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NOTES AND COMMENTS 

COMPUTING SUPERGAME EQUILIBRIA1 

BY KENNETH L. JUDD, SEVIN YELTEKIN, AND JAMES CONKLIN2 

We present a general method for computing the set of supergame equilibria in infi- 
nitely repeated games with perfect monitoring and public randomization. We present 
a three-stage algorithm that constructs a convex set containing the set of equilibrium 
values, constructs another convex set contained in the set of equilibrium values, and 
produces strategies that support them. We explore the properties of this algorithm by 
applying it to familiar games. 

KEYWORDS: Supergames, Nash equilibrium, computation, monotone convex set- 
valued operators. 

1. INTRODUCTION 

THE NATURE OF DYNAMIC STRATEGIC INTERACTION has been extensively studied 
in the repeated game literature. Abreu, Pearce, and Stacchetti (APS) (1986, 1990) 
developed set-valued techniques for solving repeated games with imperfect moni- 
toring, showing that the set of sequential equilibrium payoffs is a fixed point of a 
monotone operator similar to the Bellman operator in dynamic programming. Cron- 
shaw and Luenberger (1990) extended the APS analysis to games with perfect moni- 
toring. More generally, the APS method can be applied to any problem reducible to 
finding the maximal fixed point of a monotone set-valued operator. However, these 
methods seldom produce closed-form solutions and are not directly implementable 
on a real computer because they require approximation of arbitrary sets. A numer- 
ical approach is necessary to quantitatively analyze APS-style models. This paper 
presents a method for computing subgame perfect equilibrium value sets and equilib- 
rium strategies in infinitely repeated games with perfect monitoring.3 These methods 
make it possible to quantitatively analyze a broad range of dynamic strategic prob- 
lems. 

The APS method is a constructive procedure; the equilibrium value set can be ob- 
tained as the limit of an iteration of a monotone operator. However, two chief numeri- 
cal issues must be solved before we can implement this procedure on a computer. The 
first is the parsimonious numerical representation of a set; the second is the consis- 
tency of this representation with the underlying structure of the monotone operator. 
As a first step in handling these difficulties, we alter the supergame by introducing a 
public randomization device. We show that convex polytopes provide an efficient and 
consistent way of approximating the equilibrium value set of the modified supergame. 

'This work was supported by NSF Grant SES-9012128, SES-9309613, and SES-9708991. This 
paper is an extension of Conklin and Judd (1993), which discussed only the inner ray approxima- 
tion method presented in Section 3.4. 

2We gratefully acknowledge the comments and suggestions of five anonymous referees, and 
two Economettica editors. 

3A longer version of this paper, with more explanation, details, figures, examples, and discus- 
sion of error analysis and the related literature, is available at http:\\bucky.stanford.edu. 
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We then produce a tight approximation of the equilibrium value set using iterative pro- 
cedures that preserve critical monotonicity properties of the APS-style operator. The 
first step, the outer approximation step, finds a convex polytope that contains the equi- 
librium value set. The second step, the inner approximation step, finds a convex poly- 
tope contained in the equilibrium value set. These two polytopes provide bounds on 
the equilibrium value set. Any point contained within the lower bound is certainly an 
equilibrium payoff. Conversely, any point not contained in the upper bound is certainly 
not an equilibrium payoff. We then develop a third procedure, called the ray method, 
to compute equilibrium strategies that support arbitrary equilibrium payoffs. 

We argue that one needs both an inner and outer approximation since only the dif- 
ference between the two sets indicates the accuracy of the approximation. The ability 
to compute both upper and lower bounds on the equilibrium value set (where "upper" 
and "lower" refers to the partial ordering on sets induced by C) is an unusual feature 
of our method since few numerical algorithms deliver such bounds. Many numerical al- 
gorithms provide convergence theorems, but they generally do not deliver computable 
error bounds for any particular approximation in actual applications. We present exam- 
ples that demonstrate the importance of having both inner and outer approximations 
and show that their difference is very small if one implements a sufficiently flexible 
version of our algorithm. 

The APS method has been applied to a large variety of games studied in industrial 
organization, contract theory, and dynamic policy analysis.4 This paper focuses on the 
case of infinitely repeated static games, but the methods are generalizable to dynamic 
problems. Conklin and Judd (1996) generalized these methods to dynamic games with 
a finite number of state variables. Sleet and Yeltekin (2002a) provide an extension to 
the more difficult case of computing equilibrium payoff correspondences of dynamic 
games with continuous state variables. 

Section 2 presents the characterization of equilibrium we use. Section 3 presents the 
basic algorithm and its properties. Section 4 examines the algorithm's speed and accu- 
racy with applications to a Prisoner's Dilemma game and a Cournot game. Section 5 
concludes. 

2. SUPERGAMES AND CHARACTERIZATION OF EQUILIBRIUM PAYOFFS 

We examine an N-player infinitely repeated game with perfect monitoring. The 
actions of player i in the stage game are in Ai, i = 1, ... , N, and each element of 
A _ A1 x A2 X ... x AN is an action profile. Player i's payoff in the stage game is 
Hi: A -- R. Let a_i _ (a1, ..., a a1, a .i.. , aN) represent player i's opponents' ac- 
tions. The payoff of the player i's best reply to a-i is H*(a-i) maxaEA jIi(aj, a_j). 
We make the following standard assumptions. 

ASSUMPTION 1: Ai, i = 1, .. .,N, is a finite set. 

ASSUMPTION 2: The stage game has a pure strategy Nash equilibrium. 

4See Atkeson (1991) for an extension of the APS theory to a game with a state variable in the 
context of international borrowing and lending. 
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We construct the supergame S?? for discount factor 8 > 0. The action space of S?? 
is A?? = x??1A. Let a(t) be the time t action profile. We assume that player i aims to 
maximize his average discounted payoff 

(1 - 5)Hi(a(l)) + 5 (1 - a) E, 51-2ji (a(t) 

Note that the average discounted payoff is a convex combination of the first-period 
payoff, Hi(a(l)), and the average discounted payoff of the rest of the game (the term 
in brackets), which is the continuation payoff. The average discounted payoff for agent i 
is bounded below by Hi =minaeA 1i(a) and above by Hii maxaeA Hi(a). Therefore 
the supergame payoffs are contained in the hypercube W = x$=1 [H,, H]. Let VP c W 
denote the set of all subgame perfect equilibrium payoffs of S??. 

We follow the recursive approach developed by APS and applied by Cronshaw and 
Luenberger (1990) to perfect information games. In the recursive formulation of the 
problem, each subgame perfect equilibrium payoff vector is supported by a profile of 
current actions consistent with Nash play in the current period and a vector of continu- 
ation payoffs that are themselves payoffs in some subgame perfect equilibrium. The key 
to finding VP is the construction of self-generating sets. The concept of self-generation 
can be formulated using the operator, BP, defined for WP c W by 

(1) BP(WP)= U {(l-8)II(a)+8wIVi(ICi>0), i=1,N} 
(a, w)EAxWP 

where 

ICi ((1 - 8)Hi(a) + 8wi) - ((1 - 8)H*(a-i) + 8wi) > 0 

is the incentive compatibility condition for player i, and w. infWEWp wi is player i's 
minimum possible continuation value in Wp. A vector b = (1 - 8)H(a) + 8w is in 
BP(WP) if there is some action profile, a E A, and continuation payoff, w E Wp, that 
satisfy the players' incentive compatibility constraints, and deliver b as current pay- 
off. A set Wp is self-generating if Wp c BP(WP). Straightforward extensions of the 
arguments in APS can be used to establish that the operator BP is monotone in WP 
and preserves compactness. Cronshaw and Luenberger (1990)5 show that VP is self- 
generating, repeated application of BP to W converges to VP, and VP is the largest 
bounded fixed point of the operator BP. 

Any numerical implementation of BP(WP) requires an efficient representation of 
the set Wp. As a first step in this direction, we alter the supergame by including public 
randomization. More precisely, we assume that in each repetition of the game there is 
a lottery depending on the players' current actions that determines which Nash equi- 
librium will be played in the next period. Strategies in the supergame with public ran- 
domization condition player choices on histories of both actions and lottery outcomes. 
If Wp is the set of possible continuation values at time t of Sx without public random- 
ization, then co(WP) is the set of possible time t ex-ante (before the outcome of the 
lottery) continuation values for S?? with public randomization. Then BP(co(Wp)) is the 

5Cronshaw and Luenberger (1994) was the published version of this paper, but examined only 
the strongly symmetric subgame perfect equilibria. 
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set of equilibrium values at t, and co(BI(co(WP))) is the set of ex-ante continuation 
values available at t - 1 for S?? with public randomization. 

Let V be the set of ex-ante continuation values that can occur in equilibrium for the 
supergame S?? with public randomization. Therefore, V is convex and bounded. With 
minor modifications of the arguments presented by Cronshaw and Luenberger (1990, 
1994), it can be shown that repeated application of the APS-style operator with public 
randomization produces a sequence of convex sets that converge to the equilibrium 
payoff set. More precisely, if B is 

(2) B(W) =co(BP(co(W))), W C W, 

then B is monotone in W (i.e., if W C W' then B(W) C B(W')), V is the largest fixed 
point of B, and if Wo = W and j+j = B(Wi), then V = ni w. Whereas standard APS 
analysis focuses on fixed points of BP (.), we focus on fixed points of the convex-valued 
operator B( ).6 

3. APPROXIMATIONS OF B(W) AND V 

We use two kinds of convex polytope approximations of convex sets W: inner and 
outer approximations. Inner approximations are convex hulls of points on the boundary 
of W and outer approximations are polytopes defined by supporting hyperplanes of W. 
These are precisely defined below. 

DEFINITION 1: If Z c W c RN is a set of m points, then the inner approximation to 
W generated by Z is co(Z). 

DEFINITION 2: If Z is a set of m points on the boundary of a convex set W c RN 
and G c RN a set of m corresponding subgradients oriented such that (ze - w) ge > 0 
for w E W, then the outer approximation of W generated by (Z, G) is 

m 

(3) W=n{zeRN Ige .Z<ge. Z. 
f=1 

The critical property of B for our purposes is that it maps convex sets to convex sets 
and that it is monotone. In particular, B(W) maps the collection of sets 2J = {W c RN I 
W convex, W c W) into itself. We define inner and outer monotone approximations of 
the operator B(.) that preserve these critical properties. 

DEFINITION 3: A mapping B': 3 -- Q(B0: 2J -- 3) is an inner (outer) monotone 
approximation of B if: 

1. for all W E QIJ, B'(W) C B(W) (B?(W) D B(W)), and 
2. for all W, W' e 9, if W C W' then BI(W) C BI(W') (BO(W) C BO(W')). 

The definitions of inner and outer monotone approximations directly imply Propo- 
sition 4, which states that BO inherits some properties of B, and relates the maximal 
fixed points of BO to V, the maximal fixed point of B. 

6Public randomization is now a standard technique to simplify the analysis; see, e.g., Cronshaw 
(1997) and Phelan and Stacchetti (2001). 
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PROPOSITION 4: Suppose BO(-) is an outer monotone approximation of B(.). Then the 
maximalfixedpoint of B? contains V. Moreprecisely, if W D B?(W) D V, then B?(W) D 
B?(B?(W)) 2 ... V. 

PROOF: The proof is a slight modification of the proof of Cronshaw and Luenberger 
(1990) and can be summarized as follows. Since BO is increasing on 2J, and 2J is a 
complete lattice, by Tarski's theorem its maximal fixed point is 

V*= U W. 
Wc w, Wc BO(W) 

By definition of BO, V = B(V) C B?(V); therefore, V C V*. Q.E.D. 

Lemma 5 tells us that W is an appropriate initial guess for all games. 

LEMMA 5: W D B?(W) D V. 

PROOF: By definition of W and BO(.). QE.D. 

3.1. Inner Hyperplane Approximation Method 
The key to approximating B(W) is to fix some subgradients H c RN (we call them 

search subgradients) and locate boundary points x of B(W) where the subgradient of 
B(W) at x is in H. We first examine an inner monotone approximation of B(W) since 
self-generating sets of inner approximations of B(W) are equilibrium values whereas 
the maximal fixed point of an outer approximation may contain values other than equi- 
librium payoffs. Algorithm 1 defines the inner monotone approximation B'(W; H) for 
a set H of search subgradients. The input for Algorithm 1 is a set of vertices Z such 
that W = co(Z). The key computation occurs in Step 1. For each search subgradient 
hi and action profile a, Step la finds a continuation value w E W that makes a incen- 
tive compatible and maximizes a weighted sum of player payoffs where the weights are 
given by he. Furthermore, (4) is a linear programming problem, implying that the ap- 
proximation error in solving (4) is close to machine epsilon (10-16 for double precision 
arithmetic). Step lb finds the action profile a* that maximizes the he-weighted payoffs, 
and also records the maximized weighted payoff, Z. Step 2 collects the Z4 points into 
Z+, which are all in B(W). Therefore, W+ _ co(Z+) is our inner approximation. 

Lemma 6 presents the basic properties of Algorithm 1. 

LEMMA 6: For any set of subgradients H c RN, 
1. B' (W; H) is an inner monotone approximation of B(W); 
2. if H C H'then B'(W; H) C B'(W; H'). 

PROOF: The equations defining Algorithm 1 show that it computes points on the 
boundary of B(W) with subgradients H. Since Step 2 takes the convex hull of these 
points, B'(W; H) C B(W). If W' C W, the only part of (4) that differs for W' # W is 
the list of constraints implicit in (i).7 Since they are tighter for W' c W, the solution 

7In practice, constraint (i) is replaced by a set of linear constraints on w. For an inner approxi- 
mation, these linear constraints are derived from the piecewise linear approximation of co(Z) in 
each iteration. 
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ALGORITHM 1: MONOTONE INNER HYPERPLANE APPROXIMATION B'(W; H) 

Input: Vertices Z = {z1, . . ., ZMI such that W = co(Z). 

Step 1: Find extremal points of B(W). For each search subgradient hf E H, e = 1. L. 
(a) For each a E A, solve 

(4) ce(a) = maxhe * [(1 - 8)11(a) + 8w], such that 

(i) w E W, 
(ii) (1 - 8)H'(a) + 8w, > (1 - 8)H7(a-i) + 8w1, (i = 1. N), 

where ce(a) = -oc if no w satisfies the constraints. Let we(a) be a w value that 
solves (4). 

(b) Find best action profile a E A and corresponding continuation value: 

a* = argmax{ce (a) I a E Al, 

z4 = (1 - 8)H(a*) + 8we(a*). 

Step 2: Collect set of vertices Z+ = {Z I t = 1, . . ., L}, and define W+ = co(Z+). 

for W' will produce smaller ci (a) results, which in turn produce smaller output sets. 
Therefore, B'(W'; H) c B'(W; H). Part 2 follows from the observation that increasing 
the number of search gradients in Algorithm 1 increases the number of boundary points 
from B(W) in Z+, which enlarges co(Z+). Q.E.D. 

Our inner approximation algorithm for approximating V chooses some set of search 
subgradients H and executes the iteration W1+j = B'(W1; H) until d(W1, WK+i) < 8, 
where 8 is the stopping criterion, and d(Wi, Wj+1) is defined as 

d(W,W?1)=maxfmax min Itz-z+It, max minllz-z'lji 
ZEZi Z+EZi+l Z+EZi+l ZEZi 

where Zi(Zi+1) is the set of extreme points of W1(WJ+/).8 
Theorem 7 presents the critical limit theorem for iterations of inner approximations. 

THEOREM 7: Define the iteration W+j = BI(Wi). If Wo C W contains a static Nash 
pure strategy equilibrium value, then 0 : W - = lim sup Wi C V. If Wo = W, then WE is a 
monotonically decreasing sequence. 

PROOF: WOO is not empty since any pure strategy Nash value in Wo is also in each Wi. 
Both B and B' are monotonic; therefore, B'(W) c B(W) implies B'(WO) C B'(W) c 
B(W). By induction, W0,, C limi Bi (W) = V. If Wo = W, then W, = BI(WO) C 
B(WO) C W0, and by induction, W+1 C Wi for all i. Q.E.D. 

Theorem 7 provides a sufficient condition for the limit of inner monotone approx- 
imation iterates to be contained in V. If B'(WO) C Wo (such as Wo = W), then W4 is a 
monotonically decreasing sequence. One conventional computational approach would 

8The Hausdorff distance between Wi and W1+1 is bounded above by d(WT, W?i+) because each 
face of co(Zi) and co(Zi+?) is a convex combination of the vertices in Zi and Zj+1. Therefore, if 
the two sets are close in d (., .) then they are close in the Hausdorff metric. 
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continue until d(W1, W?1) < s at, say, W. While the limit W,, C V,this may not be true 
for W. For some purposes, it may be acceptable to take such a W as an approximate 
set of equilibrium values. 

Since we are interested in error bounds, we pursue another approach to find an 
approximation to V that is contained in V after a finite number of iterations. Proposi- 
tion 8 presents a sufficient condition for W C V. In particular, if W C B'(W) for some 
inner monotone operator B', then W C V. While there is no guarantee of success, we 
find that it is often possible to find such a W (the details are given below) and construct 
an inner approximation W' C V. 

PROPOSITION 8: Suppose B' is an inner monotone approximation of B. If W C B' (W), 
then B'(W) C B'(BI(W)) c ... c V. 

PROOF: Monotonicity of B' implies that if W C B'(W), then B'(W) C B'(B'(W)), 
etc. By definition of B', if W C B'(W), then W C B(W), which implies that W C V. 
Then, monotonicity implies B'(W) C B(W) C B(V) = V, B'(B'(W)) C B(B'(W)) C 
B(V) = V, etc. Q.E.D. 

Propositions 4 and 8 show that the monotonicity properties are critical for computing 
reliable approximations to V. We now present three examples of approximations to 
B(W) that satisfy these properties. 

3.2. OuterHyperplaneApproximation 
Once we find a set W' and subgradients H such that W' C B'(W'; H) we know 

that W' C V. However, W' may be significantly smaller than V. We next construct an 
outer monotone approximation of B, BO: 2X -C 2, and use it to find a set WO such that 
V C WO. For a set of subgradients H, our monotone hyperplane approximation proce- 
dure is the same as Algorithm 1 except for Step 2. To construct an outer approximation, 
we take each point Z4, and construct the hyperplane through Z4 with normal hi. The 
output polytope, BO(W; H), is the intersection of the half-spaces defined by these hy- 
perplanes.9 

Lemma 9 presents the basic properties of our outer hyperplane approximation to B, 
and its proof is analogous to that of Lemma 6. 

LEMMA 9: For any set of search subgradients H c RN, 
1. B?(W; H) is an outer monotone approximation of B(W); 
2. if H c H', then B?(W; H') C B?(W; H). 

PROOF: The equations defining Algorithm 1 show that it computes points on the 
boundary of B(W) with subgradients H. Since Step 2 uses an outer approximation con- 
struction, B?(W; H) D B(W). If W' c W, the only part of (4) that differs for W' # W 
is the list of constraints implicit in (i). Since they are tighter for W' c W, the solution 

9Cronshaw (1997) proposed an outer approximation method alternative to the inner method 
exposited in Conklin and Judd (1993). He examined games with continuous strategies and closed- 
form best reply functions. He acknowledged that applying these methods to general continuous 
strategy games creates global optimization problems that are difficult to solve. Therefore, we stay 
with discrete strategies in our effort to be general. 
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for W' will produce smaller ce (a) results, smaller values of ce ,10 which in turn, since 
the approximation subgradients of W+ are unaffected, produce smaller output sets. 
Therefore, B?(W'; H) C B?(W; H). Part 2 is similarly obvious. Q.E.D. 

To find a W? that contains V, we first need a W0 such that W0 2 B0(Wo) 2 V and 
then compute W+1 = B0(Wi; H), until d0(Wi, W+i) < s where 

d?(W,, Wi+K1) = min I (zi,i - Zi+i e) hel 

and ? is the stopping criterion. 

3.3. Approximating V and Computing an Error Bound 
In approximating V, we proceed in two stages. First, we compute an outer ap- 

proximation W?. Second, we use W? to construct an initial guess Wo for the iter- 
ation W+1 = B(Ji; H). We want W0 C V since that, by Proposition 8, guarantees 
W C V for all i. We construct Wo by shrinking the Pareto frontier of W? by a small 
amount (2-3%); in our examples, this set satisfies B'(Wo; H) 2 Wo. Once an appro- 
priate W0 is constructed by this, or some other method,11 the algorithm then computes 
Wi+1 = B'(Wi; H) until d(W{, Wi+i) < E. The result, WI, is an inner approximation of V. 

We then compute an error bound for our approximations of V by computing the dis- 
tance between W' and W?. The most natural norm for computing the distance between 
two sets, X and Y, is the Hausdorff norm defined as 

p(X, Y) = maxmin llx - yllI 
XEX yYE 

Since W' C V C W?0, we know p(W', WO) > p(V, W'), p(V, WO). Therefore 
p (WI, WO) is a bound on the error, and since WI and WO are convex polytopes, 

p(WI, W?) = max min II - w)I 
wE TO we WI 

where To is the set of vertices of WO. Thus, p( W', WO) can be computed by solving L 
(number of search gradients and vertices) concave C?? minimization problems with 
linear constraints. Lemma 6 and Lemma 9 imply that the error bound p(WI, W?) is 
decreasing in the number of search gradients used. If the error bound is unacceptably 
large, it can be reduced by using a larger number of search subgradients. 

We advocate computing both an outer and inner approximation. An outer approxi- 
mation WO D V would suffice if the objective is to show that a particular equilibrium 
value is not part of the equilibrium value set. If instead one wants to find values in 
V, W? is not an appropriate approximation since it almost surely contains points not 
in V. In particular, the boundary of W? will contain few, if any, points on the bound- 
ary of V. Since applications will often want to find points that can be supported in 
equilibrium, it would be generally wrong to treat points on dW0 as equilibrium values. 
Thus an inner approximation W' C V is necessary. However, an inner approximation 

10cr is defined as c, = maxaEA {ct (a)1. 
"1This slicing technique always worked in our examples. An alternative choice for Wo would be 

a set of equilibrium payoffs with simple strategies (such as constant actions) supported by Nash 
reversion. 
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W' C V may miss some equilibrium values. The pair (W', WO) together is useful since 
they bracket V, W' C V C WO and they provide an error bound. If WO/ W' is small, 
then W' contains most values in V. 

Others have offered partial alternatives to the foregoing. In his extension of Con- 
klin and Judd (1993), Cronshaw (1997) proposed using the outer approximation, cou- 
pled with Newton's method to approximate V. Since there may be many fixed points 
to B?(W; H) and since Newton's method does not involve a monotonic operator, his 
solution may not be the maximal fixed point of B?(W; H) and may miss some points 
in V. In their alteration of Conklin and Judd (1996), Phelan and Stacchetti (1999, 2001) 
aimed to find an outer approximation of a correspondence. However, their linear in- 
terpolation step for the capital stock k outside of its grid is inconsistent with computing 
an outer approximation, and their final approximation may therefore be neither an in- 
ner nor an outer approximation. Chang (1998) used discretization to produce at best 
an inner approximation; like any discretization approach, this approach suffers from 
the curse of dimensionality. None of these alternative methods include a procedure for 
computing error bounds. See the working paper version of this paper (Judd, Yeltekin, 
and Conklin (2002)) for more discussion of these comparisons. 

3.4. ComputingActions and Strategies: InnerRayApproximation Method 
The hyperplane steps produce inner and outer approximations of the equilibrium 

value set, but they provide limited information about the actions and strategies that 
support those values. Our inner hyperplane step identifies equilibrium actions only at 
extreme points of the equilibrium value set, but the construction of strategies requires 
finding actions at a variety of points on the boundary of W'. A third step, called the 
ray method, takes W' and produces an inner approximation of its image under B(.) 
and action profiles a E A and continuation values in W' that support arbitrary values 
on dW'. The idea of the ray method is to choose a point in w? E B(W), compute points 
Z+ c dBP(W) that lie on a finite number of rays, &, emanating from w?, and then 
report co(Z+) as an inner approximation, denoted BR(W; wI, 0), to B(W). To com- 
pute equilibrium actions and continuation values for w E dW, the set a must include 
(w - w)/ w - w II. The ray procedure is presented in Algorithm 2. 

ALGORITHM 2: INNER RAY APPROXIMATION BR(W; WO, () 

Input: Vertices Z = {z1 . L ., ZL I such that W = co(Z). 
Initialize: Choose origin, w? E B(W), and M points, e c RN, on the unit sphere. 

Step 1: Find new extremal points of B(W). For each Gm eE 0: 

(a) For each action profile a E A solve 

(5) Am(a) = max A, such that 
A>O, w 

(i) w = 8-1[(w0 + AOm) - (1 - )I(a)], 
(ii) W E W, 

(iii) (1 -8)H7i(a) + 8wi > (1 -8)ff*(a_i) + 8wi, Vi, 
where Am(a) =-oc if there is no w satisfying the constraints. 

(b) Set A* = maxaEA A(a), a* = argmaXaEA A(a), and zm = -w + A*Om. 
Step 2: Collect set of points Z+ = {Zm I m 1. M} and define W+ = co(Z+). 
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TABLE I 
PRISONER'S DILEMMA 

PAYOFFS 

Player 2: 
C D 

Player 1: C 4,4 0,6 
D 6,0 2,2 

The point z+ E Z+ on the ray w0Om, is supported by the action profile a* and (ex-ante, 
before the outcome of the lottery) the continuationvalue w = 8-l[z' - (1 - 8)H(a*)]. 
To construct a sample equilibrium path, we need to compute how the continuation 
value w is supported. If w corresponds to a point on the boundary associated with a 
particular search gradient, the action profile and continuation values that support w are 
already determined by the inner ray method. If w , dW however, w can be represented 
as a convex combination of vertices of W+ that are supported by pure strategies. In 
this case, we use a random number generator to simulate the public randomization 
device and determine the equilibrium play. Of course, there are multiple solutions: 
our programs make no attempt to list all equilibria. Below we use the ray method to 
compute sample action paths and strategies for some familiar games.12 

Our complete algorithm integrates the outer hyperplane, inner hyperplane, and ray 
methods into a three-stage convex polytope algorithm. As our initial guess, we use W. 
Generally, we use a uniformly distributed set of search gradients. Once our three-stage 
algorithm is completed, we then compute the error measure, p (W', WI), as described 
above. 

4. EXAMPLES 

We test our algorithms by applying them to well-understood problems with known 
solutions. Our primary aim is to quantitatively demonstrate some of the properties of 
the recursive value set algorithm, such as monotonic convergence and the increase in 
precision from additional search subgradients. 

Our first example is the Prisoner's dilemma game. Each player chooses either coop- 
erate (C) or defect (D) and payoffs are in Table I. Figure 1 displays some early iterates 

+j = B0(Wi; H) and V for the Prisoner's dilemma game. The monotonicity property 
of B? is apparent; the iterates are nested and become smaller, converging to V. Fig- 
ure 2 displays the solutions using 8, 24, and 72 search gradients. The polygon ABCDEF 
represents both the inner and outer approximations with 72 uniformly distributed sub- 
gradients. The outermost lines represent the value set after convergence with 8 sub- 
gradients and include many points not in the 24- and 72-gradient approximations, and, 
hence, not part of the equilibrium. In this example, the difference between the inner 
and outer approximations with L = 72 cannot be visually detected and together, they 
represent a very good approximation of the equilibrium value set. 

We next present solutions to a Cournot duopoly game. We assume qj is firm i's 
sales, ci is firm i's unit cost, pi is firm i's price, and Hi (q1, q2) is firm i's profits. 

"2We could use the ray method as our inner approximation procedure (as was done in Conklin 
and Judd (1993)) but the hyperplane approach we present here has some technical advantages 
over the ray method; see the working paper version (Judd, Yeltekin, and Conklin (2002)) for 
more details. 
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FIGURE l.-Monotonic convergence of outer approximations. 

We assume a linear demand function, p = max{6 - q,- q2, O}; the profit function is 
171 (q 1, q2 )= qi(p - ce). We discretize the action space; firms can choose one of 15, 
uniformly distanced actions from the set [0, 6]. 

6 

04 -(4,4) 
0 

0 

3- 

L=72 
2 - A 

F 

2 3 4 5 6 

Payoff to Player 1 

FIGURE 2.-Value sets with different subgradients. 
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f3- l =L.6 0) \, 

0 1 2 3 4 5 6 7 8 9 
Payoff to Player 1 

FIGURE 3.-Cournot duopoly with alternative cost assumptions. 

Figure 3 displays V for ci E {0.0, 0.6). In all cases, the inner and outer approximations 
are indistinguishable at the resolution of the figures. If both firms have zero costs, a 
Cournot-Nash equilibrium payoff is (4, 4)13 and the shared monopoly payoff is (4.5, 
4.5) (`*' in Figure 3). If ci = 0.6, i = 1, 2, then the shared monopoly payoff is (3.64, 
3.64) ('+' in Figure 3) and the unique Nash equilibrium payoff is (3.24, 3.24) ("o" in 
Figure 3). The set of equilibrium values in the supergame is quite large in both cases. 
When costs are positive, the threats are far worse than Nash-Cournot reversion. 

Figure 4 and Table II describe the actions that support equilibrium values of the 
Cournot game with c = (0.6, 0.6). Figure 4 illustrates the relation between equilibrium 
values (labelled by "*) and continuation values (labelled by "o") indicated by arrows. 
Table II displays information for 7 points from Figure 434 In Table II, each e corre- 
sponds to the point marked e in Figure 4, vi(e) is player i's equilibrium value at point 
X, wi () is his continuation value, qi is his current output, and Hi (q, q1) is player i's 
current profit. The results displayed in Figure 4 and Table II indicate that points on 
southern (and western) extreme points of V, the punishment points, usually involve 
"going along with your own punishment" as in Abreu (1988). At these points, at least 
one player makes losses in the current period. This is rational for each player because 
of the high continuation values. For example, at point 46, both firms produce q = 5.1, 

13The point (0, 0) is also a Nash equilibrium value in the zero cost case because playing (q1, q2), 
is a Nash equilibrium for q1, q2 > 6. 

"'The e indices indicate the direction of a ray in our ray approximation. For a total of M rays, 
ray e E I1, . . ., M} corresponds to the vector (cos 0, sin 0), 0 = (- 1)2X/M. 
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FIGURE 4.-Equilibrium paths in a Cournot game. 

incur losses of 3.0 each, but enjoy an expected continuation value of 0.77. Table II also 
shows that asymmetric harsh punishments yield equally asymmetric continuation val- 
ues; for example, point 60 corresponds to a positive value for Firm 1, but zero value for 
Firm 2. This equilibrium payoff pair is implemented by quantities of (5.1, 2.1) in the 
current period, and large profits in the future for Firm 1 and small future profits for 
Firm 2. Point 60 also corresponds to the payoffs associated with the punishment phase 
after Firm 2 deviates from cooperation. 

Table III displays values of p (W', W?) for our examples with various numbers of 
search subgradients. The p(W', W?) values look large but that is due to the maximin 
nature of p. Specifically, if there is only one vertex of W? that is r away from WI, 
then p(W', W?) > r. In our examples p(W', W?) is determined by the southeast and 
northwest corners of W' and W?, but W? and W' are always much closer on average. 

TABLE II 
ACrIONS, PROMISES, AND THREATS ON THE BOUNDARY OF V, C = 0.6 

e (v1(e),v2(e)) (w1(e),w2(e)) (ql,q2) JiI(qi,q2) 

2 3.97 3.30 3.75 3.52 1.7 0.9 4.8 2.4 
8 3.71 3.57 3.72 3.55 1.3 1.3 3.6 3.6 

10 3.64 3.64 3.64 3.64 1.3 1.3 3.6 3.6 
27 0.29 6.76 0.36 6.65 0.0 3.0 0.0 7.1 
46 0.00 0.00 0.77 0.77 5.1 5.1 -3.0 -3.0 
60 4.75 0.00 6.71 0.32 5.1 2.1 -3.0 -1.3 
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TABLE III 
ERROR BOUNDS, e = 10-4 

Prisoner's Dilemma Cournot 
Game 
Search Gradients 16 24 72 16 24 72 

Hausdorff norm, p 0.2621 0.1246 0.0841 0.1790 0.1718 0.0943 
Average distance, p 0.1021 0.0633 0.0146 0.0436 0.0341 0.0176 

We make this precise by defining the average distance between the vertices of WI and 
the inner approximation W' in 

pi(W', W0) = 
I 

j T min lliv - w-i. 
#{WIlD-ET0} _ ~)W 

WiE TO 
Table III shows that vertices of WO are quite close to W' on average, which implies 
that the faces of WO are also on average, close to W'. The measures p and 

- 
are global 

indices. 
Table IV reports the run times with different convergence criterion, number of 

search gradients and actions per player, and reflect the total amount of time for com- 
puting all approximations and equilibrium strategies. We use a Fortran program on a 
550 MHz Pentium PC. With two players, the running times rise roughly quadratically 
as the number of discrete actions increase. The running times increase in the number 
of search subgradients because each iteration checks more directions and each poly- 
tope approximation uses more subgradients and therefore more constraints for the 
w E W condition. Stricter convergence criteria (smaller ?) slow down the algorithm 
only slightly; as we move from ? = 10-5 to ? = 10-7 running times are only doubled. 
Table IV also indicates that as the discount factor 6 increases, the rise in running time 
is moderate: convergence takes at most double the time when 8 is increased from 0.8 
to 0.9. While the times in Table IV may seem long, they are acceptable considering that 
we are finding the set of all Nash equilibrium payoffs and doing so with high accuracy. 
Furthermore, application of standard acceleration methods (such as Gauss-Seidel iter- 
ation), utilization of parallel computing methods (which are directly applicable for this 
problem), and the use of faster computers will all substantially reduce the time cost. 

These examples show that our algorithm can be used to approximate the set of all 
Nash equilibria of nontrivial games, compute an error bound on the approximation 

TABLE IV 
RUN TIMES FOR COURNOT GAME 

Search Gradients 16 32 72 16 16 
,8. ~~~~ ~~10-5 10-5 10-5 10-7 10-5 

8 0.8 0.8 0.8 0.8 0.9 

Actions per player 
5 8sa 36s 4m57s lSs lls 

10 28s 1 m34s 17m 7s SOs 45s 
15 63s 4m46s 44m53s 1m59s 1m54s 

a",x m y s" means "x minutes, y seconds." 
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error, compute strategies that support specific equilibria, and do so in an acceptable 
amount of time. Therefore, this approach and its refinements offer robust and practical 
methods for finding all Nash equilibrium values of finite-action supergames. 

5. CONCLUSION 

Dynamic strategic theories of Abreu, Pearce, and Stacchetti (1990) have been use- 
ful for qualitative purposes, but quantitative applications require reliable numerical 
methods. This paper presents an algorithm to solve discounted N-player finite-move 
supergames with perfect monitoring and public randomization. We approximate the 
set of equilibrium values with convex sets. This efficient approximation allows us to 
compute both inner and outer approximations of the set of equilibrium payoffs, which 
together produce an error bound. The ease with which we compute an error bound is 
unusual for numerical algorithms, and it is particularly valuable in this context where 
the key set-valued operator can only be shown to be monotone. The examples show that 
computational demands are reasonable given the task of finding all Nash equilibrium 
values. The methods outlined in this paper can be used to approximate the equilib- 
rium value sets of many dynamic problems, as shown in Conklin and Judd (1996) and 
Sleet and Yeltekin (2002a)15 and do so with high accuracy and moderate computational 
costs. 
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