
Cluster Comput (2010) 13: 243–256
DOI 10.1007/s10586-010-0134-7

Harnessing parallelism in multicore clusters with the All-Pairs,
Wavefront, and Makeflow abstractions

Li Yu · Christopher Moretti · Andrew Thrasher ·
Scott Emrich · Kenneth Judd · Douglas Thain

Received: 9 November 2009 / Accepted: 16 March 2010 / Published online: 23 April 2010
© Springer Science+Business Media, LLC 2010

Abstract Both distributed systems and multicore systems
are difficult programming environments. Although the ex-
pert programmer may be able to carefully tune these sys-
tems to achieve high performance, the non-expert may strug-
gle. We argue that high level abstractions are an effec-
tive way of making parallel computing accessible to the
non-expert. An abstraction is a regularly structured frame-
work into which a user may plug in simple sequential pro-
grams to create very large parallel programs. By virtue of a
regular structure and declarative specification, abstractions
may be materialized on distributed, multicore, and distrib-
uted multicore systems with robust performance across a
wide range of problem sizes. In previous work, we pre-
sented the All-Pairs abstraction for computing on distrib-
uted systems of single CPUs. In this paper, we extend
All-Pairs to multicore systems, and introduce the Wave-
front and Makeflow abstractions, which represent a number
of problems in economics and bioinformatics. We demon-
strate good scaling of both abstractions up to 32 cores on
one machine and hundreds of cores in a distributed sys-
tem.

Keywords Abstractions · Multicore · Distributed systems ·
Bioinformatics · Economics

L. Yu (�) · C. Moretti · A. Thrasher · S. Emrich · D. Thain
Department of Computer Science and Engineering, University
of Notre Dame, South Bend, USA
e-mail: lyu2@nd.edu

K. Judd
Hoover Institution, Stanford University, Stanford, USA

1 Introduction

Distributed systems such as clusters, clouds, and grids are
very challenging programming environments. (Hereafter,
we refer to all of these systems as clusters.) A user that
wishes to execute a large workload with some inherent par-
allelism is confronted with a dizzying array of choices. How
should the workload be broken up into jobs? How should the
data be distributed to each node? How many nodes should
be used? Will the network be a bottleneck? Often, the an-
swers to these questions depend heavily on the properties of
the system and workload in use. Changing one parameter,
such as the size of a file or the runtime of a job, may require
a completely different strategy.

Multicore systems present many of the same challenges.
The orders of magnitude change, but the questions are simi-
lar. How should work be divided among threads? Should we
use message passing or shared memory? How many CPUs
should be used? Will memory access present a bottleneck?
When we consider clusters of multicore computers, then the
problems become more complex.

We argue that abstractions are an effective way of en-
abling non-expert users to harness clusters, multicore com-
puters, and clusters of multicore computers. An abstraction
is a declarative structure that joins simple data structures and
small sequential programs into parallel graphs that can be
scaled to very large sizes. Because an abstraction is special-
ized to a restricted class of workloads, it is possible to create
an efficient, robust, scalable, and fault tolerant implementa-
tion. In previous work, we introduced the All-Pairs [12] and
Classify [13] abstractions, and described how they can be
used to solve data intensive problems in the fields of bio-
metrics, bioinformatics, and data mining. Our implementa-
tions allow non-experts to harness hundreds of processors on
problems that run for hours or days using the Condor [27]
distributed batch system.

mailto:lyu2@nd.edu

244 Cluster Comput (2010) 13: 243–256

In this paper, we extend the concept of abstractions to
multicore computers and clusters of multicore computers. In
Sect. 2, we present the concept of abstractions, and formally
describe All-Pairs, Wavefront and Makeflow. In Sect. 3,
we describe a general architecture for implementing ab-
stractions on multicore clusters. In Sect. 4, we describe the
technical challenges particular to All-Pairs, Wavefront, and
Makeflow. In Sect. 5, we demonstrate weak scaling of each
abstractions to large numbers of cores and nodes under con-
trolled conditions. In Sect. 6, we discuss the advantages of a
suite of specific abstractions. In Sect. 7, we demonstrate ap-
plications in bioinformatics and economics robustly running
on hundreds of cores in an unreliable distributed system. We
conclude with a review of related work and open avenues for
research.

2 Abstractions

An abstraction is a declarative framework that joins to-
gether sequential processes and data structures into a reg-
ularly structured parallel graph. An abstraction engine is a
particular implementation that materializes that abstraction
on a system, whether it be a sequential computer, a multicore
computer, or a distributed system. Figure 1 shows three ex-
amples of abstractions: All-Pairs, Wavefront and Makeflow.

All-Pairs (A[i],B[j],F(x, y))
returns matrix M
where M[i, j] = F(A[i],B[j])

The All-Pairs abstraction computes the Cartesian prod-
uct of two sets, generating a matrix where each cell M[i, j]
contains the output of the function F on objects A[i] and
B[j]. This sort of problem is found in many different fields.
In bioinformatics, one might compute All-Pairs on a set of
gene sequences as the first step of building a phylogenetic

tree. In biometrics, one might compute All-Pairs to deter-
mine the accuracy of a matching algorithm on a collection
of faces. In data mining applications, one might compute
All-Pairs on a set of documents to generate a graph of rela-
tionships.

Wavefront (R[i, j],F(x, y, d))
returns matrix R
where R[i, j] = F(R[i − 1, j],R[i, j − 1],R[i − 1, j − 1])

The Wavefront abstraction computes a recurrence rela-
tionship in two dimensions. Each cell in the output matrix
is generated by a function F where the arguments are the
values in the cells immediately to the left, below, and di-
agonally left and below. Once a value has been computed at
position (1,1), then values at positions (2,1) and (1,2) may be
computed, and so forth, until the entire matrix is complete.
The problem can be generalized to an arbitrary number of
dimensions. Wavefront represents a number of simulation
problems in economics and game theory, where the initial
states represent ending states of a game, and the recurrence
is used to work backwards in order to discover the effect of
decisions at each state. Wavefront also represents the prob-
lem of sequence alignment via dynamic programming in ge-
nomics.

Makeflow (R[n])
where each rule R[i] is:
input files : output files : command returns output files from
all R[i]

The Makeflow abstraction expresses any arbitrary di-
rected acyclic graph (DAG). Whereas All-Pairs and Wave-
front are problems that can be decomposed into thousands
or millions of instances of the same function to be run with
near-identical requirements, a DAG workload may be struc-
turally heterogeneous and consist of programs and files of
highly variable runtime and size. Many such problems are

Fig. 1 Three examples of abstractions. All-Pairs, Wavefront and
Makeflow are examples of abstractions. All-Pairs computes the Carte-
sian product of two sets A and B using a custom function F. Wavefront
computes a two-dimensional recurrence relation using boundary con-
ditions and a custom function F as an input. Makeflow takes an array

of dependencies, which could be visualized as a directed acyclic graph
structured workload, computes according to the workflow and pro-
duces a target file. Using different techniques, each can be executed
efficiently on multicore clusters

Cluster Comput (2010) 13: 243–256 245

found in bioinformatics, where users chain together multi-
ple independent tools to solve a larger problem. Below, we
will show Makeflow applied to a genomics problem.

On very small problems, these abstractions are easy to
implement. For example, a small All-Pairs can be achieved
by just iterating over the output matrix. However, many
users have very large examples of these problems, which
are not easy to implement. For example, a common All-
Pairs problem in biometrics compares 4000 images of 1 MB
to each other using a function that runs for one second, re-
quiring 185 CPU-days of sequential computation. A sample
Wavefront problem in economics requires evaluating a 500
by 500 matrix, where each function requires 7 s of com-
putation, requiring 22 CPU-days of sequential computation.
To solve these problems in reasonable time, we must har-
ness hundreds of CPUs. However, scaling up to hundreds of
CPUs forces us to confront these challenges:

• Data Bottlenecks. Often, I/O patterns that can be over-
looked on one processor may be disastrous in a scal-
able system. One process loading one gigabyte from a
local disk will be measured in seconds. But, hundreds of
processes loading a gigabyte from a single disk over a
shared network will encounter several different kinds of
contention that do not scale linearly. An abstraction must
take appropriate steps to carefully manage data transfer
within the workload.

• Latency vs Concurrency. Dispatching sub-problems to a
remote CPU can have a significant cost in a large dis-
tributed system. To overcome this cost, the system may
increase the granularity of the sub-problems, but this de-
creases the available concurrency. To tune the system ap-
propriately, the implementation must acquire knowledge
of all the relevant factors.

• Fault Tolerance. The larger a system becomes, the higher
the probability the user will encounter hardware failures,

network partitions, adverse policy decisions, or unex-
pected slowdowns. To run robustly on hundreds of CPUs,
our model must accept failures as a normal operating con-
dition.

• Ease of Use. Most importantly, each of these problems
must be addressed without placing additional burden on
the end user. The system must operate robustly on prob-
lems ranging across several orders of magnitude by ex-
ploring, measuring, and adapting without assistance from
the end user.

Examples of abstractions beyond the three mentioned
above include Bag-of-Tasks [2, 24], Bulk Synchronous Par-
allel [3], and Map-Reduce [4]. None of these models is a
universal programming language, but each is capable of rep-
resenting a certain class of computations very efficiently.
In that sense, programming abstractions are similar to the
idea of systolic arrays [11], which are machines special-
ized for very specific, highly parallel tasks. Abstractions
like All-Pairs and Wavefront are obviously than general
purpose workflow languages such as DAGMan [27], Pega-
sus [5], Swift [30], and Dryad [10]. But, precisely because
abstractions are regularly structured and less expressive, it is
more tractable to provide robust and predictable implemen-
tations of large workloads. Once experience has been gained
with specific abstractions, future work may evaluate whether
more general languages can apply the same techniques.

3 Architecture

Figure 2 shows a general strategy for implementing abstrac-
tions on distributed multicore systems. The user invokes the
abstraction by passing the input data and function to a dis-
tributed master. This process examines the size of the in-
put data, the runtime of the function, consults a resource

Fig. 2 Distributed multicore implementation. All-Pairs, Wavefront,
and other abstractions can be executed on multicore clusters with a hi-
erarchical technique. The user first invokes the abstraction, stating the
input data sets and the desired function. The distributed master process

measures the inputs, models the system, and submits sub-jobs to the
distributed system. Each sub-job is executed by a multicore master,
which dispatches functions, and returns results to the distributed mas-
ter, which collects them in final form for the user

246 Cluster Comput (2010) 13: 243–256

catalog to determine the available machines, and models
the expected runtime of the workload in various configu-
rations. After choosing a parallelization strategy, the distrib-
uted master submits sub-problems to the local batch system,
which dispatches them to available CPUs. Each job consists
of a multicore master which examines the executing ma-
chine, chooses a parallelization strategy, executes the sub-
problem, and returns a partial result to the distributed mas-
ter. As results are returned, the distributed master may dis-
patch more jobs and assembles the output into a compact
final form.

For ease of use and implementation, both the distributed
and multicore masters are contained in a single executable
and invoked in the same way. Both All-Pairs and Wavefront
are invoked by stating directories containing the input data
and the name of the executable that implements the function:

allpairs function.exe Adir Bdir
wavefront function.exe Rdir

Without arguments, the distributed master will automat-
ically choose how to partition the problem. When dispatch-
ing a sub-problem to a CPU, the distributed master simply
invokes the same executable with options to select multicore
mode on a given sub-problem, for example:

wavefront -M -X 15 -Y 20 -W 5 -H 5
function.exe Rdir

Of course, this assumes that the necessary files are avail-
able on the executing machine. The distributed master is re-
sponsible for setting this up via direct file transfer, or speci-
fication through the batch system. Note that this architecture
allows for more than two levels of hierarchy—a global mas-
ter could invoke distributed masters on multiple clusters—
but we have not explored this idea yet.

The user may specify the function in several different
ways. The function is usually a single executable program,
in which case the input data is passed through files named
on the command line, and the output is written to the stan-
dard output. This allows the end user to choose whatever
programming language and environment they are most com-
fortable with, or even use an existing commercial binary. For
example, the All-Pairs and Wavefront functions are invoked
like this:

allpairs_func.exe Aitem Bitem > Output
wavefront_func.exe Xitem Yitem Ditem > Output

Invoking an external program might have unacceptable
overhead if the execution time is relatively short. To over-
come this, the user may also compile the function into a
threaded shared library with interfaces like this:

void * allpairs_function(
const void *a, int alength,
const void *b, int blength);

void * wavefront_function(

const void *x, int xlength,
const void *y, int ylength,
const void *d, int dlength);

Regardless of how the code is provided, we use the term
function in the logical sense: a discrete, self-contained piece
of code with no side effects. This property is critical to
achieving a robust, usable system. The distributed master
relies on its knowledge of the function inputs to provide the
necessary data to each node. If the function were to read or
write unexpected data, the system would not function.

As the results are returned from each multicore master,
the distributed master assembles them into a suitable exter-
nal form. In the case of Wavefront, it is not realistic to leave
each output in a separate file (although the batch system may
deposit them that way), because the result would be mil-
lions of small files. Instead, the distributed master stores the
results in an external sparse matrix. This provides efficient
storage as well as checkpointing: after a crash, the master
reads the matrix and continues where it left off.

The distributed master does not depend on the features of
any particular batch system, apart from the ability to submit,
track, and remove jobs. Our current implementation inter-
faces with both Condor [27] and Sun Grid Engine (SGE) [8],
and expanding to other systems is straightforward. The dis-
tributed master also interfaces with a custom distributed sys-
tem called Work Queue, which we will motivate and de-
scribe later.

To use Makeflow, a user needs to create a Makeflow
script that describes the workflow of his workload. This lan-
guage is very similar to traditional Make [31]: each rule
states a program to run, along with the input files needed
and the output files produced. Here is a very simple exam-
ple:

part1 part2: input.data split.py
./split.py input.data

out1: part1 mysim.exe
./mysim.exe part1 >out1

out2: part2 mysim.exe
./mysim.exe part2 >out2

Like All-Pairs and Wavefront, Makeflow can run an en-
tire workload on a local multicore machine, or submit jobs to
Condor, SGE, or Work Queue. However, it does not have a
hierarchical implementation: only single jobs are dispatched
to remote machines. This is because graph partitioning is al-
gorithmically complex, and impractical for heterogeneous
workloads where runtime prediction is unreliable. Put sim-
ply, Makeflow has greater generality, but this comes at the
cost of implementation efficiency, as we will emphasize be-
low.

Cluster Comput (2010) 13: 243–256 247

Table 1 Time to dispatch a task
Method Time (µs)

pthread 6.3

fork 253

exec 830

popen 2500+
system 2500+

4 Building blocks

Our overall argument is that highly restricted abstractions
are an effective way of constructing very large problems
that are easily composed, robustly executed, and highly scal-
able. To evaluate this argument, we will begin by examining
several questions about each abstraction at the level of mi-
crobenchmarks, then evaluate the system has a whole.

4.1 Threads and processes

It is often assumed that multicore machines should be pro-
grammed via multithreaded libraries or compilers. Our tech-
nique instead employs processes, because they are more eas-
ily adapted to distributed systems. How does this decision
affect performance at the level of a single machine?

As a starting point, we constructed simple benchmarks
to measure the time to dispatch a null task using various
techniques. Each measurement is repeated one thousand
times, and the average is shown. (Unless otherwise noted,
the benchmark machine is a 1 GHz dual core AMD Opteron
model 1210 with 2 GB RAM running Linux 2.6.9.) Ta-
ble 1 shows the results. pthread creates and joins a stan-
dard POSIX thread on an empty function, fork creates and
works for a process which simply calls exit, exec forks
and executes an external program, and popen and system
create new sub-processes invoked through the shell.

It is no surprise that creating a thread is several orders of
magnitude faster than creating a process. However, it is not
so obvious that popen and system are considerably more
expensive than exec, and often vary in cost from user to
user. This is because these methods invoke the user’s shell
along with their complex startup scripts, which can have
unbounded execution time and create troubleshooting prob-
lems. If we are careful to avoid these methods, then execut-
ing an external program can be made reasonably fast. More-
over, it is only necessary for the execution time to dominate
the invocation time: a task in an abstraction running for a
second or more is sufficient.

4.2 Concurrency and data in All-Pairs

Of course, within a real program, we must weigh invoca-
tion time against more complex issues such as synchroniza-
tion, caching, and access to data. To explore the boundaries

Fig. 3 Linear method vs blocked method. The linear method evaluates
cells in the matrix line by line. The blocked method evaluates cells
block by block with a width chosen to fit in the file system buffer cache

of these issues, we studied the All-Pairs multicore master
running in sequential mode on a single machine, compar-
ing 1 MB randomly generated files. A simple comparison
function counts the number of bytes different in each object.
From a systems perspective, this is similar to a biometrics
problem, and provides a high ratio of data to computation.
Any realistic comparison function would be more CPU in-
tensive, so these tests explore the worst case.

In this scenario, we vary several factors. First, we vary
the invocation method of the function: create a thread to run
an internal function (thread) or create a process to execute
an external program (process). The author of a function is
free to choose their own I/O technique, so we also compare
buffered I/O byte-by-byte (fgetc), block-by-block (fread),
and memory-mapped I/O (mmap). A naive implementation
would simply iterate over the output matrix in order, causing
cache misses at all levels on every access. A more effective
method shown in Fig. 3 is to choose a smaller block of cells
and iterate over those completely before proceeding to the
next block. The width of the block is called the block size.
(This technique is sufficient for our purposes, but see Frigo
et al. [7] for more clever methods.)

Figure 4 shows the relative weight of all these issues.
Each curve shows the runtime of a 1000 × 10 compari-
son over various block sizes. The two slowest curves are
thread and process, both using fgetc. The two middle curves
are process using fread and mmap, and the fastest is thread
with mmap. All curves show significant slowdown when the
block size exceeds physical memory.

Clearly, threads with mmap execute twice as fast as the
next best configuration. If the user is willing to write a
thread-safe function for use with the abstraction, they should
do so. However, the use of processes is only twice as slow
in this artificial worst case and will not fare as poorly with
a more CPU-intensive function. Moreover, the appropriate
use of virtual memory by the abstraction and the I/O tech-
nique chosen by the function are much more significant fac-
tors than the difference between threads and processes. We

248 Cluster Comput (2010) 13: 243–256

Fig. 4 Threads, processes, and I/O techniques. The performance of a
data intensive 1000 × 10 All-Pairs in sequential mode using threads
and processes with various I/O techniques. While threads provide the
best performance, processes are a reasonable method even on this worst
case

Fig. 5 Multicore vs sub-problems. The performance of an 1000 × 10
All-Pairs in sequential mode, in dual-core mode, and as two indepen-
dent sequential sub-problems, using various block sizes. This demon-
strates the importance of an explicit multicore strategy

conclude that using processes to exploit parallelism is a rea-
sonable tradeoff if it improves the usability of the system.

(We re-emphasize that each abstraction can accept either
an external program or a threaded internal function. So far,
none of our users has chosen to use threads.)

Next we consider how to carry out All-Pairs on a multi-
core machine. Although there are many possible ways, we
may consider two basic strategies. One is to generate N con-
tiguous sub-problems, and allow each core to run indepen-
dently. The other is to write an explicit multicore master that
proceeds through the entire problem coherently, dispatching
individual functions to each core. Figure 5 compares both
of these against a simple sequential approach. As can be
seen, the sub-problem approach performs far worse, because
it does not coordinate access to data, and caches at all levels
are quickly overwhelmed. Thus, we have shown it is nec-

Fig. 6 The effect of latency on wavefront. The modeled runtime of
a 1000 × 1000 Wavefront where each function takes one second to
complete, with varying block size and dispatch latency. As dispatch
time increases, the system must increase block size to overcome the
idle time

essary to have a deliberate multicore implementation, rather
than treating each core as a separate node.

4.3 Control flow in Wavefront

As we have shown, the primary problem in efficient All-
Pairs is managing data access. However, in Wavefront the
problem is almost entirely control flow. The first task of the
problem is sequential. Once completed, two tasks may run
in parallel, then three, and so forth. If there is any delay in
dispatching or completing a task, this will have a cascading
effect on dependent adjacent tasks. We will consider two
control flow problems: dispatch latency and run-time vari-
ance.

Figure 6 models the effect of latency on a Wavefront
problem. This simple model assumes a 1000 × 1000 prob-
lem where each task takes one second to complete. On
the x axis, block size indicates the size of sub problem
dispatched to a processor. Each curve shows the runtime
achieved for a system with dispatch latency ranging from
zero (e.g. a multicore machine) to 30 s (e.g. a wide area
computing grid).

As block size increases, the sub-problem runtime in-
creases relative to the dispatch latency, but less parallelism
is available because the distributed master must wait for an
entire sub-problem to complete before dispatching its neigh-
bors. The result is that for very high dispatch times, a modest
block size improves performance, but cannot compete with
a system that has lower dispatch latency. So, the key to the
problem is to minimize dispatch latency.

Although Wavefront can submit jobs to Condor and SGE
batch systems directly, the dispatch latency of these systems
when idle is anywhere from ten to sixty seconds, depending
on the local configuration. For short-running functions, this
will not result in acceptable performance, even if we choose
a large block size. (This is not an implementation error in ei-

Cluster Comput (2010) 13: 243–256 249

ther system, rather it is a natural result of the need to service
many different users within complex policy constraints.)

To address this, we borrowed the idea of a fast dispatch
execution system as in Falkon [17]. We built a simple system
called Work Queue that uses lightweight worker processes
that can be submitted to a batch system. Each contacts the
distributed master, and provides the ability to upload and ex-
ecute files. This allows for task dispatch times measured in
milliseconds instead of seconds. Workers may be added or
removed from the system at any time, and the master will
compensate by assigning new tasks, or reassigning failed
tasks.

However, even if we solve the problem of fixed dispatch
latency, we must still deal with the unexpected delays that
occur in distributed systems. When Work Queue runs on a
Condor pool, a running task may still be arbitrarily delayed
in execution. It may be evicted by system policy, stalled due
to competition for local resources, or simply caught on a
very slow machine. To address these problems, the Work
Queue scheduler keeps statistics on the average execution
time of successful jobs and the success rate of individual
workers. It makes assignments preferentially to machines
with the fastest history, and proactively aborts and re-assigns
tasks that have run longer than three standard deviations past
the average. These techniques are collectively called Fast
Abort.

Figure 7 shows the impact of Fast Abort on starting up a
1000 × 1000 Wavefront on 180 CPUs. Without Fast Abort,
stuck jobs cause the workload to however around twenty
tasks running at once. With Fast Abort, the stragglers are
systematically resolved and the concurrency increases lin-
early until all CPUs are in use. Figure 8 shows this behav-
ior from another perspective. The distributed master period-
ically produces a bitmap showing the progress of the run.
Colors indicate the state of each cell: red is incomplete,
green is running, and blue is complete. Due to the hetero-
geneity of the underlying machines, the wave proceeds ir-
regularly. Although an N × N problem should use N CPUs
at maximum, this perfect diagonal is rarely seen.

4.4 Greater generality with Makeflow

Makeflow provides a different type of building block for
large multicore workflows with abstractions. Makeflow
combines many functions together (instead of many in-
stances of the same function) to express more complex series
of operations.

Makeflow uses a syntax very similar to traditional Make,
but it differs in one critical way: each rule of a Makeflow
must exactly state all of the files consumed or created by the
rule. (In traditional Make, one can often omit files, or add
dummy rules as needed to affect the control flow.) Make-
flow is more strict, but this allows it to accurately generate

Fig. 7 The effect of fast abort on wavefront. The startup behavior of a
500×500 Wavefront with and without Fast Abort. Without Fast Abort,
every delayed result impedes the increase in parallelism, which stabi-
lizes around 20. With Fast Abort, delays are avoided and parallelism
increases steadily

Fig. 8 Asynchronous progress in wavefront. A progress display from
a Wavefront problem. Each cell shows the current state of a portion
of the computation: the darkest gray in the lower left corner indicates
incomplete, the lighter gray in the upper right indicates complete, and
the light cells in between are currently running. The irregular progress
is due to heterogeneity and asynchrony in the system

batch jobs, exploit common patterns of work, and schedule
jobs to where their data is located. This allows Makeflow to
run correctly on both local multicore machines as well as a
distributed system.

The Makeflow abstraction can be configured to use dif-
ferent numbers of cores. Figure 9 shows the turnaround
times varying the number of cores used with two different
options for executing a genomics workload on 1–24 cores.
The top curve (“cluster”) presents Makeflow using Work
Queue, with workers submitted to remote machines as Con-
dor jobs. The bottom curve (“multicore”) executes all work
as Makeflow-controlled local processes, in which Makeflow
automatically takes advantage of multiple cores on the sub-
mitting machine. Makeflow jobs running locally outperform
jobs tasked to remote workers and scale well up to the num-
ber of available cores.

250 Cluster Comput (2010) 13: 243–256

Fig. 9 Makeflow on multicore and cluster. The performance of a ge-
nomics application run through Makeflow, using 1–24 cores on both a
multicore machine and a cluster using Work Queue

5 Putting it all together

In a well-defined dedicated environment in which the dis-
tributed master knows exactly which resources will be used,
a model can partition work to the resources in such a way
as to optimize the workload [28]. This applies to multicore
environments as well—the distributed master could build
multicore assumptions into the model to optimize a work-
load. However, this finely-tuned partitioning does not adapt
well to heterogeneous environments or resource unavailabil-
ity. Previous work derived a more realistic solution for mod-
eling the turnaround time of an All-Pairs workload in a clus-
ter [12]. Is it possible to use the multicore version of the
All-Pairs abstraction transparently beneath the cluster ab-
straction?

If the abstraction is to use the multicore master trans-
parently, then it must continue to exclude considerations
of the number of cores per node from the model. If the
workload is benchmarked on a single-core system or with
a single-threaded executor, then the model will choose
appropriate resources to run the workload efficiently as-
suming single-threaded operation. Adding multicore ex-
ecution to this workload, then, will only serve to make
the batch jobs complete faster on the multicore resources.
It does not change the overall workload any more than
having benchmarked on a slow node would: the success
of the model in avoiding disastrous cases is maintained,
the faster resources (in this case multicore nodes) will ac-
count for a greater portion of the batch jobs than their “fair
share”, and any long-tail from slow nodes would extend
out at most to the same duration as without any multicore
nodes.

So it is possible, but this is little solace if there is a clearly
better solution for modeling a distributed All-Pairs workload
using multicore resources. Another option is to integrate the

multicore master (instead of the original single-threaded ex-
ecutor) into the benchmarking process for the model. If the
function runtime is benchmarked using the multicore mas-
ter, then the function execution time (computed as the av-
erage time per function over a small set of executions) will
be comparable to the expected execution of batch jobs on
the same number of cores. This is a good approach for sub-
mitting to homogeneous clusters of resources in which the
same number of cores are available for every batch job. In
a heterogeneous environment, however, this only serves to
exacerbate the model’s assumption that the benchmark node
reflects the cluster’s resources. Whereas the original model
conceded that individual resources might be perhaps a gen-
eration newer (faster) or older (slower) than the benchmark
node, the inclusion of multicore uncertainty into the bench-
marking increases the potential range of resource capabili-
ties and thus the potential for long-tail effects in a workload.

Another option would be to include a coefficient of the
average number of cores within the model. Because the
model includes a component for the time to complete a sin-
gle batch job, an adjustment for the number of cores could
be made by dividing the batch job execution time in the
model by this average. This retains the same prerequisite
measurements (plus the calculation of the average number
of cores), however it has several limitations. First, the pool
of resources must be well-defined so that the average num-
ber of cores may be determined; but because the model is
used to select the appropriate number of resources, the exact
set of hosts is not known a priori. Thus, the average num-
ber of cores available for each host is a pool average rather
than one specific to the actual resources used. Further, con-
tention for resources means that not all hosts will be uti-
lized equally or predictably, which presents the same prob-
lem in trying to include a factor of the number of cores in
the turnaround time model. This is especially problematic as
we move beyond workstations with at most a few cores: un-
availability of a machine with dozens of cores significantly
changes the average number of cores of the available ma-
chines.

With that said, can we accurately model the performance
of our abstractions? Figure 10 shows the modeled perfor-
mance of All-Pairs workloads of varying sizes running on
an 8-core machine and a 64-core cluster. Figure 11 shows
the modeled performance of Wavefront workloads running
on a 32-core machine and a 180-core cluster. In both cases,
the multicore model is highly accurate, due to a lack of com-
peting users and other complications of distributed systems.
Both models are sufficiently accurate that we may use them
to choose the appropriate implementation at runtime based
on the properties given to the abstraction. Figure 12 shows
the modeled performance of Makeflow workloads running
on a 24-core machine and a 60-core cluster. Figure 13 com-
pares the multicore and cluster models for the previous All-
Pairs and Wavefront examples, and demonstrates the actual

Cluster Comput (2010) 13: 243–256 251

Fig. 10 Accuracy of the all-pairs model on multicore and cluster. The real and modeled performance of an All-Pairs benchmark of varying sizes
on a 8-core machine (left) and an 64-core cluster (right)

Fig. 11 Accuracy of the wavefront model on multicore and cluster. The real and modeled performance of a Wavefront benchmark of varying sizes
on a 32-core machine (left) and an 180-core cluster (right)

Fig. 12 Accuracy of the makeflow model on multicore and cluster. The real and modeled performance of a Makeflow benchmark of varying sizes
on a 24-core machine (left) and a 60-core cluster (right)

performance achieved when selecting the implementation at
runtime.

6 Why multiple abstractions?

With the Makeflow abstraction for arbitrary DAG work-
flows, could we choose to use it as a general tool instead
of implementations of the specific abstractions mentioned

above? In our experience, the answer is that we could, but in
doing so we lose many of the problem-specific advantages
given by the less general abstractions. We carry out All-Pairs
on a 24-core machine using both the all-pairs multicore ab-
straction and the Makeflow abstraction.

We vary the size of the workloads from creating a 10×10
matrix to creating a 1000 × 1000 matrix. Each matrix cell is
computed by comparing two 20 KB files. With the Make-

252 Cluster Comput (2010) 13: 243–256

Fig. 13 Selecting an implementation based on the model. These
graphs overlay the modeled multicore and cluster performance on
problems of various sizes for All-Pairs (left) and Wavefront (right).

The dots indicate actual performance for the selected problem size. As
can be seen, the modeled performance is not perfect, but it is sufficient
to choose the right implementation

Fig. 14 Solving All-Pairs with Makeflow and All-Pairs. This figure
shows the time to complete an All-Pairs problem of various sizes using
the general Makeflow tool and the specific All-Pairs tool. The more
general tool is considerably more expensive, because it uses files for
output storage, and is unable to dispatch sub-problems to multicore
processors

flow abstraction, each cell value depends on a comparison
and the cell value is stored in a file after it is computed. And
we have to write an additional program, which depends on
all the cell value files, to extract all cell values from gener-
ated files and put them into the target matrix. The running
time of both abstractions on different workloads are shown
in Fig. 14. It is easy to see that the All-Pairs multicore ab-
straction scales almost linearly as the workload increases.
However, the Makeflow abstraction is several orders of mag-
nitude slower at this problem, because it uses files for output
storage, and is unable to manage work in organized blocks.

The increased generality of Makeflow has a significant
price, so we conclude that there is a great benefit to retain-
ing specific abstractions such as All-Pairs and Wavefront for
specialized problems.

7 Applications

In a previous paper [12], we demonstrated a number of ap-
plications of All-Pairs, so here we will focus on applications
of Wavefront and Makeflow.

Our example applications run on an open Condor pool
of approximately 600 CPUs, consisting of heterogeneous
desktop machines, homogeneous research clusters, and mul-
ticore servers ranging from 4–32 CPUs. Clock speeds range
from 500 MHz to 4 GHz. The number of CPUs changes un-
predictably as desktop users come and go, and other work-
loads enter and leave the system. Thus, these results show
that our system achieves reasonable performance under ad-
verse conditions on real applications.

We use the term speedup with the usual definition: se-
quential runtime divided by actual runtime. However, note
that the maximum possible speedup is not the number of
processors. Consider an idealized machine with P proces-
sors running an N × N problem with P ≥ N . In the first
timestep, one task will run, then two, and so forth, until the
diagonal is reached in N steps. Then, N −1 tasks run simul-
taneously and so on down to one task, giving a parallel run-
time of (2N − 1) timesteps. The sequential runtime is N2,
so the best possible speedup is N2/(2N − 1) or N/2. But, if
P � N , then the system will quickly reach a steady state of
P tasks running, and the runtime will approach N2/P with
a speedup of P . We will see both cases below.

7.1 Bioinformatics

Sequence alignment is one of the most important tasks in
bioinformatics and is used in a variety of applications. Com-
mon variants of pairwise sequence alignment can be solved
using dynamic programming [14] and each requires time
proportional to the product of the two sequences considered.
Prior parallel implementations have been motivated by ei-
ther the need to compare a single pair of large sequences [18]

Cluster Comput (2010) 13: 243–256 253

Fig. 15 100 × 100 Wavefront in bioinformatics. A timeline of a
100 × 100 Wavefront problem implementing sequence alignment run-
ning on non-dedicated multicore Condor pool. 80 cores were available
at the peak of the execution. An overall speedup of 38x is achieved, the
maximum possible is 50x

or the need to compare many small sequences [15] for tasks
such as phylogenetic inference and genome assembly. Pre-
vious algorithms have implemented the wavefront problem
on dedicated clusters and parallel architectures such as the
Cell [23]. Our implementation achieves similar speedups,
but requires only sequential coding, and can execute on un-
reliable, loosely coupled machines.

In less than a day, we wrote a single process function in
156 lines of C++ that performed alignment on a substring
and propagated the required data for later steps. Distributed
sequence alignment was then tested on two large bacteria
genomes using wavefront: a non-virulent lab strain of An-
thrax (Bacillus anthracis str. Ames; Genbank NC_003997)
and its virulent ancestor strain (Bacillus anthracis str. ‘Ames
Ancestor’; Genbank NC_007530). Each genome is approxi-
mately 5.3 million characters long, and the score of an opti-
mal suffix-prefix alignment was computed using only linear-
space. An actual alignment (i.e., the path through the dy-
namic programming matrix) is also attainable based on the
divide-and-conquer Hirschberg technique [23], which re-
quires twice as much computation and a more complicated
strategy.

Figure 15 shows a timeline of this alignment running us-
ing a 100 × 100 partition of the problem. Each task takes
about 117 s to run on a 1 GHz CPU. On the Condor pool, a
maximum of 80 tasks running simultaneously was achieved.
The overall runtime was reduced from 13 days sequential to
8.3 hours with a speedup of 38x out of the maximum possi-
ble 50x.

We also explored the application of a heuristic for
bioinformatics problems similar to sequence alignment.
SSAHA (Sequence Search and Alignment by Hashing Al-
gorithm) [29] is a bioinformatics tool designed to map one
set of genetic data onto another set of data. SSAHA is very
similar to the popular bioinformatics tool BLAST [1] be-
cause it creates a hash table for a set of subject sequences

Fig. 16 Makeflow without Fast Abort. A timeline of SSAHA execu-
tion on 100 simultaneous workers without Fast Abort. As can be seen,
the long tail is almost as long as the peak computation period

Fig. 17 Makeflow with Fast Abort. A timeline of SSAHA execution
on 100 simultaneous workers with Fast Abort. Compared to the above
figure, the tail is mostly eliminated

to speed up the search of query sequences for matches. Un-
like BLAST, SSAHA computes the complete mapping and
therefore can be used to discover detailed differences be-
tween sequences and individuals [29]. SSAHA is a pub-
licly available sequential application. Our implementation
involves running the sequential application many times in
parallel using the Makeflow and Work Queue abstractions.
This allows us to harness the Condor pool to complete our
computation in a reasonable time.

Our implementation mapped 11.5 million sequences con-
sisting of 11 billion bases onto the genome Sorghum bi-
color [16] (738.5 million bases). This is a large bioinformat-
ics workload with the majority of execution time for each
job dedicated to mapping the queries and a small portion
dedicated to generating hash tables. The abstraction split a
large sequential execution into nearly 2300 smaller sequen-
tial computations that were run in parallel on workers sub-
mitted to our Condor pool. Figure 16 shows the execution of
this job on a maximum of 100 simultaneous workers without
Fast Abort. There is an extremely prominent long-tail effect
that nearly doubles the total execution time. Figure 17 shows
the same workload run with fast abort enabled, which nearly
eliminated the long-tail effect and more than halved our to-

254 Cluster Comput (2010) 13: 243–256

tal run time. The implementation using Fast Abort required
16 hours of runtime compared to the sequential runtime of
65 days with a total speedup of 92x.

7.2 Economics

The wavefront abstraction can represent a number of dy-
namic economic problems. Consider, for example, the com-
petition between two microprocessor vendors. Each firm
produces microprocessors and engages in R&D to improve
the clock speed. That game ends when they reach limits
imposed by physics. Economic models examining such dy-
namic games would discretize the problem by assuming that
there are N possible efficiencies and each firm begins with
efficiency level 1. The state of a two-player game is denoted
by the vector of efficiencies (i, j). At each such state, each
firm competes for sales of the chips of those efficiencies but
each firm also wants to improve its efficiency. When the
game reaches the state (N,N) the dynamics are done and
we have reached a static situation which can be computed
directly. If the state of the game is (N −1,N) then firm 1 still
works to improve its efficiency and its incentives to work on
R&D are affected by the anticipated profits it receives when
the game goes to (N,N). This is also true for player 2 in
the state (N,N − 1). Hence, the solution at (N,N) allows
us to solve (N − 1,N) and (N,N − 1). Similarly, those so-
lutions allow us to solve (N − 2,N), (N − 1,N − 1) and
(N,N − 2). The wavefront abstraction sweeps through the
states until we have solved the dynamic game at all states
(i, j), 1 ≤ i, j ≤ N .

This kind of game arises in many dynamic economic
problems. See [9, 25, 26] for original papers on the learn-
ing curve, [6, 19–21] for examples of dynamic R&D races,
and [22] for an example from the exhaustible resources lit-
erature. All of these results are limited in scope because a
sequential implementation dramatically limits the number
of parameters. For example, the learning and R&D papers
assume only two firms and a small number of steps. This is
an unreasonable assumption since there are many firms in
each industry, particularly at the early stages where innova-
tion is rapid and many firms are competing to be one of the
few survivors. These models are essential for a serious ex-
amination of antitrust policies that limit how fiercely firms
may compete and tax policies that are supposedly designed
to encourage innovation

Using the wavefront abstraction, we can easily carry out
problems many orders of magnitude larger than have been
attempted before. With less than a day of coding, we ported a
Nash equilibrium function for two players with four parame-
ters from Mathematica into a 77-line C program usable with
Wavefront. On a single input, this function requires about
7.6 s to complete on a 1 GHz CPU.

Fig. 18 500×500 Wavefront in economics. A timeline of a 500×500
Wavefront problem in economics running on non-dedicated multicore
Condor pool. Because many of the remote CPUs were faster than the
submitting CPU, the overall speedup of 180x is greater than the number
of CPUs

Figure 18 shows a timeline of this workload running on
the Condor pool. The workload quickly reached the maxi-
mum available parallelism of between 120 and 160 CPUs.
An overall speedup of 182x was achieved, reducing the se-
quential runtime from 22 days to 2.9 hours. The speedup
achieved was faster than ideal because many of the remote
CPUs were faster than the submitting machine on which the
function was benchmarked.

8 Conclusion

We have demonstrated how simple high level abstractions
can be used to scale regularly structured problems up to clus-
ters of multicore computers. We have made the following
key observations:

• Processes are a realistic alternative to threads for pro-
gramming multicore systems, even on I/O intensive tasks.

• It is feasible to accurately model the performance of
large scale abstractions across a wide range of configu-
rations, allowing for the rational selection of appropriate
resources.

• Abstractions are easy for non-experts to program, pro-
vided there is a good match between the application struc-
ture and the application.

• The All-Pairs and Wavefront abstractions can be scaled up
to hundreds of cores, achieving good performance even
under adverse conditions.

• General abstractions, like Makeflow, are able to deal with
more kinds of application structures; however, they might
not achieve the same performance as specific abstractions.

There are many avenues of future work. We have out-
lined a two-level hierarchy of implementations for abstrac-
tions, but the system could be generalized to support solv-
ing very large problems across the wide area with deeper

Cluster Comput (2010) 13: 243–256 255

nesting. Additional implementations of abstractions on spe-
cialized architectures such as the Cell or FPGAs might be
effective ways of transparently adding such devices to large
computations.

Acknowledgements This work was supported in part by the Na-
tional Science Foundation under grants CCF-06-43229 and CNS-
06-21434, and the National Institutes of Health NIAID contract
HHSN272200900039C.

References

1. Altschul, S.F., et al.: Basic local alignment search tool. J. Mol.
Biol. 3, 403–410 (1990)

2. Bakken, D., Schlichting, R.: Tolerating failures in the bag-of-tasks
programming paradigm. In: IEEE International Symposium on
Fault Tolerant Computing, June 1991

3. Cheatham, T., Fahmy, A., Siefanescu, D., Valiani, L.: Bulk syn-
chronous parallel computing—a paradigm for transportable soft-
ware. In: Hawaii International Conference on Systems Sciences
(2005)

4. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on
large cluster. In: Operating Systems Design and Implementation
(2004)

5. Deelman, E., Singh, G., Su, M.-H., Blythe, J., Gil, Y., Kesselman,
C., Mehta, G., Vahi, K., Berriman, B., Good, J., Laity, A., Jacob,
J., Katz, D.: Pegasus: a framework for mapping complex scientific
workflows onto distributed systems. Sci. Program. J. 13(3), 219–
237 (2005)

6. Doraszelski, U.: An R&D race with knowledge accumulation. Bell
J. Econ. 34, 19–41 (2003)

7. Frigo, M., Leiserson, C., Prokop, H., Ramachandran, S.: Cache
oblivious algorithms. In: Foundations of Computer Science
(FOCS) (1999)

8. Gentzsch, W.: Sun grid engine: towards creating a compute power
grid. In: CCGRID ’01: Proceedings of the 1st International Sym-
posium on Cluster Computing and the Grid (2001)

9. Ghemawat, P., Spence, A.M.: Learning curve spillovers and mar-
ket performance. Q. J. Econ. 100, 839–852 (1985)

10. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: dis-
tributed data parallel programs from sequential building blocks.
In: Proceedings of EuroSys, March 2007

11. Kung, H.T.: Why systolic architectures? IEEE Comput. 15, 37–46
(1982)

12. Moretti, C., Bulosan, J., Flynn, P., Thain, D.: All-pairs: An ab-
straction for data intensive cloud computing. In: International Par-
allel and Distributed Processing Symposium (IPDPS) (2008)

13. Moretti, C., Steinhaeuser, K., Thain, D., Chawla, N.V.: Scaling
up classifiers to cloud computers. In: International Conference on
Data Mining (ICDM) (2008)

14. Needleman, S.B., Wunsch, C.D.: A general method applicable to
the search for similarities in amino acid sequence of two proteins.
J. Mol. Biol. 48, 443–453 (1970)

15. Oliver, T., Schmidt, B., Nathan, D., Clemens, R., Maskell, D.: Us-
ing reconfigurable hardware to accelerate multiple sequence align-
ment with clustalw. Bioinformatics 21, 3431–3432 (2005)

16. Paterson, A.H., et al.: The Sorghum bicolor genome and the diver-
sification of grasses. Nature 457, 551–556 (2009)

17. Raicu, I., Zhao, Y., Dumitrescu, C., Foster, I., Wilde, M.: Falkon:
a fast and light-weight task execution framework. In: IEEE/ACM
Supercomputing (2007)

18. Rajko, S., Aluru, S.: Space and time optimal parallel sequence
alignments. IEEE Trans. Parallel Distrib. Syst. 15(12), 1070–1081
(2004)

19. Reinganum, J.: Dynamic games of innovation. J. Econ. Theory 25,
21–41 (1981)

20. Reinganum, J.: A dynamic game of R&D: patent protection and
competitive behavior. Econometrica 50, 671–688 (1982)

21. Reinganum, J.: Corrigendum. J. Econ. Theory 35, 196–197
(1985)

22. Reinganum, J., Stokey, N.: Oligopoly extraction of a common
property natural resource: the importance of the period of com-
mitment in dynamic games. Int. Econ. Rev. 26, 161–174 (1985)

23. Sarje, A., Aluru, S.: Parallel biological sequence alignments on the
cell broadband engine. In: International Parallel and Distributed
Processing Symposium (IPDPS) (2008)

24. da Silva, D., Cirne, W., Brasilero, F.: Trading cycles for informa-
tion: Using replication to schedule bag-of-tasks applications on
computational grids. In: Euro-Par (2003)

25. Spence, A.M.: The learning curve and competition. Bell J. Econ.
12, 49–70 (1981)

26. Spence, A.M.: Cost reduction, competition, and industry perfor-
mance. Econometrica 52, 101–121 (1984)

27. Thain, D., Tannenbaum, T., Livny, M.: Condor and the grid. In:
Berman, F., Fox, G., Hey, T. (eds.) Grid Computing: Making the
Global Infrastructure a Reality. Wiley, New York (2003)

28. Theobald, K.B., Gao, G.R.: An efficient parallel algorithm for all
pairs examination. In: Supercomputing ’91: Proceedings of the
1991 ACM/IEEE Conference on Supercomputing, pp. 742–753.
ACM, New York (1991)

29. Ning, Z., Cox, A.J., Mullikin, J.C.: SSAHA: a fast search method
for large DNA databases. Genome Res. 10, 1725–1729 (2001)

30. Wilde, M.: Parallel scripting for applications at the petascale.
IEEE Computer, November 2009

31. Feldman, S.: Make—a program for maintaining computer pro-
grams. Softw. Pract. Exp. 9, 255–265 (1978)

Li Yu graduated from Huazhong
University of Science and Technol-
ogy in 2006 with a B.S. in Computer
Science and in 2008 with a M.S. in
Computer Science. He is currently
a Ph.D. student at the University of
Notre Dame, researching distributed
computing.

Christopher Moretti graduated
from the College of William and
Mary in 2004 with a B.S. in Com-
puter Science. He received a Master
of Science in Computer Science and
Engineering from the University of
Notre Dame in 2007. He is currently
a Ph.D. candidate at Notre Dame,
researching distributed computing
abstractions for scientific comput-
ing.

256 Cluster Comput (2010) 13: 243–256

Andrew Thrasher graduated from
Anderson University in Indiana in
2009 with a B.A. in Computer Sci-
ence, Mathematics and Physics. He
is currently working towards a Mas-
ter’s degree in Computer Science at
the University of Notre Dame.

Scott Emrich received the B.S.
in Biology and Computer Science
from Loyola College in Maryland
and the Ph.D. in Bioinformatics and
Computational Biology from Iowa
State University. His research inter-
ests include computational biology,
bioinformatics and parallel comput-
ing, including arthropod genome
analysis with applications to global
health and ecology.

Kenneth Judd is the Paul H. Bauer
Senior Fellow at the Hoover Institu-
tion at Stanford University. He grad-
uated Phi Beta Kappa from the Uni-
versity of Wisconsin (1975) with
undergraduate degrees in mathe-
matics and computer sciences. Judd
received an M.A. from the Univer-
sity of Wisconsin in mathematics in
1977 and an M.A. in economics in
1980. He was awarded a Ph.D. in
economics in 1981 from the Uni-
versity of Wisconsin. His current
research focuses on tax policy and

antitrust issues, as well as developing computational methods for eco-
nomic modeling.

Douglas Thain received the B.S. in
Physics in 1997 from the University
of Minnesota and the M.S. and Ph.D.
in Computer Sciences in 1999 and
2004 from the University of Wiscon-
sin. He is currently an Assistant Pro-
fessor of Computer Science and En-
gineering at the University of Notre
Dame, where his research focuses on
scientific applications of distributed
computing systems.

	Harnessing parallelism in multicore clusters with the All-Pairs, Wavefront, and Makeflow abstractions
	Abstract
	Introduction
	Abstractions
	Architecture
	Building blocks
	Threads and processes
	Concurrency and data in All-Pairs
	Control flow in Wavefront
	Greater generality with Makeflow

	Putting it all together
	Why multiple abstractions?
	Applications
	Bioinformatics
	Economics

	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

