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This paper analyses what determines an individual investor’s risk-sharing demand for

options and, aggregating across investors, what the equilibrium demand for options. We

find that agents trade options to achieve their desired skewness; specifically, we find

that portfolio holdings boil down to a three-fund separation theorem that includes a

so-called skewness portfolio that agents like to attain. Our analysis indicates also,

however, that the common risk-sharing setup used for option demand and pricing is

incompatible with a stylized fact about open interest across strikes.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Option volume and open interest have steadily increased over the last decades and reached tremendous amounts.1

However, the option literature focuses on the pricing of options under risk-sharing assumptions but largely ignores the demand
in such contracts. This paper determines portfolio holdings in options and analyses what drives risk-sharing option demand.

In this paper we study a series of single-period, partial and general equilibrium, exchange economies. Each economy
consists of two agents that can trade a stock and a portfolio of call options with various strikes written on the stock. While
the stock is in unit supply, the options are in zero net-supply. To determine demand we use the small-noise expansion
technique introduced by Samuelson (1970) and recently extended by Judd and Guu (2001). It provides closed-form
approximations for demand and prices that capture their salient features.

In partial equilibrium we show that a security’s risk-premium is proportional to its covariance with the agent’s portfolio
payoff and her squared portfolio payoff. The proportionality constants are functions of agent’s risk-preferences which we
determine. In general equilibrium we introduce a new portfolio, that is as close as possible to the squared stock payoff, the
so-called skewness portfolio. Agents’ portfolio holdings boil down to a three-fund separation theorem: agents trade the
bond, the stock (the surrogate for the market portfolio) and the skewness portfolio (the surrogate for the squared market
ll rights reserved.
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portfolio); risk-premiums exhibit a beta-gamma representation where idiosyncratic market and squared market risk are
not priced. Finally we confront our results to a stylized fact about open interest and, surprisingly, find that a risk-sharing
approach with the usual risk-preferences is incompatible with it.

The importance of contingent claims for risk-sharing2 is well known since Arrow (1953) and Debreu (1959). Ross (1976)
pointed out that options complete the market: this suggests that agents demand options. The option literature therefore often
ignores option demand and simply focuses on their pricing: the workhorse is the representative agent who prices assets based
on the marginal utility they provide but cannot justify demand in zero net-supply securities. This paper sticks to the risk-
sharing rationale for options, but instead of starting at the aggregation level, we start at the level of individual agents.

Our paper makes four contributions. First, in a partial equilibrium, we explain how buy-and-hold investors will
position themselves in a stock and a portfolio of options. Using the small-noise expansion technique we link demand to
closed-form expressions in mean, variance and skewness of payoff distributions. Our analysis only requires that investors
know the first three (co-)moments of securities’ payoffs, but does not assume either complete or incomplete markets,
risk-preferences other than expected utility or a type of distributions. Previous studies, however, have relied on specific
assumptions: agents have CPRA preferences; prices follow (jump-) diffusions; often a single option is studied. In a diffusion
model with CPRA investors Garleanu et al. (2009) find that demand pressures increase option prices by an amount
proportional to the variance of the unhedgeable part. In a jump-diffusion with exogenously specified pricing kernel and
one option that completes the market, Liu and Pan (2003) find intuitive closed-form expressions for demand by CPRA
investors; they document empirically that options improve the investor’s risk-return profile. Using the nonparametric
approach of Brandt (1999) and Ait-Sahalia and Brandt (2001) to determine holdings in a single option, Driessen and
Maenhout (2007) document empirically that CPRA investors will always short some types of options.

Second, we analyze in detail the aggregation across two agents to get insights into the reasons for option demand.
Aggregation leads to tedious mathematics, see Detemple and Selden (1991), and, so, the literature has focused on special
cases and on the question which agents are buying (selling) options, see Leland (1980), Brennan and Solanki (1981), Franke
et al. (1998), Dieckmann and Gallmeyer (2005), Bates (2008), and Weinbaum (2009).3 Using the small-noise expansion
technique we can capture the salient features of demand in closed-form expressions. We provide the following explanation
for risk-sharing option demand: If agents care about asymmetric events like liquidity shocks and market crashes, such
preferences show up as preferences over portfolio skewness; agents demand call options because they alter the skewness
of their portfolio payoff by trading the upper tail of the stock distribution. This shows up in their holdings of the so-called
skewness portfolio.

Third, as we determine the equilibrium allocation, we also derive risk-sharing equilibrium prices; therefore, our paper
adds to the option pricing literature. Based on the important contribution of Harvey and Siddique (2000) the literature has
renewed interest in skewness for securities pricing. Our paper finds that co-skewness is relevant for option pricing, in line
with Vanden (2006) and Bakshi et al. (2001).

Finally, we contribute to our understanding about the driving forces on option markets. Our theoretical risk-sharing
analysis points to an incompatibility of risk-sharing with the stylized fact about the open interest curve across strikes. This
indirectly adds support to other rationales for option demand, i.e. information trading and differences of beliefs. Our paper
fits into the recent literature that looks at information advantages that manifest themselves in option trade: For example,
Pan and Poteshman (2006) document that option volume may predict future stock price movements; Buraschi and Jiltsov
(2006) find that heterogeneous beliefs can help explain option volume.

The remainder of the paper is as follows: Section 2 describes our setup, while the following section discusses its features
and our small-noise expansion approach. Sections 4 and 5 discuss separately the incomplete and complete markets cases.
Section 6 discusses the stylized fact about the shape of open interest across strikes and confronts it with the risk-sharing
implications from incomplete and complete markets. Section 7 discusses the robustness of our approach, reviewing our
assumptions and resulting errors. Section 8 concludes the paper. We postpone mathematical details to the appendix.

2. The model

We study a sequence of financial economies, parameterized by the parameter 0rsr1. Each s�economy has two
dates, zero and one, and is populated by two agents a=1,2 that can invest at date 0 in a riskfree bond, a stock and call
options with maturity at date 1, written on the stock.

The total supply of stock is one unit, which is infinitely divisible; all call options are in zero net-supply. For simplicity
we set the riskfree interest rate to 0, and assume the bond supply is fully elastic. The date 1 payoff from the stock in the
s�economy is

YSðsÞ ¼ 1þse0: ð1Þ
2 The literature has also argued that options are traded based on differential information, see, e.g. John et al. (1992), Back (1993), Brennan and Cao

(1996), Easley et al. (1998). Option demand has also been motivated based on differences of opinion, see, e.g. Kraus and Smith (1996), and Carr and Madan

(2001), and based on frictions trading the underlying security, see, e.g. Haugh and Lo (2001).
3 There is also a large literature that looks at feedback effects between option markets, stock markets, interest rates and volatility, including Bhamra

and Uppal (2009), Kogan and Uppal (2001) and Benninga and Mayshar (2000).
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Here e0 is a zero-mean random variable that is exogenous to our analysis; its distribution is known to both agents, only
takes values in the interval4 (�1,1) and its density has continuous support.

Call options written on the stock have date 1 payoff

YK ðsÞ ¼ ðYSðsÞ�KðsÞÞþ , ð2Þ

they are fully characterized by the parameter K which we assume 0oKo2. The strike of option K in the s�economy is

KðsÞ ¼ 1þs � ðK�1Þ, ð3Þ

i.e. it is a function of the parameter K. Throughout the paper it will be clear from the context whether we use the strike KðsÞ
or its (characterizing) parameter K. Note that we can write simply

YK ðsÞ ¼ s � ð1þe0�KÞþ : ð4Þ

We denote the date 0 price of the stock and all options K by PSðsÞ and PK ðsÞ, respectively, and decompose

PSðsÞ ¼ E½YSðsÞ��pSðsÞ � s2 for the stock, ð5Þ

PK ðsÞ ¼ E½YK ðsÞ��pK ðsÞ � s2 for option K: ð6Þ

The terms pSðsÞs2,pK ðsÞs2 are the difference between securities’ expected payoff and their price, i.e. they describe the
risk-premiums because we set the interest rate to zero.

Each agent is endowed with one-half units of the stock in all s�economies. We assume, agents have preferences over
date 1 wealth W1aðsÞ, only, and these can be represented by von Neumann–Morgenstern utility functions E½uaðW1aðsÞÞ�,
where ua is an increasing, strictly concave and sufficiently often differentiable function for both agents a=1,2.

We denote daSðsÞ and daK ðsÞ, respectively, the number of units held of the stock and of options K. Since the bond supply
is fully elastic, agents use the bond demand to equate today’s portfolio value with their initial wealth W0aðsÞ ¼ PSðsÞ=2. The
agent then chooses the strategy that maximizes her expected utility E½uaðW1aðsÞÞ� over all holdings in the risky securities.
In our partial equilibrium analysis we look at how agents set demand in response to the market risk-premiums (prices)
they face.

We are mainly interested in market-clearing demand and prices. Both agents a=1,2 differ in their preferences (utility
functions ua) and trade competitively the available risky securities. The general equilibrium in the s�economy consists of
prices PSðsÞ,PK ðsÞ for the available risky securities, and portfolio demand daSðsÞ,daK ðsÞ for both agents a=1,2, that maximize
agent’s expected utility, and for which the stock and option markets for all K clear, i.e. d1SðsÞþd2SðsÞ ¼ 1 and
d1K ðsÞþd2K ðsÞ ¼ 0 for all K.

3. Expansion technique

This section first discusses the main features of our sequential modeling and then explains that it is a sequence of
classical risk-sharing economies. Finally we discuss how the sequential features will be used to approximate allocations in
closed-form expressions.

3.1. Model features

The expansion is set up such as to keep the cumulative probability of option exercise unaffected by changes in s40, i.e.
Prob½YSðsÞZKðsÞ� ¼ Prob½1þe0sZ1þsðK�1Þ� ¼ Prob½e0ZK�1�.

Fig. 1 illustrates our expansion for three strikes K1ðsÞrK2ðsÞrK3ðsÞ set at the quartiles of the stock distribution. When
s¼ 0, the support of the distribution of YS (0) is concentrated at 1 and all strikes collapse to 1, so that none of them pays off.
As s increases, the support of YSðsÞ increases linearly:5 For any s40 the support is ð1�s,1þsÞ; this is shown through the
bold lines in Fig. 1. Furthermore, as s increases, the location of the quartiles increases linearly around 1 and to keep strikes
at the quartiles we expand strikes linearly, see Eq. (3); this is shown through the dashed lines in Fig. 1.

A characteristic feature of our model for payoffs, prices and risk-premiums is that s¼ 0 corresponds to an economy
without risk. Then, today’s price and tomorrow’s payoff of the stock (option K) will be 1 and 1 (0 and 0), respectively; this
means that the return on the stock in this ‘‘no-risk’’ economy will be identical to the bond return and options vanish
entirely.

For any strictly positive s40, the payoff from the stock and options is risky. Note that the variance of the stock and
option K is varðe0Þs2 and varðð1þe0�KÞþ Þs2, respectively. Therefore, an increase in s will increase the variance of the stock
and option payoff proportionally in s2. If pSðsÞ,pK ðsÞ would be constant in s, then pSðsÞs2,pK ðsÞs2 would give risk
4 For technical reasons the support of e0 must be bounded; to simplify our presentation we assume it only takes values in the interval (�1,1). Being

bounded also ensures that stock payoffs are non-negative.
5 It is not feasible to keep strikes fixed since we are interested in the case where s-0. If we would keep strikes fixed, then for sufficiently small s the

probability of exercise would be zero and all options would vanish, because the support of e0 is bounded.
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Fig. 1. Expanding the strikes such that the probability of exercise remains unaffected: strikes K1ðsÞ,K2ðsÞ,K3ðsÞ are at the quartiles in the s�economy.
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premiums that are proportional to variance. We allow pSðsÞ,pK ðsÞ to depend on s to capture dependence on higher-order
moments of securities’ distribution.

At first, it might appear odd to look at a sequence of economies. Note, however, that for any given 0rsr1, we model
stock payoffs in a classical way and the option payoff is just a standard call option payoff. Furthermore, in each
s�economy, risk-sharing determines prices and demand. Therefore, our setup is just a sequence of standard risk-sharing
economies used to determine equilibrium demand and prices.
3.2. Approach

To analyze demand, it is necessary to start at the level of individual agents. However, such analyses rarely lead to
closed-form expressions; in general, they are cumbersome to carry out and results are hard to interpret. Following Judd
and Guu (2001) we expand stock demand, option demand and their risk-premiums into Taylor-series around s¼ 0, i.e.

daSðsÞ ¼ daSð0Þþ
@daS

@s ð0Þ � sþ
@2daS

@s2
ð0Þ � sþ � � � , ð7Þ

pSðsÞ ¼ pSð0Þþ
@pS

@s
ð0Þ � sþ @

2pS

@s2
ð0Þ � sþ � � � , ð8Þ

and similarly for any option with strike K. We will see throughout this paper that these expansion terms can be determined
in closed-form. Of course, nothing is gained to previous studies, if we do calculate all these expansion terms (an infinite
number). But this is really not necessary to capture the salient features of option demand in closed-form. Instead, we look
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at zero and first order demand approximations

dzero
aS ðsÞ ¼ daSð0Þ and dfirst

aS ðsÞ ¼ daSð0Þþ
@daS

@s ð0Þs,

and similarly for any option with strike K. (We sometimes refer to daS(0), daK(0) as zero order demand expansion terms, and
to @daS=@sð0Þ,@daK=@sð0Þ as first order demand expansion terms. Notation is similar for the risk-premiums.) These terms
will permit us to capture the salient features of option demand.

We refer to the expansion as the small-noise expansion technique; it was first introduced by Samuelson (1970) to
motivate the use of mean–variance analysis by studying agent’s portfolio allocations in the limit s-0. While Samuelson’s
analysis focused on the zero-order term, the technique used here is an extension developed by Judd and Guu (2001) that is
asymptotically valid for all expansion terms.

Throughout our analysis we do not rely on specific distributions to gain insights into the structure of demand and risk-
premiums. Almost never our analysis will therefore require modeling distributions. Yet, at times we want to illustrate
demand and for this we need to adopt specific distributions e0 for the stock. We will then look at three distributions
truncated to the interval (�1,1): the uniform distribution, the normal distribution (mean 0, variance 1/3), and the
(transformed) lognormal exp (X)�1. For the last, X is a random variable with mean 0.0036 and variance 1/3, truncated to
the interval ð�1,ln2Þ. (The random variable exp(X)�1 then has mean 0, variance approximately equal to 1/3 and is defined
on the interval (�1,1).)

The uniform distribution on the interval (�1,1) has exactly variance 1/3; the truncated normal and lognormal
distributions have approximately the same variance 1/3. For s¼ 1, this is the payoff variance and so its volatility is
approximately 57.7%. This is within the range of typical stock volatility. Because volatility scales linearly in time-length
and s has the same property, we will use s to scale the distributions to the (short) time-length of one week to one month
we have in mind: a typical value for s will then be from 1/52 to 1/12.

4. Incomplete markets

This section looks at sequences of incomplete financial markets, i.e. only a finite number N of options are traded with
parameters 0oK1o � � �oKN o2. Because we make extended use of vector/matrix notation throughout this section, we
refer to the stock as security number 0, to the option with parameter Kj (j=1,y,N) as option j, and to their payoffs, prices,
risk-premiums and demand as YjðsÞ,PjðsÞ,pjðsÞs2, and dajðsÞ, respectively (j=0,y,N).

4.1. Notation

Unless necessary to prevent confusion we drop the s notation to simplify our exposition. We denote by Y the (N+1)
dimensional payoff vector for the risky securities, by V its (N+1)� (N+1) dimensional covariance matrix, by w the N+1
dimensional co-skewness vector and for given demand vector ~d by zð ~dÞ the N+1 dimensional (third order) co-moment vector,
i.e. we set for j,k=0,y,N:

Vjk ¼ CovðYj,YkÞ, ð9Þ

wj ¼ CovðYj,ððY0�E½Y0�Þ
2
Þ and ð10Þ

zjð
~dÞ ¼ CovðYj,ð

~d
?
� ðY�E½Y �ÞÞ2Þ: ð11Þ

Note that the variance–covariance matrix V of the N+1 securities is not singular for s40, i.e. V is invertible, since the
support of e0 is continuous. The (third order) co-moment vector zð ~dÞ describes how the squared (de-meaned) payoff from a
portfolio ~d covaries with each security; the co-skewness vector w describes how the squared (de-meaned) stock payoff
covaries with each security. zð ~dÞ will be used in the partial equilibrium of Section 4.2 only; in the general equilibrium of
Section 4.3 co-skewness w will take its role for prices and demand.

We define the market portfolio as the portfolio consisting of one unit of stock and no options; it is defined by the vector
XM of holdings with XM0=1 and XMj=0 for j=1,y,N. Note that the stock is the only security that is not in zero net-supply. In
our setup, the stock plays the role of the market portfolio, and, therefore, we think of the stock as the ‘‘market portfolio’’ for
illustrative purposes. We also introduce a second portfolio which we call the skewness portfolio; it is defined by the vector
of holdings XS ¼ V�1w.

Finally, we define for each agent a=1,2 the risk-tolerance ta and the skew-tolerance ra by

ta ¼�

@ua

@w

1

2

� �
@2ua

@w2

1

2

� � , ra ¼
t2

a

2

@3ua

@w3

1

2

� �
@ua

@w

1

2

� � : ð12Þ

These two terms are ratios of derivatives of agent’s utility functions; they are evaluated at one-half, so, these two
preference parameters will be treated as (non-random) numbers. (The value one-half stands for the endowment value in
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the ‘‘no-risk’’ economy s¼ 0.) The risk-tolerance ta consists of first- and second-order derivatives of agents’ utility
functions and is an usual term in the financial economics literature. The skew-tolerance adds a third-order derivative of
agents’ utility functions and appeared first in Judd and Guu (2001); it is related to the prudence concept of Kimball (1990).

4.2. Partial equilibrium

Appendix A.3 derives the individual asset allocation across options and the stock for given risk-premiums:

Theorem 1. Zero and first order demand approximations for agent i are

dzero
a ðsÞ ¼ ta � V

�1pzeroðsÞs2 ð13Þ

and

dfirst
a ðsÞ ¼ ta � V

�1pfirstðsÞs2þ
ra

ta
� V�1zðdzero

a ðsÞÞ: ð14Þ

The zero order demand approximation is exactly the well-known one for a mean–variance agent, see, e.g. Huang and
Litzenberger (1988). In this sense, this term describes mean–variance demand. Indeed, Samuelson (1970) originated the
small-noise expansion to motivate the use of mean–variance analysis as an approximation for complex portfolio choice
situations.

As the agent has preferences over skewness, in general, a correction to the mean–variance based demand term is
necessary. The term zðdzero

a ðsÞÞ in the first order demand approximation describes how each security covaries with the
squared portfolio payoff coming from the zero order demand dzero

a ðsÞ. This is a third order cross-moment that captures (co-)
skewness across all securities. Therefore, the first order demand approximation captures agents’ tradeoffs between
securities risk-premiums, variances V and third-order (co-)moments zðdzero

a ðsÞÞ. Here, the ratio of skew- to risk-tolerance
ra=ta characterizes the marginal rate of substitution between variance and skewness risks. Overall, our analysis shows that
our first order demand approximation provides a mean–variance–skewness theory of demand.

Rewriting this, the resulting first-order approximation for the risk-premium pfirstðsÞs2 that induces a given zero and
first order demand6 by agent a is

pfirstðsÞs2 ¼
1

ta
V � dfirst

a ðsÞþ
ra

t2
a

� zðdzero
a ðsÞÞ: ð15Þ

If we ignore for a moment the difference between zero and first order demand approximations and denote both by ~da, then
we get using the portfolio payoff Ya ¼

~d
?

a � Y

pfirst
j ðsÞs

2 ¼
1

ta
CovðYj,YaÞþ

ra

t2
a

� CovðYj,Y
2
a Þ,

i.e. how a security’s payoff covaries with the individual portfolio payoff and the squared individual portfolio payoff
determines its first order risk-premium.

4.3. General equilibrium

In equilibrium, in each s�economy, agents have to agree on market-clearing prices, i.e. d10ðsÞþd20ðsÞ ¼ 1 for the stock
and d1jðsÞþd2jðsÞ ¼ 0 for option j=1,y,N. For the zero and first order expansion terms of daðsÞ this translates into the
conditions d10(0)+d20(0) = 1 for the stock, d1j(0)+d2j(0) = 0 for option j=1,y,N, and @d1j=@sð0Þþ@d2j=@sð0Þ ¼ 0 for (all)
securities j=0,y, N. Appendix A.4 derives the following characterization.

Theorem 2 (First order equilibrium allocation). The first order stock holdings are

dfirst
10 ðsÞ ¼

t1

t1þt2
�t1t2

r1�r2

ðt1þt2Þ
3
ðV�1wÞ0, for the first agent,

dzero
20 ðsÞ ¼

t2

t1þt2
þt1t2

r1�r2

ðt1þt2Þ
3
ðV�1wÞ0, for the second agent,

the first-order holdings in option j=1,y, N are

dfirst
1j ðsÞ ¼�t1t2

r1�r2

ðt1þt2Þ
3
ðV�1wÞj, for the first agent,

dfirst
2j ðsÞ ¼ t1t2

r1�r2

ðt1þt2Þ
3
ðV�1wÞj, for the second agent,
6 Demand pressures by one agent on the prices set by another agent have been looked at by Garleanu et al. (2009) and linked to the unhedgeable part

of each option. In our setup, the hedge ratio is not an intrinsic term and so we refrain from linking our results directly to theirs.
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and the first order risk-premiums are

pfirst
j ðsÞs

2 ¼
1

t1þt2
V0j�

t1r1þt2r2

ðt1þt2Þ
3

wj for securities j¼ 0, . . . ,N:

We saw earlier that the zero order demand captures mean–variance demand and that the first-order demand adds
skewness to the analysis. The results of Theorem 2 should then come at no surprise: The zero order risk-premium
corresponds to the CAPM pricing term and describes the mean–variance part of the risk-premium. The first-order term
depends on co-skewness wj, i.e. on the covariance of security j’s payoff with the squared (de-meaned) stock payoff;
therefore we call the first-order term the (co-)skewness part of the risk-premium.

Note that the zero order demand term vanishes for options. This result is in line with mean–variance analyses: there,
options are not traded because optimal spanning can be achieved by trading the stock and the bond. Put differently, a
simple mean–variance analysis is not sufficient to analyze option demand. For this purpose (co-)skewness needs to be
analyzed, i.e. a first-order analysis is necessary. In fact we see that options will be traded as long as agents differ in their
skew-tolerances r1ar2. To understand demand further, we write demand in the form of the following three-fund
separation.

Theorem 3 (Three-fund separation). In the first-order approximation of equilibrium demand agents hold three funds: the

riskfree bond, and the market and skewness portfolios. The first (second) agent holds t1=ðt1þt2Þ ðt2=ðt1þt2ÞÞ units of the

market portfolio and ð�t1t2ðr1�r2Þ=ðt1þt2Þ
3
Þðt1t2ðr1�r2Þ=ðt1þt2Þ

3
Þ units of the skewness portfolio.

Note that holdings of the market portfolio are zero-order terms in s, while holdings of the skewness portfolio are first-
order demand terms.7 The stock is the only risky security that is in positive supply. Therefore we say it captures the
systematic ‘‘market’’ risk and the squared stock the systematic squared market risk component. In line with our three-fund
separation we find that only systematic risks are priced.

Theorem 4 (Systematic risk pricing). Using the beta-vector bj ¼ V0j=V00 and the gamma-vector gj ¼ wj=w0, the first-order

approximation of the risk-premium pðsÞs2 is characterized by

pfirstðsÞs2 ¼ b
V00

t1þt2
�g � t1r1þt2r2

ðt1þt2Þ
3

w0: ð16Þ

Overall, the beta-gamma representation shows that the risk-premium is based on covariances with the market risk and
with the squared market risk. This theoretical result points to the importance of (co-)skewness risk for pricing and
confirms earlier results by Huang and Litzenberger (1988, p. 100). It is also in line with the empirical evidence, see Kraus
and Litzenberger (1976), and more recently Harvey and Siddique (2000), Dittmar (2002), Chang et al. (2006) and Vanden
(2006).

Eq. (6) together with the representation of the option risk-premium in Theorem 2 implies the following first-order
approximation for the price of option j=1,y,N:

E½YjðsÞ��
1

t1þt2
V0jþ

t1r1þt2r2

ðt1þt2Þ
3

wj: ð17Þ

To illustrate the pricing implications we look at the so-called implied volatility for which this price matches the option
price that can be calculated from the Black–Scholes formula. We perform analyses with respect to the three distributions e0

for the stock that we introduced at the end of Section 3.2 and use preference parameters t1 ¼ 1,r1 ¼ 3=2 and
t2 ¼ 1=2,r2 ¼ 1. (These risk- and skew-tolerances correspond to square-root and log utility for the first and second agents,
respectively, see our later discussion in Section 5.1 and the formulas for risk- and skew-tolerances in Eq. (31).) Fig. 2
presents implied volatility for s¼ 1=12 when three options are traded for the uniform (first column), the normal (second
column) and the lognormal distribution (third column). Row one takes K1 = 0.1, K2=1, K3=1.9 and row two takes K1=0.3,
K2=1, K3=1.7. We see that implied volatility decreases as we increase the strike and corresponds to the implied volatility
‘‘smile’’ pattern that we see in equity option markets. Furthermore, note that the size of the at-the-money implied
volatility (K=1) is roughly the standard deviation of the underlying security (57.7%).

Although here we illustrated pricing and implied volatility for specific risk- and skew-tolerances, we want to point out
that we found qualitatively similar implied volatility for other heterogeneous agent preference specifications. In addition,
note that Eq. (17) implies that the price and implied volatility of one option will not be affected by other options, see, i.e.
implied volatility is robust to changes in strikes. (This robustness is very different from open interest across strikes as we
will see in Section 6.2.)

Overall, pricing through the small-noise expansion technique matches qualitatively well the observed volatility ‘‘smile’’
in equity option markets. Pricing results derived in this section are comforting but we will not study pricing further, since
our focus in this paper is on demand and open interest.
7 This follows from our derivation. Note also that holdings in the skewness portfolio XS ¼ V�1w are of first order in s, because V is of second and w of

third order.
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Fig. 2. The implied volatility with K1=0.3, K2=1, K3=1.7 for three distributions.
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4.4. Why do agents trade options?

In partial equilibrium, agents trade options, because they provide an attractive risk-return profile. Mean–variance
demand will then induce agents to hold options, if risk-premiums are not set ‘‘correctly.’’ Additional insights can be gained
from general equilibrium, where risk-premiums are set endogenously to clear the market.

In general equilibrium the mean–variance tradeoff does not lead to option demand. Intuitively, this result is due to the
following: mean–variance demand leads agents to hold the market portfolio. Because options are in zero net-supply, they
are not contained in the market portfolio and so they are not traded. We see therefore that in general equilibrium a
mean–variance analysis in a risk-sharing setup is not enough to justify option demand and that an analysis of skewness is
necessary.

In general, agents have elaborate risk-preferences and would like to achieve portfolio skewness different from what the
stock can offer. To see, what they strike for we need to understand the skewness portfolio: its holdings XSj ¼ ðV

�1wÞj in a
security j are those of a regression of the squared (de-meaned) stock payoff Y0 on the payoff Yj from security j; this means
the skewness portfolio is the portfolio with payoff as close as possible (in terms of variance) to the squared (de-meaned)
stock payoff. In short, it is the portfolio offering the payoff ‘‘closest’’ to the squared stock payoff.

With the interpretation that the stock represents the ‘‘market portfolio,’’ Theorem 3 states that agents hold the market
portfolio and the portfolio closest to the ‘‘squared market portfolio.’’ Therefore we say that agents trade the market and
skewness portfolios to attain the desired profile regarding market risk and the squared market risk, respectively.

Options are used to achieve their desired portfolio skewness. If a security with a payoff equal to the squared market
would be available, then agents could achieve the optimal skewness level of their portfolio by trading the bond, stock and
the squared stock. However, since the squared stock cannot be traded, agents resolve to the available securities to create a
portfolio, which is as close as possible to the squared market; this portfolio is the skewness portfolio. Here, options are
necessary to create the skewness portfolio, and for this reason they are traded.
5. Complete markets

In this section we assume that options can be traded for all strike parameters 0oKo2 in the support of the stock
distribution. In the single-period setup the market is then static complete: any payoff profile at date 1 can be attained by
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taking a static (buy-and-hold) position in all available securities, i.e. in the riskfree bond, the stock and call options with all

strikes.

5.1. Notation

Because options are in zero net-supply, the market portfolio consists of exactly one unit of the stock and no options; this
is unchanged to the incomplete markets case. However, the skewness portfolio needs to be redefined: it shall contain all
options K in one unit.

A large part of our analysis does not make specific assumptions about the utility function, but for illustrative purposes
we sometimes look at CPRA preferences (‘‘constant proportional risk-aversion preferences’’, a.k.a. ‘‘power utility’’), a class
of utility functions that are often used in finance; they are characterized by a parameter gao1 and given by

uaðwÞ ¼
wga

ga

: ð18Þ

Special cases are linear (risk-neutral) preferences with ga ¼ 1, and quadratic with ga ¼ 2. The limit case ga ¼ 0 is to be
understood as ua (w)=log(w). A more general class of utility functions that are also often used are HARA preferences; these
are characterized by the utility function

uaðwÞ ¼
1�ga

ga

w

1�ga

þba

� �ga

, ð19Þ

subject to w=ð1�gaÞþbaZ0 and gao1. This includes CPRA preferences. A special case of HARA is the negative exponential
uaðwÞ ¼�baexpð�bawÞ with ga ¼�1.

5.2. Sharing rule and option demand

It is well known, see, e.g., Duffie (2001) and Cochrane (2001), that in a complete market agents can attain any wealth
profile defined on the support of the distribution. We denote by W�ðyÞ the optimal date 1 wealth of the first agent as a
function of the stock payoff y¼ Y0ðsÞ and refer to this as the sharing rule. The sharing rule relates agents’ marginal utility

0¼
@u1

@w
ðW�ðyÞÞ�lðsÞ � @u2

@w
ðy�W�ðyÞÞ, ð20Þ

where lðsÞ is an intrinsic multiplier.8

For further analysis we need a representation of the date 0 positions through which a particular wealth profile can be
attained. We use a general result derived by Bakshi and Madan (2000), Carr and Madan (2001), and Weinbaum (2009):
When a riskfree bond and call options can be traded for any strike within the support of the distribution of the underlying
security, then any twice continuously differentiable payoff function of the underlying security at a fixed date can be
attained by taking static (buy-and-hold) positions in the riskfree bond, the underlying security and all the call options; the
position sizes are given through derivatives of the payoff function.9 Applying this general result to our setup, we find that
agents can attain the sharing rule by a taking at date 0 a position in the riskfree bond (with size d1BðsÞ), the stock and in a
continuum of call options; here

W�ðYSðsÞÞ ¼ d1BðsÞþd1SðsÞYSðsÞþ
Z 2

0
d1K ðsÞ � ð1þe0�KÞþ dK , ð21Þ

where

d1K ðsÞ ¼ s �
@2W�

@y2
ðKÞ: ð22Þ

Therefore, the second derivative of the sharing rule contains all relevant information for option demand and for the
remainder of this complete markets section we focus on this.

To illustrate how the sharing rule determines option demand we look at a special case where the first agent has a
square-root utility and the other has log utility function (CPRA preferences with g1 ¼ 1=2,g2 ¼ 0). Then we solve Eq. (20) for
the unique solution with positive wealth10

W�ðyÞ ¼
1

2l2
ðsÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4l2

ðsÞy
q

�1

� �
, ð23Þ
8 The sharing rule W�ðyÞ also depends on s through the multiplier lðsÞ; we dropped the dependence to simplify our exposition.
9 The representation follows from a Taylor-series expansion of the payoff function, see, e.g. Lemma 1 and its proof in Weinbaum (2009).
10 Wang (1996), based Dumas (1989), derived a similar closed-form expression for the sharing rule in a continuous-time setup for two heterogeneous

agents with square-root and log utility.
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which implies that the first agent’s demand is

d1K ðsÞ ¼ s
@2W�

@y2
ðKÞ ¼ s 2l2

ðsÞ
ð1þ4l2

ðsÞKÞ3=2
: ð24Þ

Note that demand is always positive, i.e. the first agent is always long the options, independent of the parameter lðsÞ.
It is well known that in complete markets yð@u1=@wÞðW�ðYSðsÞÞÞ is the so-called state-price density which permits

pricing all payoffs. (The constant y is set such that the riskfree bond is priced correctly.) In particular, it permits pricing the
initial endowment (one-half unit of stock) and the payoff from the sharing rule; the budget for the agent equates if both
have the same price. To determine lðsÞ we need to solve E½@u1=@wðW�ðYSðsÞÞÞ � ðW�ðYSðsÞÞ�YSðsÞ=2Þ� ¼ 0; it will depend on
the distribution for e0. To illustrate results, we assume e0 is the normal distribution introduced at the end of Section 3.2.
We choose s¼ 1=2 and solve the budget equation to get lð1=2Þ ¼ 1:3963. Fig. 3 plots the resulting demand curve. (We
chose a fairly large s¼ 1=2 to illustrate the demand curve over a wide range.)
5.3. Expanding the sharing rule and the state-price density

This section determines the expansion of the sharing rule that will be used throughout this complete markets section.
To simplify our presentation11 we assume lðsÞ is constant and for all 0rsr1 equal to the value lðs¼ 0Þ, which we simply
denote l. Note that YS (0)=1, W�(YS (0))=1/2, and so Eq. (20) implies

l¼

@u1

@w
ð1=2Þ

@u2

@w
ð1=2Þ

: ð25Þ

To determine the first and second order derivatives of wealth note that Eq. (20) holds for all y, and so its left- and right-
hand side derivatives must be equal. Under the assumption that l is constant in s, taking derivatives repeatedly, evaluating
11 We could study the general case via a two-dimensional Taylor-series expansion of W� in the parameters s and l along the lines of the one-

dimensional expansion of Eq. (28); note that lðsÞ enters as a parameter into the sharing rule. We refrain from doing so, as it does not affect results

qualitatively; it is just tedious as we need to track derivatives in l, too. For a discussion of the error we refer to Section 7.3.
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them at YS(0)=1 and using the equality W�ðYSð0ÞÞ ¼W�ð1Þ ¼ PSð0Þ=2¼ 1
2, we find that

@W�

@y
ð1Þ ¼

t1

t1þt2
and

@2W�

@y2
ð1Þ ¼ 2t1t2

r1�r2

ðt1þt2Þ
3
: ð26Þ

To illustrate pricing implications we derive the first-order expansion of the state-price density mðYSðsÞÞ in the next
step. Because the interest rate is assumed to be zero, the state-price density is mðYSðsÞÞ ¼ @u1=@wðW�ðYSðsÞÞÞ=E½@u1=

@wðW�ðYSðsÞÞÞ�. A first order series expansion of @u1=@wðyÞ around YS(0), together with the above expansion of the sharing
rule gives a first-order expansion of @u1=@wðW�ðYSðsÞÞÞ:

@u1

@w

1

2

� �
þ
@2u1

@w2

1

2

� �
�
@W�

@y
ð1Þ � ðYSðsÞ�1Þþ

1

2

@2W�

@y2
ð1Þ � ðYSðsÞ�1Þ2

� �
: ð27Þ

Dividing this by its expected value gives a first-order expansion of the state-price density. While the state-price density
gives the price of any option K as E½mðYSðsÞÞ � YK ðsÞ�, this expansion of the state-price density gives us a first-order
approximation of option prices.

Fig. 4 uses the same preference parametrization for both agents (square-root and logarithmic utility) that we used in
Fig. 2 to study in separate plots the three stock distributions e0 that we introduced at the end of Section 3.2; each plot
presents the implied volatility curve across strikes for s¼ 1=12 and any strike parameter 0:3oKo1:7. Qualitatively, we
see for all three distributions the implied volatility smile. Although we illustrated here the implied volatility curve for
specific risk- and skew-tolerances, we found qualitatively similar implied volatility curves for other heterogeneous agent
preference specifications.

Note that when agents are homogeneous, then @2W�=@y2ð1Þ ¼ 0 and so the first-order approximation in Eq. (27) is a
linear function of the stock. According to Rubinstein (1976) this implies with lognormal distributions the Black–Scholes
formula for option prices. Fig. 4 suggests that heterogeneity leads to the implied volatility smile. Benninga and Mayshar
(2000) showed that heterogeneity is a source of the implied volatility ‘‘smile’’ pattern; our expansion suggests the same. A
full analysis, however, is beyond the scope of this paper.

5.4. Why do agents trade options?

While the previous analysis tells us that options are useful to attain the sharing rule, this section studies the link
between option demand and risk-preferences to gain economic insights into the structure of option demand.

A straightforward approximation for daK ðsÞ ¼ sð@2W�=@y2ðKÞÞ of Eq. (22) is obtained by evaluating the second order
derivative of the sharing rule at K=1:

dfirst
aK ðsÞ ¼ s �

@2W�

@y2
ð1Þ ¼ 2st1t2

r1�r2

ðt1þt2Þ
3
: ð28Þ

We refer to this as the first-order approximation of option demand, because it is of first order in s and because it shares
many features with the first-order approximation of option demand in incomplete markets. Eq. (28) links option demand
to agents’ skew-tolerances. It remains to clarify the link between the skewness portfolio in the complete and incomplete
markets. Applying Eq. (21) analogously to the squared market (as a ‘‘fictitious’’ sharing rule) we findZ 2

0
sð1þe0�KÞþ dK ¼

Y2
S ðsÞ
2

, ð29Þ
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i.e. the skewness portfolio we introduced at the beginning of this section has payoff one-half the squared stock. Therefore
we can write the following first-order approximation for the overall payoff from all option positions:Z 2

0
dfirst

aK ðsÞ � sð1þe0�KÞþ dK ¼ t1t2
r1�r2

ðt1þt2Þ
3
� Y2

S ðsÞ: ð30Þ

While the riskfree bond and the stock (a.k.a. market portfolio in our setup) permit agents to achieve their optimal
mean–variance portfolio position, the first order demand approximation allows agents to replicate the squared market.
Note that in complete markets agents can actually create a portfolio that has the payoff of the squared market, whereas in
incomplete markets they can only get a portfolio ‘‘as close as possible’’ to it. (Before we linked this to the skewness
portfolio; this motivates the name skewness portfolio here.) We expect options to be traded as long as agents’ skew-
tolerances differ. This intuition carries over from the incomplete markets section.

5.5. Who is long and who is short options for HARA preferences

This section studies who is buying options (long position) and who is selling options (short position) when agents have
HARA preferences with g1ag2. We first derive our results and then compare them with the literature.

To determine who is long and who is short options we need to sign option demand. In our expansion, this is
straightforward: if @2W�=@y2ð1Þ40, then the first agent’s demand is positive,12 see Eq. (28). According to Eq. (26) this
requires r14r2. We calculate for HARA preferences

ta ¼ baþ
1

2ð1�gaÞ
, ra ¼

2�ga

2ð1�gaÞ
: ð31Þ

Therefore, the first agent is long options if and only if g14g2. (To see the latter, note that, ra as a function of ga is strictly
increasing.) If b1 ¼ b2 this is equivalent to t14t2, i.e. the more risk-tolerant agent is long options. Note that the first
(second) agent is then long (short) all traded options.

So far, only a handful papers have studied the question who is buying/selling options; to our knowledge, these are
Leland (1980), Brennan and Solanki (1981), Franke et al. (1998), Dieckmann and Gallmeyer (2005), Bates (2008), and
Weinbaum (2009).13 In the following paragraphs we re-derive their results with the exception of Brennan and Solanki
(1981) as it is closely related to Leland (1980) and could be derived along the same lines.

Leland (1980) compares the risk-tolerance of individual agents to that of the representative agent in complete markets.
To relate our analysis to his, let us denote in this paragraph for the first agent t1ðwÞ ¼ ð�@u1=@wÞ=ð@2u1=@w2Þ and
r1ðwÞ ¼

1
2 t

2
1ðwÞð@

3u1=@w3Þ=ð@u1=@wÞ the risk-tolerance and skew-tolerance as functions of wealth w. (The risk-tolerance
and skew-tolerance we adopt throughout the paper are these terms evaluated at one-half.) Also we denote u* the
utility function of the representative agent and by t�ðwÞ ¼ ð�@u�=@wÞ=ð@2u�=@w2Þ and r�ðwÞ ¼ 1

2t
2
� ðwÞð@

3u�=@w3Þ=ð@u�=@wÞ

her risk-tolerance and skew-tolerance as functions of wealth. Leland (1980) argues that the first agent is long options if his
or risk-tolerance t1ðwÞ grows faster in wealth w than the risk-tolerance of the representative agent t�ðwÞ, i.e. if
@t1=@w4@u�=@w. (Otherwise, the agent is short options.) We calculate @t1=@w¼ 2r1�1 for the first agent and similarly
@t�=@w¼ 2r��1 for the representative agent. Therefore (with our notation) Leland (1980) states that the first agent
is long options if rðwÞ4r�ðwÞ. Locally, around initial wealth, this will hold if rð12 Þ4r�ð12Þ, which is exactly our earlier
result.

In a continuous-time model with jumps, Bates (2008) considers heterogeneous agents with preferences over terminal
wealth and the number of crashes, while Dieckmann and Gallmeyer (2005) study heterogeneous agents with preferences
over wealth. Both find that the more risk-averse agent is short options. Weinbaum (2009) finds the same result, see his
proposition 2. Our expansion developed the same intuition for call options.

Another interesting paper that addressed option demand is by Franke et al. (1998). They take a setup where two agents
(both with the same HARA preferences) face a marketable risk on which they can trade a complete set of options; they also
face an uninsurable so-called background risk. Due to the modeling of background risk, the setup of Franke et al. (1998)
does not fit into our setup; but our setup can be easily adjusted to provide an analysis.

Appendix B.3 extends our small-noise expansion to an analysis of sharing rules under background risk. We provide the
mathematical details about the derivation for Franke et al. (1998) in that Appendix and only sketch the analysis here: The
sharing rules, risk- and skew-tolerance parameters need to be modified slightly; we denote these here W

�
,t,r. With these

parameters replacing the ones we use throughout this paper, our analysis remains valid. In particular, in our small-noise
expansion version of Franke et al. (1998), the first agent is long the options if

@2W
�

@y2
ð1Þ ¼ t1t2

r1�r2

ðt1þt2Þ
3
40,
12 This is only the first order demand approximation. However, it determines the sign of demand, see our discussion of errors in Section 7.3.
13 Wang (1996), based on an analysis by Dumas (1989), did not look at option demand, but derived a sharing rule similar to ours in Eq. (23) which we

used to determine demand. There we noted that the first agent is always long options. The preferences looked at were HARA with g1 ¼ 1=2 and g2 ¼ 0.

Since g1 4g2, our expansion suggest that the first (second) agent is long (short) all options, in line with their implication.
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i.e. if r14r2. A very illustrative example in Franke et al. (1998) is when only the second agent faces background risk; they
find that the first agent then has a concave sharing rule, i.e. sells options on the market portfolio. Here, with our expansion
we find the same result, see Appendix B.3.

6. Open interest curve across strikes

In this section we first present a stylized fact about the shape of the open interest curve. Then we analyze what that
shape would be in (general) equilibrium for incomplete and complete markets.

6.1. The stylized fact

Several plain vanilla options with various exercise prices and expiration months are available for trade at any date on the
same underlying security. In this section, we look at the dependence of open interest on the strike price for fixed maturity and
underlying security. Option volume and open interest have been documented, among others, by Lakonishok et al. (2007),
Buraschi and Jiltsov (2006), and Bollen and Whaley (2004). It is a stylized fact that a plot of that dependence for calls and puts
shows a peak near to the at-the-money contract; this feature appears whatever the underlying stock, index or maturity.

As an example we will present that feature for the options on Microsoft (ticker symbol: MSFT) and the NASDAQ 100
tracking unit (ticker symbol: QQQQ) with March 2006 maturity.14 Expiration for those series was on Saturday March 18,
2006. The option series with the shortest maturity is the most actively traded one and therefore we take a snapshot on the
last four Fridays preceding expiry.

The structure of the market is the following: March 2006 options on MSFT can be traded with strike prices in $2.5
intervals between $7.5 and $45 and those on QQQQ with strike prices $1 intervals between $24 and $52. During that period
contracts were also traded with maturity at the ‘‘Saturday immediately following the third Friday’’ in April 2006, July 2006,
October 2006, January 2007, and January 2008 for MSFT, and in April 2006, May 2006, June 2006, September 2006, January
2007, and January 2008 for QQQQ.

The left column of Fig. 5 presents MSFT and the right column QQQQ; rows one to four look separately at Friday February
24, March 3, March 10 and March 17, 2006. The closing prices for MSFT (QQQQ) on those four Fridays were $26.63 ($41.26),
$26.93 ($41.45), $27.17 ($40.56), and $27.50 ($41.45), respectively. Each plot shows these through a vertical line. On all
four Fridays and for both underlying securities Fig. 5 shows the stylized fact that there is a peak of open interest near to the
at-the-money call option. Note that the stylized fact is evident whatever maturity we look at: it holds at very short
horizons of one day up to three weeks.15

6.2. Theoretical shape of the open interest curve in incomplete markets

This section studies the shape of the open interest curve that results from our first-order approximation of demand
when the number of options is finite and ‘‘small.’’ (If the number of options is not ‘‘small,’’ the market would be ‘‘almost
complete’’ and the analysis of the complete markets Section 6.3 should be used to analyze the shape of the open interest
curve.)

We noted in Section 4 that equilibrium demand in options will arise from skew-tolerance and co-skewness as long as
r1ar2 and that all agents hold the riskfree bond, the market and the skewness portfolios. Then, option demand is
determined entirely by the multiplicative product of preference parameters t1t2ðr1�r2Þ=ðt1þt2Þ

3
Þ and the composition of

the skewness portfolio XS ¼ V�1w. To analyze the shape of the open interest curve, it is therefore sufficient to analyze the
absolute composition of the skewness portfolio jXSj.

The composition of the skewness portfolio depends on the location of the strike grid and the distribution, only. We
perform analyses with respect to the three distributions e0 for the stock that we introduced at the end of Section 3.2: Fig. 6
illustrates the composition of the skewness portfolio – the shape of the open interest curve – for16 s¼ 1=12 when three
options are traded for the uniform (first column), the normal (second column) and the lognormal distribution (third
column). Row one takes K1 = 0.1, K2=1, K3=1.9 and row two takes K1=0.3, K2=1, K3=1.7. (This choice of strike parameters
has been studied previously in Fig. 2 where we illustrated the implied volatility across strikes in incomplete markets. We
found there the implied volatility ‘‘smile’’ pattern and this pattern was robust to changes in strikes.)

Fig. 6 shows in the first row a ‘‘dip’’ for the open interest curve, whatever the distribution; this shape is clearly not in
line with the stylized fact. However, looking at other strike grids, we see that this (negative) result is not robust: in the
second row, i.e. for slight changes in the strikes, we see in the left-most plot that a ‘‘peak’’ for the open interest curve
14 Consistently, options on MSFT and QQQQ are among the most actively traded ones written on stocks and indices.
15 Open interest is negligible for options with strikes outside the depicted range. The grid is identical for calls and puts, i.e. for every call with a

maturity T and a strike K also a put with same maturity and strike can be traded. Put-call parity allows replicating a long put position in a strike K through

joint long positions in the stock, the call with strike K and an investment of $K in the bond. Translating all positions into corresponding call positions and

creating a new summary open interest in a call with strike K by adding to it the open interest in the put with strike K yields similar pictures.
16 For illustrative purposes we need to fix s, but this does not impact the relative size of the skewness portfolio components, i.e. the shape of the open

interest curve.
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Fig. 5. Empirically observed call option open interest in the March 2006 series for Microsoft (MSFT) and the NASDAQ 100 tracking unit (QQQQ) on the last

four Friday’s before maturity. (The vertical line indicates the price of the underlying on that day.)
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appears. Yet, this peak is not very pronounced and it is surprising that the sign of the curvature for the open interest curve
flips by slight changes in the strikes. We see similar results in columns two and three; there, the shape also changes
considerably in response to change in the strikes: in the second column the shape changes from a ‘‘dip’’ to an ‘‘almost flat’’
curve while in the third column it changes from a ‘‘dip’’ to a monotonically decreasing curve. Overall, we sometimes see a
peak and sometimes a dip, and the presence of a peak/dip is sensitive to the strike grid and to the distribution used. Further
plots we looked at confirmed this for other strike grids and also showed that the shape of the open interest curve is
sensitive to the number of traded options.

The sensitivity of the skewness portfolio XS ¼ V�1w should not be surprising to the reader familiar with mean–variance
portfolio construction. In mean–variance theory, agents’ trade off the portfolio mean against its variance; it is well known
that portfolio holdings are very sensitive to the input parameters (means and variances), see, e.g. Black and Litterman
(1992). In the construction of the skewness portfolio we trade off portfolio skewness against its variance. By analogy we
can therefore expect that the composition of the skewness portfolio and therefore the shape of the open interest curve are
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very sensitive to the input parameters (location of the strike grid, number of options, type of distribution). This is what we
see in our plots for the shape of the open interest curve.

We conclude that in incomplete markets with a small number of traded options the shape of the open interest curve is
very sensitive to the number of options traded, to the type of distribution and the location of the strike grid. This is in sharp
contrast to the robustness of the stylized fact.

6.3. Theoretical shape of the open interest curve in complete markets

This section studies the shape of the open interest curve when options are traded for all strikes in (0,2), so that the
market is complete.

In Section 5.2 we looked at a case where the two agents have square-root and log utility, respectively, and plotted in
Fig. 3 the first agent’s demand curve for s¼ 1=2 with the actual lðsÞ when the stock distribution e0 is a truncated normal.
Because demand is always positive, Fig. 3 shows the open interest curve. The curve is monotonically decreasing and of
convex shape; it clearly does not support the stylized fact. This qualitative result is independent of assumptions about
the stock distribution. To see this, note that the actual distribution only enters via the lðsÞ which solves the budget
equation. However, the resulting demand Eq. (24) is for all values of lðsÞ always positive, montononically decreasing and
convex.

One might think that this is due to the risk-preferences we used. Therefore, we studied the sharing rule in closed-form
for several other CPRA preferences: the sharing rule W�ðyÞ is by Eq. (20) the solution to

W�ðyÞ�ðlðsÞÞ1=ðg1�1Þ
� ðy�W�ðyÞÞðg2�1Þ=ðg1�1Þ

¼ 0, ð32Þ

and when the ratio ðg2�1Þ=ðg1�1Þ is an integer, this equation describes a polynomial. Their solutions are often known in
closed-form, e.g. the symbolic algebra of the MATHEMATICA program can provide them for g2 ¼ 0 and
ðg2�1Þ=ðg1�1Þ ¼ 2,3,4,5, . . . ,10 (corresponding to g1 ¼ 1=2,2=3,3=4,4=5, . . . ,9=10). We checked the resulting sharing rules,
however, in all of them the theoretical open interest curve is strictly decreasing and convex. None of the cases we looked at
supported the stylized fact. Overall, this analysis suggests that a risk-sharing setup with CPRA preferences cannot justify the
shape of the open interest curve we see in the markets.

The sharing rule and thereby the open interest curve cannot be determined in closed-form for general (non-CPRA)
preferences. However, we can easily carry out the expansion for all given functional forms of the utility function to
determine the shape of the open interest curve. The first-order approximation of Section 5.4 allowed us to gain economic



K.L. Judd, D.P.J. Leisen / Journal of Economic Dynamics & Control 34 (2010) 2578–2600 2593
insights into the structure of option demand. In the incomplete markets case the first-order approximation determined the
shape of the open interest curve, see Fig. 6: It was not flat across strikes and exhibited curvature. In the complete markets
case of this section, however, the first order demand is flat across strikes, see Eq. (28), so to determine the shape we need to
look at a higher-order approximation. A Taylor series expansion of sð@2W�=@y2ðKÞÞ around y=1 gives the following third-
order approximation of option demand:

dthird
aK ðsÞ ¼ s �

@2W�

@y2
ð1ÞþðK�1Þ � s � @

3W�

@y3
ð1Þþ

1

2
ðK�1Þ2 � s � @

4W�

@y4
ð1Þ: ð33Þ

This describes daK ðsÞ as a quadratic polynomial in the strike K. The expansion terms have interesting interpretations: the
first, second and third terms in this equation determine the level, the slope and the curvature of option demand,
respectively. Here, we see now that when @2W�=@y2ð1Þ is positive, demand daK ðsÞ is also positive and the sign of the
curvature term @4W�=@y4ð1Þ will determine if the open interest curve shows a peak or a dip. (Appendix B.1 writes these
terms out as second-, third- and fourth-order derivatives of agents’ utility functions, each evaluated at wealth of one-half.)

For the remainder of this section we assume that agents have HARA preferences with 14g14g2 to analyze if the open
interest curve peaks. This class includes CPRA preferences, but HARA preferences have two additional degrees of freedom
ðb1 and b2Þ. For small s, the first agent will be long in options and the open interest will be equal to that agent’s demand.
Therefore, we will have a peak whenever @4W�=@y4ð1Þ is strictly negative, and a dip whenever it is strictly positive.

The @4W�=@y4ð1Þ term can be determined in closed-form by symbolic algebra, but the terms are fractional polynomials
in b1,b2,g1,g2 and hard to interpret. We refrain here from presenting them, because we are mainly interested in its
(negative) minimal value (‘‘maximal peak’’ of the open interest curve). We asked the MATHEMATICA program to determine
the minimum of @4W�=@y4ð1Þ for all parameter choices b1,b2,g1,g2 under the constraints that the first agent is long in
options ðg14g2Þ, that g1,g2o1 and that the positivity restriction 1=2=ð1�gaÞþbaZ0 holds. (The positivity constraint after
(19) is evaluated here at w=1/2.) The result is that the minimum of @4W�=@y4ð1Þ is attained at b1 ¼�2:8933, b2 ¼ 8:9604,
g1 ¼ 0:9164, g2 ¼�11:6036. With these parameters @2W�=@y2ð1Þ ¼ 0:1869, @3W�=@y3ð1Þ ¼ 0:0418, and @4W�=@y4ð1Þ ¼
�0:1044. The latter number is negative; this means that the open interest curve peaks.

Unfortunately, the number @4W�=@y4ð1Þ ¼ �0:1044 is only slightly negative, so the peak is not very pronounced. To see
this better we plot in Fig. 7 the resulting open interest for s¼ 1=2, based on Eq. (33). (We chose a fairly large s to illustrate
the shape over a wide range.) We see a peak but the peak is not very pronounced. Clearly, even for the parameters with
maximal curvature this does not support the observed peak in the open interest curve. The overall conclusion is that with
HARA preferences the resulting open interest curve does not match the stylized fact.
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Fig. 7. The complete markets open interest curve with maximal negative curvature for two agents with HARA preferences.
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7. Robustness of our analysis

Our paper has derived a theory of option demand and open interest by looking at the leading terms in an expansion of
demand and risk-premiums in a simplified setup. Throughout this paper we assumed agents only derived utility from
wealth and traded at date 0 while payoffs occurred at date 1. Furthermore, we assumed the economy only contains two
agents. The following two sections we explain how our expansion could be extended to cover the general setup. Yet, these
expansions come at the expense of additional complexity, while they do not add economic insights, do not affect the shape
of the open interest curve, nor do they affect the size of demand considerably. The last Section 7.3 addresses the errors that
result from approximations we made.
7.1. Two dates and no consumption

We could easily generalize our two date setup to multiple trading periods. In complete markets, note that agents only
would have to trade today to achieve the sharing rule (their optimal payoff profile) at any future date, so our analysis
already covers that case.

In incomplete markets, the Bellman principle of dynamic optimization permits us to break the multi-period
maximization problem of each agent into a series of single-period problems using the so-called indirect utility function.
While we looked only at call options throughout this paper, our closed-form approximations do not depend on this: we
presented first-order demand as a function of mean, variance and skewness of the date 1 payoff in partial and general
equilibrium but did not use the specific structural payoff profile of call options. The formulas still apply with the
interpretation that ‘‘future payoffs’’ are next trading date’s prices. We could define risk- and skew-tolerances for the
indirect utility function; because these are evaluated at wealth in the ‘‘no-risk’’ economy, they boil down to risk- and skew-
tolerances of agents’ utility functions, evaluated at the wealth 1/2 in the no-risk economy. So the resulting preference
parameters could still be treated as numbers ‘‘known’’ at date 0.

We could therefore proceed in a backward induction to determine demand and risk-premiums (prices). Risk-premiums
will then depend on the stock price in previous periods and therefore we will see intertemporal hedge demand in addition
to the risk-sharing demand we looked at in this paper. While such an analysis is feasible and the modeling is more realistic,
it does not add qualitative insights, nor does it affect the size of demand and the shape of the open interest curve
significantly. Therefore, we refrain from carrying out this analysis here.

We could also generalize our small-noise expansion to incorporate consumption. The demand for risky assets will then
be determined by the marginal utility of future consumption; this could be captured by our analysis of future wealth in
conjunction with the multi-period approach described above. A consumption-based analysis would permit us to
endogenize the interest rate, but it would come at the expense of additional complexity and bring us away from our focus
on option demand. For simplicity we therefore ignore consumption and set the interest rate equal to 0.
7.2. Multiple agents

For incomplete markets, Appendix A.4 derives a version of Theorems 2 and 3 with multiple agents: the three-fund
separation of Theorem 3 will continue to hold with multiple agents; only that the reference point of an agent will no longer
be the ‘‘other’’ agent but a so-called ‘‘average’’ agent. In consequence, the actual size of each agent’s demand for the
skewness portfolio will change, but the insights remain valid with multiple agents, that agents trade options to achieve the
squared market return, the relative size of option demand for each agent will be unchanged and the shape of the open
interest curve continues to be determined by the relative composition of the skewness portfolio.

Our complete markets analysis is based on Eq. (20), i.e. that an agent’s marginal utility is proportional to the other’s
marginal utility, across all states of wealth; this was the starting point for a series expansion of marginal utility to infer
structural properties of wealth and option demand. With multiple agents, agent’s marginal utility is proportional to each
other’s and so our analysis could be carried out analogously to the one presented there. Summing up long positions of all
agents in an option we could determine the option’s open interest. Looking at multiple agents will not affect our results
qualitatively, because the general insight that agents trade options to achieve the desired squared stock payoff remains
unchanged. For a mathematical type discussion of how to carry out the generalization to multiple agents we refer to
Section B.2 in the Appendix.
7.3. Errors of the small-noise expansion

Our small-noise expansion leads to an approximation dfirst
aK ðsÞ of option demand. Addressing the resulting error is the

main purpose of this section. Furthermore we fixed the value of lðsÞ in Section 5.4 for all values of s at
lð0Þ ¼ @u1=@wð1=2Þ=@u2=@wð1=2Þ, see Eq. (25); we denote here dl

aK ðsÞ the resulting demand approximation and address



Table 1
Maximal relative errors in option demand.

Uniform (%) Normal (%) Lognormal (%)

elðsÞ
s¼ 1=52 0.0008 0.0008 0.0008

s¼ 1=12 0.0343 0.0232 0.0194

s¼ 2=12 0.1462 0.0965 0.0793

efirst ðsÞ
s¼ 1=52 2.5739 2.5739 2.5739

s¼ 1=12 11.2751 11.2875 11.2916

s¼ 2=12 22.8438 22.9049 22.9261

ethirdðsÞ
s¼ 1=52 0.0019 0.0019 0.0019

s¼ 1=12 0.1182 0.1078 0.1044

s¼ 2=12 0.7948 0.7525 0.7378
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its error. We analyze maximal relative errors across all options 0oKo2 as

efirstðsÞ ¼ max
0oK o2

dfirst
aK ðsÞ�daK ðsÞ

daK ðsÞ

�����
�����, elðsÞ ¼ max

0oK o2

dl
aK ðsÞ�daK ðsÞ

daK ðsÞ

����
����:

The reference case for daK ðsÞ is here the closed-form expressions we derived in the complete markets case of two agents
with square-root and log utility (Section 5.2). Table 1 presents maximal errors for all three distributions introduced in
Section 3.2 for three choices of s¼ 1=52,1=12,2=12. (These correspond to the horizons of one week, one month and two
months, respectively, according to our discussion in Section 3.2.)

We see that errors are larger when s is greater; this is what we expect from a series expansion. The time-lengths we
study are within the range used in applications, with the typical one being less than one month, i.e. sr1=12. Our
approximation of lð0Þ shows errors elðsÞ that are less than 0.15%; for our typical application of one month the error is less
than 0.04%. These errors are small and show that ignoring higher order terms in lðsÞ does not affect the size of demand
significantly. Similarly, when we look at first-order approximations efirstðsÞ we see that with the two month horizon errors
are less than 23.0% and with the time frame of one month we have in mind, it is less than 11.3%. While these numbers
affect demand they are in our view still fairly precise and permit us to infer that the main demand terms are skewness
driven. (For informative purposes we also present third order demand errors ethirdðsÞ, which we define similar to first order
demand errors efirstðsÞ using the third order demand approximation dthird

aK ðsÞ instead of the first order demand
approximation dfirst

aK ðsÞ of Eq. (33). We see that the accuracy increases considerably.)
The errors of the first order demand approximation and of the lð0Þ approximation are too small to affect who is holding

the long and the short position and will also not affect the shape considerably. In particular the errors are too small to
change our insights from Section 6 that the risk-sharing setup has great difficulties to justify the stylized fact about the
shape of the open interest curve.

8. Conclusion

This paper looked at a sequence of risk-sharing economies to analyze equilibrium demand and open interest in options.
We studied the first-order demand and risk-premium approximations in closed-form to gain insights into option demand.
We pointed out that in partial equilibrium securities are priced by their marginal contribution to portfolio and squared
portfolio risk; mean–variance theory may lead to option demand if risk-premiums are set ‘‘incorrectly.’’ In the market-
clearing general equilibrium mean–variance option demand disappears and we need to study preferences over skewness.
We then argued that agents trade options to achieve a portfolio payoff as close as possible to the squared stock payoff;
agents hold three funds: a riskfree bond, the stock (the surrogate for the ‘‘market’’ portfolio) and the so-called skewness
portfolio. We illustrated the resulting implied volatilities across strikes; they match qualitatively the observed implied
volatility ‘‘smile’’ pattern in equity markets. Finally, we confronted the risk-sharing theory with a stylized fact that the
curve of open interest across strikes peaks close to the at-the-money option. In complete markets (with HARA preferences)
and in incomplete markets we saw that a risk-sharing setup does not support the stylized fact of open interest.

Appendix A. Incomplete markets analysis

We prove in this Appendix Theorem 1 for agent a=1,2. Technical problems arise; their root is that in the s¼ 0 economy
all securities coincide and therefore their demand is indeterminate. For this we make use of the perturbation analysis of
Judd and Guu (2001). Our derivation is based on e0 and de-meaned options’ payoffs ej ¼ ð1þe0�KjÞ

þ
�E½ð1þe0�KjÞ

þ
�

instead of securities’ payoffs YðsÞ. Therefore, here we define the (new) variance–covariance matrix ~V and (co)-skewness
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vector ~w by

~V jk ¼ E½ejek�, ~wj ¼ E½e2
0ej�,

for agent a=1,2, ~za the N+1 dimensional (third order) co-moment vector ~za ¼ Covðe,ðe? � dað0ÞÞ
2
Þ and the vector of holdings

~X S ¼
~V
�1
~w. Note that V ¼ ~V � s2 and XS ¼

~X S � s. As in Section 4 we refer to the stock as security number 0.

A.1. Preparing for the implicit function theorem

In each s�economy total wealth of agent a=1,2 at date 1 is

W1aðsÞ ¼W0aðsÞþ
XN

j ¼ 0

dajðsÞ � ðYjðsÞ�PjðsÞÞ: ðA:1Þ

For each agent a=1,2 we define the (N+1)-dimensional function HaðdaðsÞ,sÞ by

HajðdaðsÞ,sÞ ¼
1

s
@E½uaðW1aÞ�

@daj
¼ E

@ua

@w
ðW1aðsÞÞ � ðejþpjðsÞsÞ

� 	
, ðA:2Þ

for j=0,1,y,N. The first-order conditions17 of agent a=1,2 in the s economy are then HaðdaðsÞ,sÞ ¼ 0.
Our idea is to derive agent’s holdings through an application of the implicit function theorem: taking s�derivatives of

Ha, we get (purely formally) 0¼ @Ha=@da � @da=@sþ@Ha=@s, i.e. @da=@s as the ratio of @Ha=@s and @Ha=@da. Yet, the way our
expansion is set up, we see below that @Ha=@daðdað0Þ,s¼ 0Þ ¼ 0: in the s¼ 0 economy all securities coincide and therefore
their demand is indeterminate. In the spirit of Hospital’s rule we ‘‘require’’ @Ha=@sðdað0Þ,s¼ 0Þ to be also equal to zero and
use second order derivatives of Ha to express @da=@s. Formally this requires a generalized implicit function theorem,
introduced by Judd and Guu (2001):

Theorem 5 (Theorem 7 in Judd and Guu (2001)). Suppose H : Rn � R-Rn is analytic, and H(x,0) =0 for all x 2 Rn. Furthermore,
suppose that for some (x0,0)

@H

@x
ðx0,0Þ ¼ 0n�n,

@H

@s ðx0,0Þ ¼ 0n, and det
@2H

@x@s ðx0,0Þ

� �
a0:

Then there is an open neighborhood N of (x0,0), and a function hðsÞ : R-Rn,hðsÞa0 for sa0, such that

HðhðsÞ,sÞ ¼ 0 for ðhðsÞ,sÞ 2 N :

Furthermore, h is analytic and can be approximated by a Taylor series. In particular, the first-order derivatives equal

@h

@s
ð0Þ ¼ �

1

2
�

@2H

@x@s
ðsÞ

� ��1

�
@2H

@s2
ðsÞ:

Here we will simply apply their procedure. Since W0aðsÞ ¼ 1
2 P0ðsÞ ¼ 1

2ð1�p0ðsÞs2Þ the derivatives of terminal wealth are,
treating daðsÞ as an implicit function,

@W1a

@s
ðsÞ ¼ �1

2

@p0

@s
ðsÞs2þp0ðsÞ2s

� �
þ
XN

j ¼ 0

dajðsÞ � ejþ
@pj

@s
ðsÞs2þ

@pj

@s
ðsÞ2s

� �
,

@2W1a

@s2
ðsÞ ¼�1

2

@2p0

@s2
ðsÞs2þ

@p0

@s ðsÞ4sþp0ðsÞ2
� �

þ
XN

j ¼ 0

dajðsÞ �
@2pj

@s2
ðsÞs2þ

@pj

@s ðsÞ4sþ
@pj

@s ðsÞ2
 !

:

Note that W1a(0) = 1/2, that E½@W1a=@sð0Þ� ¼ 0, that @2W1a=@s2ð0Þ ¼�p0ð0Þþ
PN

j ¼ 0 dajð0Þ2pjð0Þ and that ~zaj ¼ E½ð@2W1a=

@s2ð0ÞÞ2 � ej�.

A.2. Calculating derivatives

To apply Theorem 5 we will now calculate the first-order derivatives of Ha with respect to d and s

@Haj

@dak
ðsÞ ¼ E

@2ua

@w2
ðW1aðsÞÞ � ðejþpjðsÞsÞ � ðeksþpkðsÞs2Þ

� 	
,

@Haj

@s
ðsÞ ¼ E

@2ua

@w2
ðW1aðsÞÞ �

@W1a

@s
ðsÞ � ðejþpjðsÞsÞ

� 	
þE

@ua

@w
ðW1aðsÞÞ � pjðsÞþ

@pj

@s
ðsÞs

� �� 	
:

17 To simplify the exposition we divided by s when defining Ha in Eq. (A.2).
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We also calculate the necessary second order derivatives of Ha with respect to d and s

@2Haj

@dak@s
ðsÞ ¼ E

@3ua

@w3
ðW1aðsÞÞ �

@W1a

@s ðsÞ � ðejþpjðsÞsÞðeksþpkðsÞs2Þ

�

þ
@2ua

@w2
ðW1aðsÞÞ � pjðsÞþ

@pj

@s
ðsÞs

� �
� ðeksþpkðsÞs2Þ

þ
@2ua

@w2
ðW1aðsÞÞ � ðejþpjðsÞs2Þ � ekþ

@pk

@s
ðsÞs2þpkðsÞ2s

� �	
,

@2Haj

@s2
ðsÞ ¼ E

@3ua

@w3
ðW1aðsÞÞ �

@W1a

@s
ðsÞ

� �2

� ðejþpjðsÞsÞ
"

þ
@2ua

@w2
ðW1aðsÞÞ �

@W1a

@s
ðsÞ � ðejþpjðsÞsÞ

þ2
@2ua

@w2
ðW1aðsÞÞ �

@W1a

@s
ðsÞ � pjðsÞþ

@pj

@s
ðsÞs

� �
þ
@ua

@w
ðW1aðsÞÞ � 2

@pj

@s
ðsÞþ

@2pj

@s2
ðsÞs

 !#
:

A.3. Deriving partial equilibrium demand

We saw in Appendix A.2 that @Ha=@dðs¼ 0Þ ¼ 0 and that @2Ha=@da@sðs¼ 0Þ ¼ @2ua=@w2ð12Þ �
~V . The utility function ua is

strictly concave and ~V invertible, so that @2Ha=@da@sðs¼ 0Þ is invertible with

@H2
a

@da@s
ð0Þ

� ��1

¼
1

@2ua

@w2

1

2

� � ~V
�1
:

To apply Theorem 5 we require that Hsðs¼ 0Þ ¼ 0, i.e.

0¼
@Haj

@s ð0Þ ¼
@2ua

@w2

1

2

� �
�
XN

k ¼ 0

dakð0ÞCovðej,ekÞþ
@ua

@w

1

2

� �
� pjð0Þ,

which means that

0¼
@2ua

@w2

1

2

� �
� ~V � daþ

@ua

@w

1

2

� �
� pð0Þ, i:e: dað0Þ ¼ ta � ð

~V
�1pð0ÞÞ:

This describes the zero order demand term. Now that the conditions have been checked to apply Theorem 5 we calculate
that

@2Haj

@s2
ð0Þ ¼

@3ua

@w3

1

2

� �
� E

@W1a

@s
ð0Þ

� �2

ej

" #
þ2 �

@2ua

@w2

1

2

� �
� E

@W1a

@s
ð0Þ

� 	
pjð0Þþ2 �

@ua

@w

1

2

� �
�
@pj

@s
ð0Þ, i:e:

@2Haj

@s2
ð0Þ ¼

@3ua

@w3

1

2

� �
� ~zjþ2 �

@ua

@w

1

2

� �
�
@pj

@s ð0Þ:

Theorem 5 tells us then that

@da

@s ð0Þ ¼�
1

2

@2Ha

@da@s
ðs¼ 0Þ

� ��1
@2Ha

@s2
¼
ra

ta
ð ~V
�1 ~zaÞþta

~V
�1 @p
@s ð0Þ

� �
:

A.4. Deriving the general equilibrium allocation

Although our analysis in the paper looks only at the two-agent case, this section calculates the equilibrium for an
economy populated by a=1,y,A agents with given risk- and skew-tolerance parameters ta,ra: Individual demand is
assumed to be described by the demand equations derived for the two-agent case, i.e. by Eq. (14). We leave the aggregate
supply of the stock and the option unchanged to the two-agent case, i.e. one and zero, respectively.

For reference in this subsection, we define the aggregate risk-tolerance t and the aggregate skew-tolerance r by

t ¼
XA

a ¼ 1

ta,r ¼ 1

t
XA

a ¼ 1

tara:

Using dað0Þ ¼ ta �
~V
�1pð0Þ we get that zero order aggregate demand is t � ~V�1pð0Þ. This must equal the market portfolio

vector XM, which implies

pð0Þ ¼ 1

t
ð ~V � XMÞ ¼

1

t
~V 0j or equivalently pð0Þ ¼ b � p0ð0Þ, ðA:3Þ
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with b describing the vector with bj ¼
~V 0j= ~V 00. This implies

dað0Þ ¼
ta

t XM : ðA:4Þ

From this we derive ~za ¼ Covðe,ðe? � dað0ÞÞ
2
Þ ¼ t2

a=t
2
� Covðe,e2

0Þ ¼ t2
a=t

2
� ~wj. Therefore

@da

@s
ð0Þ ¼ ~V

�1 ta
@p
@s
ð0Þþ

rata

t2
~w

� �
:

The market-clearing condition for the first-order demand is then

0¼
XA

a ¼ 1

@da

@s ð0Þ ¼
~V
�1 t @p

@s ð0Þþ
r
t
~w

� �
:

Therefore

@p
@s
ð0Þ ¼ �

r
t2

~w, or equivalently
@p
@s
ð0Þ ¼ gj �

@p0

@s
ð0Þ,

with g describing the vector with gj ¼ ~wj= ~w0. This implies

@da

@s ð0Þ ¼ ðra�rÞ
ta

t2
ð ~V
�1
~wÞ:

Note that in the two-agent case t ¼ t1þt2, which implies the first-order premium coincides of Theorem 2. Furthermore in
the two-agent case r ¼ ðr1t1þr2t1Þ=ðt1þt2Þ, so that

ðr1�rÞ
t1

t2
¼

r1t1

ðt1þt2Þ
2
�

t1

ðt1þt2Þ
3
ðrt1þr2t2Þ

 !
¼�t1t2

r1�r2

ðt1þt2Þ
3

,

which coincides with the first-order demand term of Theorem 2 since XS ¼ ð
~V
�1
~wÞs.

Appendix B. Complete markets analysis

B.1. Higher-order results

In addition to the risk- and skew-tolerance defined in Eq. (12) we define for each agent a=1,2 the kurtosis-tolerance ka

and pentosis-tolerance xa by

ka ¼
t3

a

3

@4ua

@w4

1

2

� �
@ua

@w

1

2

� � , xa ¼
t4

a

4

@5ua

@w5

1

2

� �
@ua

@w

1

2

� � : ðB:5Þ

As before, these terms are ratios of derivatives of agent’s utility functions, evaluated at one-half, which we treat as (non-
random) numbers. Whereas risk- and skew-tolerances incorporate first-, second- and third-order derivatives of agents’
utility functions, kurtosis- and pentosis-tolerance add fourth and fifth-order derivatives of agents’ utility functions.
(Kurtosis-tolerance is related to the risk-vulnerability concept of Gollier and Pratt, 1996; to our knowledge, pentosis-
tolerance has not been studied in the literature before.)

By continuing the procedure leading to Eq. (26) we derive

@3W�

@y3
ð1Þ ¼ 3t1t2

k1�k2

ðt1þt2Þ
4
þ12t1t2ðt1r2þt2r1Þ

r1�r2

ðt1þt2Þ
5

, ðB:6Þ

@4W�

@y4
ð1Þ ¼ 4t1t2

x1�x2

ðt1þt2Þ
5
þ12t1t2

k2ð�5r2t1þr1ð3t1�2t2ÞÞ�k1ð�5r1t2þr2ð3t2�2t1ÞÞ

ðt1þt2Þ
6

þ24t1t2ðr1�r2Þ
5r2

2t2
1þr2

1t2
2þr1r2ðt2

1�8t1t2þt2
2Þ

ðt1þt2Þ
7

: ðB:7Þ

For HARA utility we calculate

ka ¼�
ð3�gaÞð2�gaÞ

3ð1�gaÞ
2

and xa ¼
ð4�gaÞð3�gaÞð2�gaÞ

4ð1�gaÞ
3

: ðB:8Þ

B.2. The multi-agent setup

Throughout, this paper only looked at the two-agent case, but could easily be generalized to the multi-agent case (a=1,
y, A agents with A42). To see how, we denote here W�

a the optimal date 1 wealth profile of agent a. Then, marginal
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utility equates across agents, i.e. Eq. (20) holds similarly for all combinations a¼ 2, . . . ,A : 0¼ @u1=@wðW�
1ðyÞÞ�l1aðsÞ � @ua=

@wðW�
a ðyÞÞ, for suitable l1aðsÞ. Open interest in option K is the positive part of all agents’ demand

PA
a ¼ 1ðdaK ðsÞÞþ ¼

s
PA

a ¼ 1ð@
2W�

a=@y2ðKÞÞþ . This means we would need to do a structural analysis of all wealth profiles W�
a ðyÞ. In Section 6.3

we performed a structural analysis of the sharing rule in the two agent case, only, to analyze the shape of the open interest
curve. Summing up positions across more than two agents will not affect our results qualitatively. To simplify our
exposition we only looked at the simpler two-agent setup throughout.

B.3. Franke–Stapleton–Subrahmanyam

Our setup can be easily modified to provide an analysis of Franke et al. (1998). They take two agents with identical
HARA utility functions (u1 (w)=u2(w)=u(w), facing an uninsurable background risk. We note that the defining equation for
the sharing rule W

�
ðyÞ, previously in Eq. (20), now reads (with our simplification that l does not depend on sÞ

0¼ E
@u

@w
ðW
�
ðyÞþe1Þ

����y
� 	

�l � E
@u

@w
ðy�W

�
ðyÞþe2Þ

����y
� 	

, ðB:9Þ

where e1,e2 is a non-positive random variable describing the background risk of the first and second agent. The analogy to
our analysis is as follows: Eq. (B.9) means all terms in derivatives of u need to be replaced by expected values, with
expectation taken over the background risk, i.e. here

ta ¼�

E
@u

@w

1

2
þea

� �� 	

E
@2u

@w2

1

2
þea

� �� 	 , ra ¼
t2

a

2

E
@3u

@w3

1

2
þea

� �� 	

E
@u

@w

1

2
þea

� �� 	 :

Our analysis of Section 5.5 then remains valid, in particular the sign of @2W
�
=@y2ð1Þ ¼ t1t2ðr1�r2=ðt1þt2Þ

3
Þ determines

whether the first agent is long or short. In particular, the first agent is long options if r14r2.
A very illustrative example in Franke et al. (1998) is when only the second agent faces background risk (e1=0); they find

that the first agent then has a concave sharing rule, i.e. sells options on the market portfolio. This means in our expansion
that t1,r1 are the usual ones and t2,r2 are as above. To determine if r14r2 note first that in this case

r1 ¼

@u

@w

1

2

� �
�
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2
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2

� �� �2
and r2 ¼

E
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2
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E
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1

2
þe2

� �� 	� �2
:

It is known for HARA utility that @u=@w,@3u=@w3 are convex and @2u=@w2 is concave. Therefore, by Jensen’s inequality

E
@u

@w

1

2
þe2

� �� 	
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1
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o
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1

2
þE½e2�

� �
,

E
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1

2
þe2

� �� 	
4
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1

2
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� �
:

This implies with Eq. (31) that

r1 ¼
2�g1

2ð1�g1Þ
¼

@u

@w

1

2
þE½e2�

� �
�
@3u

@w3

1

2
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� �

@2u

@w2

1

2
þE½e2�
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o

E
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1
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E
@3u

@w3

1

2
þe2

� �� 	

E
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1

2
þe2
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¼ r2:

This means that according to our expansion the first agent is short options. This result is identical with the result of Franke
et al. (1998).
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