOL
libraries may be called from a driver program in Fortran, C/C++, or MATLAB.
NPSOL is an appropriate optimization solver for DP applications in economics
and finance, since the optimization tasks in numerical DP are small-size smooth
problems.

4.2. Numerical Integration

In the objective function of the Bellman equation, we often need to compute
the conditional expectation of V (x+ | x, a). One naive way is to apply Monte
Carlo methods to compute the expectation. However, one must use large Monte
Carlo samples to get accurate solutions to the optimization problems. When the
integrand is smooth, it is much more efficient to use Gaussian quadrature.

Our portfolio example assumes log normal returns. If Y is log normal, then
Y = eX where X ∼ N (μ, σ 2), and we use the formula

E{f (Y)} = E{f (eX)} .= π− 1
2

n∑
i=1

ωif (e
√

2σxi+μ)

where ωi and xi are the weights and nodes for the degree-(2n−1) Gauss-Hermite
quadrature rule. If X is multivariate normal, N (μ,), we can use a product
Gauss-Hermite rule after using a Cholesky decomposition of 	.

4.3. Traditional Approximation Methods

A linear approximation scheme consists of two parts: basis functions and approx-
imation nodes. Approximation methods can be classified as either spectral
methods or finite element methods. A spectral method uses globally nonzero
basis functions ϕj (x) and defines V̂ (x; c) = ∑n

j=0 cjϕj (x) to be the degree-n

630 Journal of the European Economic Association

approximation. We use tensor and complete Chebyshev approximation, which are
spectral methods. In contrast, a finite element method uses locally basis functions
ϕj (x) that are nonzero over sub-domains of the approximation domain. Exam-
ples of finite element methods include piecewise linear interpolation, Schumaker
shape-preserving interpolation, cubic splines, and B-splines. Traditional methods
take the (xi, vi) data generated by the optimization step and chooses ct by either
interpolation or least squares regression.

We prefer Chebyshev polynomials when the value function is smooth. Cheby-
shev polynomials on [−1, 1] are defined as Tj (x) = cos(j cos−1(x)), and general
Chebyshev polynomials on [a, b] are defined as Tj ((2x − a − b)/(b − a)) for
j = 0, 1, 2, Let Tα(x) denote the tensor product Tα1(x1) · · · Tαd

(xd) for
x ∈ [−1, 1]d . Then the degree-n tensor Chebyshev approximation of V (x) is

V̂ (x; c) =
∑

0≤αi≤n,1≤i≤d

cαTα(x).

The degree-n complete Chebyshev approximation for V (x) is

V̂ (x; c) =
∑

0≤|α|≤n

cαTα(x),

where |α| denotes
∑d

i=1 αi for the nonnegative integer vector α = (α1, . . . , αd).
Computing a degree-n complete Chebyshev polynomial is about d! faster than
computing a degree-n tensor Chebyshev polynomial, while the precision of
approximation is almost the same for n ≥ 6 usually in practice.

These three components of a DP method interact in many ways. For example,
the approximation step can use Newton-style methods and be much faster if value
function approximations are smooth. In the next sections, we describe two ways
that enhance the usual methods. We first improve the approximation step with
smooth shape-preserving methods. We also implement parallel methods. These
two elements produce numerical methods that are stable, efficient, and able to
solve large problems.

5. Shape Preservation

We often know that the unknown function is monotone and/or concave or con-
vex. For our portfolio problem, we know that the value function is monotone
and concave in wealth. The problem with ordinary methods—such as polynomi-
als and splines combined with interpolation or regression—in the fitting step is
that the result may be nonconcave or nonmonotone even if the data are consis-
tent with monotonicity and concavity. As discussed in Judd (1998), this can lead
to unstable value function iterations (VFIs). VFI works only if the fitting step

Cai and Judd Stable and Efficient Computational Methods for DP 631

preserves critical shape information. Discretization and piecewise linear interpo-
lation preserve monotonicity and concavity. However, they make the objective
function in the maximization step nondifferentiable, which forces one to use
slow methods in the optimization step. Other shape-preserving methods such as
the Schumaker method (1983) and the method used in Wang and Judd (2000) are
only C1 approximations of the value function, thereby slowing convergence of
Newton-style optimization methods.

We use Chebyshev polynomials and least-squares approximation with shape
constraints to guarantee shape preservation. The solution to the quadratic
programming problem

min
c

m∑
i=1

(V̂ (xi; c) − vi)
2

subject to V̂ ′(zj ; c) > 0, V̂ ′′(zj ; c) < 0, j = 1, . . . , k,

will produce a concave and monotone V̂ (x; c), if we use a sufficiently dense set
of points zj to check shape. This method guarantees shape preservation but at a
cost of allowing approximation errors V̂ (xi; c)−vi . Fortunately, these errors can
be eliminated by using more basis functions in the approximation. Essentially,
we have an underidentified constrained least-squares method. The possibility of
multiple solutions is not important since our aim is only to produce some function
that fits the data and has the desired global shape properties.

6. Parallelization

Parallelization allows researchers to solve huge problems and is the foundation
of modern scientific computation. Our work shows that parallelization can also
be used effectively in solving DP problems. The key fact is that at each maxi-
mization step, there are many independent optimization problems, one for each
xi . In our portfolio problems there are often thousands of such independent prob-
lems, and future problems will easily have millions of independent problems. We
used the Condor system, a high-throughput computing framework, at the Uni-
versity of Wisconsin for our problems. We used the Master-Worker tool where
a master processor allocates the individual optimization problems over a cluster
of workstations. Parallelization of our portfolio problems is not trivial. We need
to package collections of maximization problems to minimize the time spent on
communication between master and the workers, and we need to avoid parallel
blocks where the system needs to wait for a slow worker to complete a job.

We easily found methods for allocating work that made good use of par-
allelism. In one example we assumed six risky assets plus a bond, and solved

632 Journal of the European Economic Association

a six-period problem with transaction costs. We used five Chebyshev nodes in
each dimension, resulting in 56 = 15,625 maximization problems in each VFI.
We used 200 workers, and split the work into 3,125 tasks, each task solving five
maximization problems. The six VFIs solved in less than 100 minutes, and the
overall parallel performance was 87%, implying that the solution time was 174
times faster than a single computer. Many other problems in Cai (2009) attained
90–95% efficiency. Simple modifications of the parallel structure to minimize
parallel blocks will improve parallel efficiency and allow us to efficiently use
larger collections of computers.

7. Dynamic Portfolio Example

We next present an application of our algorithms to a dynamic portfolio problem.
We assume three stocks and one bond, where the stock returns are log-normally
distributed, log(R) ∼ N (μ,), μ = (0.0572, 0.0638, 0.07), and

	 =
⎡
⎣

0.0256 0.00576 0.00288
0.00576 0.0324 0.0090432
0.00288 0.0090432 0.04

⎤
⎦ .

We assume a power terminal value function withγ = 3.5, a transaction cost of τ =
0.01 and Rf = 1.0408. We use the degree-7 complete Chebyshev approximation
method and a multi-dimensional product Gauss-Hermite quadrature rule with
nine nodes in each dimension to compute expectations. We assume a T = 6
investment horizon.

The key property of the solution is a no-trade region �t for t = 0, . . . , 5.
When xt ∈ �t , the investor will not trade at all, and when xt /∈ �t , the investor
will trade to some point on the boundary of �t . Because the value function has the
form W 1−γ gt (x), the optimal portfolio rules and the “no-trade” regions �t are
independent of W . Figure 1 shows the no-trade regions for periods t = 0, 1, 4, 5.
We see that the no-trade region grows as t approaches T . This corresponds to the
intuition that an investor is not as likely to adjust his portfolio if he has to pay
transaction costs and the holding time is short.

To the best of our knowledge, this is the first method to solve problems
with more than three risky assets and more than a few periods. See Constan-
tinides (1976), Janecek and Shreve (2004), and Muthuraman and Kumar (2006)
for examples of portfolio choice analyses in the face of transaction costs.

8. Conclusion

Numerical DP can be made far more effective when we use modern methods
from the numerical optimization and numerical approximation literature, and

Cai and Judd Stable and Efficient Computational Methods for DP 633

Figure 1. No-trade regions for three correlated stocks with log-normal returns and one bond.

634 Journal of the European Economic Association

when we use modern parallel computing systems. This paper has given just a few
examples of how these ideas can be used in economics problems. See Cai (2009)
for a more complete description of the methods described above and for many
more examples.

References

Bellman, Richard (1957). Dynamic Programming. Princeton University Press.
Cai, Yongyang (2009). “Dynamic Programming and Its Application in Economics and

Finance.” Ph.D. thesis, Stanford University.
Constantinides, George (1976). “Optimal Portfolio Revision with Proportional Transaction

Costs: Extension to HARA Utility Functions and Exogenous Deterministic Income.”
Management Science, 22, 921–923.

Gill, Philip, Walter Murray, Michael Saunders, and Margaret Wright (1994). “User’s Guide
for NPSOL 5.0: A Fortran Package for Nonlinear Programming.” Technical report, SOL,
Stanford University.

Janecek, Karel, and Steven Shreve (2004). “Asymptotic Analysis for Optimal Investment and
Consumption with Transaction Costs.” Finance and Stochastics, 8, 181–206.

Judd, Kenneth (1998). Numerical Methods in Economics. The MIT Press.
Muthuraman, Kumar, and Sunil Kumar (2006). “Multidimensional Portfolio Optimization with

Proportional Transaction Costs.” Mathematical Finance, 16, 301–335.
Rust, John (2008). “Dynamic Programming.” In New Palgrave Dictionary of Economics, edited

by Steven N. Durlauf and Lawrence E. Blume. Palgrave Macmillan, second edition.
Schumaker, Larry (1983). “On Shape-Preserving Quadratic Spline Interpolation.” SIAM

Journal of Numerical Analysis, 20, 854–864.
Wang, Sheng-Pen, and Kenneth Judd (2000). “Solving a Savings Allocation Problem by Numer-

ical Dynamic Programming with Shape-Preserving Interpolation.” Computers & Operations
Research, 27, 399–408.

