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Summary. We examine a multistage model of an R&D race where players have 

multiple projects. We also develop perturbation methods for general dynamic games 
that can be expressed as analytic operators in a Banach space. We apply these per 
turbation methods to solve races with a small prize. We compute second-order 

asymptotically valid solutions for equilibrium and socially optimal decisions to 

determine qualitative properties of equilibrium. We find that innovators invest rel 

atively too much on risky projects. Strategic reactions are ambiguous in general; 
in particular, a player may increase expenditures as his opponent moves ahead of 

him. 
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1 Introduction 

Innovation processes are important for economic growth and has been the subject 
of much study. The early work of Kamien and Schwartz, summarized in Kamien 

and Schwartz (1982), concentrated on the decision-theoretic problems associated 

with innovation and lead to the study of equilibrium of competition in innova 

tion contained in Loury (1979) Lee and Wilde (1980), Reinganum (1981-1982), 
and Dasgupta and Stiglitz (1980a,b). These analyses examined one-shot innovation 

processes 
- as long as no competitor won, all competitors were equal. Also, they 
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674 K. L. Judd 

assumed that there was just one available innovation technology. More recently, 

Fudenberg et al. (1983), Lee (1982), Telser (1982), and Harris and Vickers (1985) 
examined multi-stage games. Bhattacharya and Mookherjee (1986) examine allo 

cation of innovative effort across alternative projects in a one-shot, simultaneous 
move game. However, the specifications of R&D processes used in those models 
were limited for reasons of tractability. 

This paper has two purposes. First, we examine the equilibrium of a race for a 

prize where each of two agents controls independent R&D projects. At each mo 

ment, each agent works to advance his own state of knowledge while knowing that 

of his opponent. The race ends when one of the firms has achieved a critical state 

of knowledge, here called "success." There is a social gain realized at that time and 
some of that gain is paid to the winner as a prize. This model is intended to be a 

stylized representation of a multi-stage R&D race, and we use it to address ques 
tions concerning firms' strategies and the allocation of resources across alternative 

investments. 

Second, we use approximation techniques to precisely examine the nature of 

the subgame perfect equilibrium in some cases of our game. Global closed-form 

solutions to our general model are not known. The approximation techniques used 

below provide precise answers to interesting questions for an open set of games. 
While such an approach does not yield a global resolution of the issues, it does 

provide guidance as to what is true in some cases and points out the critical factors. 

The presentation of this analysis is itself a second independent purpose of this paper 
since it represents a general way to analyze subgame perfect equilibria of dynamic 

games without imposing economically unmotivated restrictions on critical model 

elements. 

Even though this paper uses perturbation methods to analyze only multistage 
R&D races, the methods are quite general since they are based on a version of the 

implicit function theorem for analytic functions in Banach spaces. The perturbation 
methods described below can be used to solve many other dynamic games with state 

variables. We introduce the technique using R&D games since the application is 

clear and not excessively encumbered with complex notation. Budd et al. (1993), in 

independent work, also presented a perturbative analysis (using different asymptotic 

theorems) of a different dynamic game. These papers are just a couple of examples 
of the potential of perturbation and asymptotic methods for economic analysis. 

Other numerical methods, such as those presented in Judd (1992), could be used 

to solve our R&D game. For example, Doraszelski (2002) uses projection meth 

ods from Judd (1992) to solve a generalization of Reinganum (1981). Perturbation 

methods and projection methods are complementary and both have a role. Per 

turbation methods need not make functional form assumptions and the results are 

theorems about an open set of cases, but that set may be small and not include some 

empirically interesting cases. Numerical procedures, such as projection methods, 
can examine a much more varied range of cases of a model but must make func 

tional form assumptions, can examine only a finite number of instances, and suffers 

from numerical error. In general one would like to use both methods when studying 
a general model. See Judd (1997) for a more extensive discussion of the trade-offs 

between perturbation and alternative numerical methods. We focus on perturba 
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tion methods in this paper and the kind of qualitative results such an approach can 

produce. 

Specifically, we find that if the prize to the innovator and the net social benefits 

are "small" (in a sense specified below) the model yields several results. First, if 

the prize equals the benefits, there is excessive innovation effort, a result common 

to innovation models of this nature. Second, since agents can be at differing levels 

of knowledge in our model, we would like to compare the relative efficiency of 
resource allocation across firms. We find that lagging firms are less efficient in that 

if there is to be a momentary subsidy of innovation effort, the first dollar of such a 

subsidy should go to the leading firm. 

Since agents choose how to allocate resources across projects of varying riski 

ness, we examine the allocative efficiency of investment within firms. We find that 

there is relatively excessive investment in the riskier projects. We also want to know 

how each innovator reacts to his rival's advances. We find that if one firm advances, 
the other will surely increase its effort in risky projects, a movement contrary to 

the socially optimal reaction. However, we find that he may increase or decrease 

effort in less risky projects. This contrasts with the arguments in Fudenberg et al. 

(1983) and Harris and Vickers (1985) which find that each firm's effort is a de 

creasing function of his opponent's position. This finding shows that the special 

assumptions used in previous multistage models are critical for their results, and 

that some of their results do not hold up in general. This is a good example of how 

the perturbation method can find results missed by methods relying on closed-form 

solutions. 

We also use this model to examine the nature of optimal R&D policy. First, 
we find that, in spite of the relative inefficiency of the lagging firm, it is optimal to 

let competition continue until some firm enjoys complete success. Second, we also 

find that the optimal prize asymptotically equals the social benefit when the social 

benefit is small. 

Some of our results hold because the multi-stage nature of the game disappears 
if the prize is small. However, other features, particularly the nature of firms' re 

actions and the risk allocation decisions, are related critically to the multi-stage 

subgame perfect nature of our analysis. This indicates that we have successfully 

peeked into the nature of subgame perfect equilibrium in innovation races. Fur 

thermore, we indicate how other approximations could be carried out, showing 
that the perturbation approach does not rely on the small prize assumption. The 

only requirement for the application of the approximation techniques used below 

is some example with a known closed-form solution. Since the key theorems and 

techniques are general, it is clear that our perturbation approach to closed-loop 

subgame perfect equilibrium analysis is of general applicability for game-theoretic 

analysis of dynamic strategic interaction. 

Some of the features of our analysis will initially appear odd. In particular, 
we assume that the prize and social benefits are small, and we examine second 

order terms of a Taylor series expansion instead of the more common linear terms. 

However, neither feature negates the usefulness of the perturbation approach. Per 

turbation analysis is often based on a degenerate case, particularly in the physical 
sciences where perturbation methods are commonly used. For example, the Ein 
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stein equations of general relativity theory are generally intractable. However, many 
of that theory's powerful implications, such as gravitational radiation, have come 

from computing the high-order terms of power series solutions to the general rela 

tivity field equations around the case of a universe with no matter and no gravity. If 

physicists find nearly empty universes to be informative then the case of zero prize 
in R&D races should be informative for economists. This kind of "nearly degen 
erate" approach combined with first-order approximations has often been useful in 

economics. In macroeconomics, we often implicitly assume that shocks are nearly 
zero and use linearizations of dynamic systems around their steady states to exam 

ine dynamic stochastic economies. In public finance, we often implicitly assume 

that taxes are nearly zero and say that the excess burden of a tax is proportional to 

the square of the tax rate. The usefulness of high-order approximations around the 

case of a zero prize will be apparent below. 

Section 2 describes the general model and compares it with the multiperiod 
models of Fudenberg et al. ( 1983), Lee ( 1982), Telser ( 1982), and Harris and Vickers 

(1985). Section 3 gives an overview of the approximation technique which we 

utilize below and Section 4 demonstrates it in detail for a useful special case. 

We then examine the nature of our problem for the case of a small net social 

value, discussing in Section 5 the social optimum and in Section 6 the competitive 
outcome. Section 7 compares the optimum and equilibrium outcomes and Section 

8 examines some implications for optimal social policy given rivalrous innovation. 

Section 9 discusses the relation of our analysis with other approaches, arguing that 

our approach gives a method to generalize solutions to problems which generate 
closed-form solutions. Section 10 concludes. 

2 A multistage model of a race 

We investigate a simple model of multi-state innovation with two firms. Competition 
takes the form of a race. The position of each firm is denoted by a scalar with firm 

one at x < 0 and two at y < 0. Success is defined by one firm crossing 0; therefore 

we assume x and y are initially both negative and that the current state of the race, 

(x, y), is represented by a point in the third quadrant of the plane. A firm can attempt 
to improve its position by investments which determine the probability of jumping 
to a better state of knowledge. 

Jumps occur in two ways. There are partial jumps which will move a firm 

closer to the goal. If firm one (two) is at point x < 0 (y < 0) and invests at 

rate u (v) on partial jump investment, then there is a partial jump with probability 
udt (vdt) during a dt time interval. If a partial jump occurs, there is a probability 
of F(x)dt (G (y) dt) of hitting 0 and otherwise there is a probability of f(s, x)ds 

(f(s,y)ds ) of landing in the interval (s,s + ds), s < 0. We assume that the 

distributions of the partial jumps are ordered by first-order stochastic dominance, 
that is, if x' > x, then f(s, xf) first-order stochastically dominates f(s, x). We 

assume that / is bounded above and there are no moves backwards; hence, if s < x, 

then f(s, x) 
= 0. Note that F(x) 

= 1? i Q. f(x, a)ds. F(x) is increasing in x, 

by the stochastic ordering of / in x. We also assume that F is positive everywhere; 
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this says that there is always some chance of jumping to the finish from any state 

x. Our procedures could handle the more general case, but at substantial notational 

cost and little substantive gain. 
There are also leaps from x (y) to 0. If firm one (two) is at point x < 0 (y < 0) 

and invests at rate w (z) on leap investment, then firm one (two) leaps to x = 0 

(y 
= 0) with probability wG(x)dt, (zG(y)dt) during a time interval dt. The leaps 

will be called more risky since whenever investment is such that leaps and partial 

jumps have the same expected jump, the expected gain in the value of any convex 

function of position is greater for leaps. For the sake of simplicity, we assume 

square cost functions. That is, firm one's costs and the social costs associated with 

its choice of u and w are au2/2 + ?w2/2, where a, ? > 0. The costs associated 

with firm two's choices equal av2/2 + ?z2/2. The first firm to succeed receives a 

prize of P, with no prize for the loser. We assume that the social benefit from any 
success is B > 0 and that p > 0 is the social and private discount rate. 

This model differs from earlier multi-stage models in substantial ways. In Lee 

(1982) and in Telser (1982), a firm may pull away in the sense that it may achieve 
an increasingly superior cost structure, but the leading firm has no advantage in 

achieving any other low level of costs. In this model, a firm may pull away from 

its competition and final success is easier to achieve the more advanced it is. The 

ability to pull away and attain some dynamic advantage is present in models an 

alyzed in Fudenberg et al. (1983) and in Harris and Vickers (1985) but they both 
assume very special structures for innovation costs and limit the investment choices 

of innovators. In particular, innovation is a natural monopoly in Harris and Vick 

ers' model in that society would only want one innovation project commanding 
resources, a feature which limits the ability to address issues in patent policy and 

the structuring of incentives for innovation. Under our assumptions, however, there 

is a social value to having resources allocated to each innovation project since the 

marginal cost of effort is zero when the effort level is zero for each project. 
Both Fudenberg et al. (1983) and Harris and Vickers (1985) focus on conditions 

under which a firm will surely win the patent race once it has any small advantage 
over its competitor. The information lag model studied in Fudenberg et al. paper 
is closely related to our model. In both models no firm knows what the other firm 

is currently doing, but both know the position of its opponent at the beginning of 

each period. The models differ in that the state of each firm responds stochastically 
to his efforts whereas Fudenberg et al. assume a deterministic response. They also 

make an increasing cost assumption concerning the relationship between effort and 

progress, but must make restrictive assumptions to render the analysis tractable. 

All previous dynamic models have assumed only one kind of research invest 
ment. By permitting alternatives of varying riskiness, we can compare the relative 

allocation of resources among projects of varying riskiness. Finally, we also deter 

mine how relative efficiency of the two firms is related to their relative position, 

finding that the lagging firm is less efficient. We address the issue of when a compe 
tition should be ended and a winner granted the monopoly right to the innovation, 
a question previously ignored. 

This general model can be used to address several issues in the economics of 
races. Before analyzing our model we will first present our approximation approach. 
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3 Banach space approximations 

The model described above is far too general to hope for a closed-form solution. 

Nor will the structure be sufficiently tractable so as to allow for comparative static 

analysis as in previous work. We will instead use basic approximation techniques 
to study our general model for cases near some tractable case. This section reviews 

the basic mathematics underlying our approach and discusses its usefulness. 

The primary tool used below is the generalization of Taylor's theorem and the 

Implicit Function theorem in R to Banach spaces. Taylor's theorem for a real-valued 

function over R, says that if f(x; z) is Cn+1 in x on [0, b] for all z, where we think 

of x as the variable in R and z as a parameter, then for any z and any x G (0, b) 
there is a ? G (0, x) such that 

k=o 
' 

v "r ; 

This states that the n-th degree polynomial in Taylor's Theorem is an o(xn) ap 

proximation of f(x; z) for x near zero. In particular, properties such as positivity 
and convexity which hold for this approximating polynomial near zero also hold 

for f(x;z) when x is near zero. 

Since equilibria in our games will be expressed as a collection of functional 

equations of the equilibrium strategies, we will use the Implicit Function Theorem 

to compute equilibria for games close to games for which solutions are known. 

Generally, the Implicit Function Theorem states that / can be uniquely defined 

ffor x near zero by the equation H(x, f(x); z) 
= 0 if #i(0, /(0); z) exists and 

#2(0, /(0); z) is invertible. This allows us to implicitly compute the derivatives of 

/ with respect to x as a functions of x and z, leading to a polynomial approximation 

for/. 
However, our strategies are not going to be vectors of real numbers, but rather 

functions of the state variable, objects from infinite-dimensional spaces. It is nec 

essary, therefore, to first introduce some terminology from nonlinear functional 

analysis and state the generalized Implicit Function Theorem for functions and 

power series over Banach spaces. Suppose that X and Y are Banach spaces, i.e., 

normed complete vector spaces. A map M : Xh ?> Y is k-linear if it is linear in 

each of its k arguments. It is a power map if it is symmetric and /c-linear, in which 

case it is denoted by Mxk = M (x, x,..., x). The norm of M is constructed from 

the norms on X and Y, and is defined by 

||M||= sup \\M(xi,x2,...,xk)\\ 
||xi|| 

= l, ?=1,2,...,fc 

For any fixed xq in X, consider the infinite sum in Y : 

00 

Tx = 
YlM^x-xo)k 

fc=i 

where each of the M& is a fc-linear power map from X to Y. When the infinite 

series converges, T is a map from X to Y. It will be convenient to associate a real 
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valued series, called its majorant series, with T 

oo 

Y^\\Mk\\\\x 
- 

xQ\\k 
k=0 

The important connection between the power series for T and its majorant series 

is that T will converge whenever its majorant series does. 

Definition 1. T is analytic at xo if and only if it is defined for some neighborhood 

ofxo and its majorant series converges for some neighborhood ofxo. 

With these definitions, we can now state the analytic operator version of the 

Implicit Function Theorem. 

Theorem 2. Implicit Function Theorem for Analytic Operators: Suppose that 

OO 

F(e,x)= J2 znMnkxk (1) 
n,k=0 

defines an analytic operator, F : Z7(0,0) C R x X ?? Y, where ?7(0,0) is a 

neighborhood of(0,0) in R x X. Furthermore, assume that F(0,0) 
= 0 and that 

the operator Mqi : X ?? Y, representing the Frechet cross-partial with respect to 

x at (0,0), is invertible. Consider the equation 

F(e,x(e)) = 0 (2) 

implicitly defining a function x(e) : R ?> X. The following are true: 

1. There is a neighborhood, V, ofO G R, and a number, r > 0, such that (2) has 
a unique solution of\\x\\ < r for each e G V. 

2. The solution, x(e), of (2) is analytic at e = 0, and, for some sequence ofxn in 

X, can be expressed as 
oo 

x(e) = 
^2xnen (3) 
n=l 

where the coefficients xn can be determined by substituting (3) into (I) and 

equating coefficients of like powers ofe. 
3. The radius of convergence of the power series representation in (3) is no less 

than that of the analytic map, z(e) : R ?? R, defined implicitly for some 

neighborhood ofO by 
oo 

0= J2 zn \\Mnk\\ z(e)k (4) 
n,k=0 

Furthermore, for some sequence zn of real numbers, 

oo 

z(e) = 
Ylenzn 

n=0 

represents the solution to (4) and \zn\ > \\xn\\. 
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Proof See Zeidler (1986). D 

The actual execution of the mathematics in Theorem 2 turns out to be elementary 
since our task is reduced to recursive computation of xn terms. The term-by-term 

approach alluded to in item 2 in Theorem 2 will be illustrated in the next section. 

However, we should first discuss the value of such an approximation approach. 
Our objective below is to apply it to examine subgame-perfect equilibria in our 

model. In most of the analysis below, we will express equilibrium strategies and 

values as functions of the prize, P, social benefit, B, and the position, (x, y) and 

examine approximations for them around the case of a zero prize and no social 

value. At first blush, approximations based on such cases may appear useless since 

the case of a zero prize is degenerate. A number of considerations justify the effort 
and indicate the general value of this approach. 

First, the approximations can provide counterexamples to conjectures. Suppose 
gi (P) and g2 (P) axe functions of interest, and it is initially conjectured that pi (P) > 

g2(P). If we can show that g\(0) 
= 

g2(0) and g[(0) < g'2(0), then there must be 
an interval of P > 0 where g\ < g2, contradicting the conjecture. This in fact will 
occur below when we discuss equilibrium reaction functions. 

Furthermore, suppose g\ depends on some function F, i.e., gi(P;F). More 

generally, one could identify conditions on F which lead to the "g\ > g2" conjecture 

failing. In models of dynamic competition, we often make special assumptions 
about the functional form of such F's. After deriving our results, however, we 

usually don't know exactly what general feature of the functional form was crucial. 

Our approach below will find exactly what features of all structural elements are 

critical for any results for the case of a small prize. Whenever the intuition gathered 
from such an analysis does not depend on P being nearly 0, then we have perhaps 
discovered a robust feature of the model. Generally, we study such approximations 
not because they are valid for nearly degenerate cases, but rather that they likely 
indicate patterns which continue to hold more generally. 

Second, any analytical investigation of this model must focus on cases which 
are degenerate in some ways. Note that the models of Lee and Wilde, Reinganum, 
and Fudenberg et al. are all special cases of this general model (or some slightly 
different general model) which are degenerate in some dimension. For example, Lee 

and Wilde, and Reinganum implicitly assume that the success probability function 

G(x) is independent of the position x, making position irrelevant. Also, F(x) is 

essentially absent in their models, as if a were infinite. Each of these special cases 

are of interest despite their degeneracies. However, if we are interested, for example, 
in a precise look at how innovators react to each other's successes, it is valuable to 

look at cases in which there are as few unmotivated restrictions on the underlying 
stochastic structure as possible. It is unfortunate that we may have to assume a 

small prize, but that is the price we pay here to attain this particular goal. Finally, 
the technique that is exploited below can be used generally to develop a robustness 

analysis for all the special cases studied previously. 
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4 An example: the case of a single firm 

In this section we analyze the case of a single firm. This will illustrate the analysis 
used below and will also be used later when we examine the optimal stage at which 

to end the race. Also, to cut down on inessential clutter, we will examine here only 
the simple case when ? is infinite. The general solution will be displayed at a later 

point. 

The case of a single innovator is a dynamic programming problem. If M(x) is 

the value of position x to the firm, then the Bellman equation for M is 

f au 
M(x) 

= max <-? dt + M(x)(l 
- 

pdt) (1 
- 

udt) (5) u 
[ 2 

+(1 
- 

pdt)udt ( / M(s)f(s, x)ds) j 
+ udtPF(x) i 

where dt is the infinitesimal unit of time.1 The individual terms of the maximand 

represent the expected value of innovative effort. If the rate of effort is u, R&D 

expenditures during dt equal 
? 

(l/2)au2dt. With probability 1 - udt there will 

be no success, implying that the state of knowledge dt units of time in the future 

will remain x and the value will remain M(x). The current unconditional expected 
value of that event is (1 

? 
pdt)(l 

- 
udt)M(x). With probability udt there will 

be a jump to some s G (x, 0]. If x jumps to 0, an event with probability F(x) 
conditional on a jump occurring, the immediate reward is P. Since the reward is 

immediate, no discounting occurs. If x jumps to a point x' G (s, s + ds), an event 

with a conditional probability of f(s, x)ds, the value becomes M(s) in the next 

period. In the foregoing, Jx 
- - ds will represent L 0\ ds, thereby ignoring 

the atom at x = 0. We use this notation to distinguish reaching an intermediate 

stage from that of winning. Equation (5) therefore states that the value of a position 

equals the maximum expected current value of future positions net of current costs. 

Solving the maximization problem in (5) shows that 

J X 
au= M(s)f(s, x)ds + PF(x) 

- 
M(x) (6) 

Jx 

Substituting this first-order condition into the control equation yields 

0=^-( f M(s)f(s,x)ds + 
PF(x)-M(x)) -pM(x) (7) 

By standard dynamic optimization methods, there exists a unique such M. 

We cannot generally find a closed-form solution for M in (7). We will instead 

use Theorem 2 to give us precise information about M for any F and an open set 

of values for P. Note that this fits our discussion above. If we assume that the value 

function M is in the Banach space of real-valued functions on the negative reals 

with the supremum norm, then the RHS of (7) is the sum of a linear and a bilinear 

1 We will employ the intuitive infinitesimal notation of equation (5). All the dynamic programming 

equations can be derived formally, as in Bryson and Ho. 
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operator acting on M and the real parameter P. To proceed in this fashion one 

should examine dimensionless versions of a problem since the concept of "small" 

should not depend on the choice of units. Define m = 
M/P to be the value of 

problem (5) relative to the prize, m is a dimensionless quantity representing the 

value of the game which will yield a substantive concept of small. 

Rewritten in terms of m, (7) becomes the equation 

<[ 
m(x;p)=p[ / m(s)f(s,x)ds + F(x) 

? 
m(x) ) (8) 

where p 
= 

P/2ap is the size of the prize relative to the marginal cost of innovation 

and the cost of capital. Since the dimension of p is (time)-1 and that of a is 

(dollars) x (time), p is dimensionless and will be our measure of the prize. Since 

m, p, f, and F are all dimensionless, (8) is a dimensionless representation of (7). 
When p is zero, (8) yields the obvious solution, m(x) 

= 0. p may be zero either 

because P is zero or because ap, the costs, are infinite. Focussing on p makes clear 

that we are not assuming that the prize itself is small but rather it is small compared 
to the rate of increase in marginal cost. This will imply that the prize is to the first 

order equal to the costs and that the net profits of an innovator are small relative 
to the prize. The interpretation that the prize just covers the opportunity costs of 

innovative activity makes our focus on small p more plausible. 
Once we transform (7) into a dimensionless equation, we also must transform 

other variables of interest; in particular, the control variable, u. However, u is not 

dimensionless since it measures effort per unit of time and depends on the time 

unit. We can rewrite (6) into the dimensionless form: 

? = 
-=2p(? m(s)f(s, x)ds + F(x) 

- 
m(x) j 

(9) 

where u is the dimensionless rate of effort per normalized unit of time. 

We now illustrate computing a local solution to (8). If p = 0, then m = 0. 

Applying the Implicit Function Theorem tells us that m(x; p) is smooth in p for p 
near zero, and that we can approximate m(x; p) for such p up to 0(pn) 

m(x;p) ? m(x;0) + pk\x) + p2k2(x) + ... + pnkn(x) (10) 

where we define kn(x) 
? 

^ ?^ (x, 0). First note that m(x; 0) 
= 0 since a zero 

prize makes the optimal value of the problem zero. 

Differentiating (8) with respect to p and evaluating at p = 0 shows that 

k1(x) 
= 

F(x)2 (11) 

Taking a second derivative of (8) with respect to p, evaluating it at p = 0, and using 
the fact that dm/dp(x; 0) 

= 
kx(x) 

= 
F(x)2, we find that2 

k2(x) 
= 2F(x) ( ? F(s)2f(s, x)ds 

- 
F(x)2j 

(12) 

2 Our notation will be burdened with many superscripts. Superscripts to functional names, as in 

k2(x), will represent distinct functions, and will never represent iteration as in k(k(x)). Superscripts 
to functional evaluations represent powers. Hence, k2(x)3 is the cube of the value of the function k2 

evaluated at x. 

This content downloaded from 128.135.100.108 on Fri, 11 Oct 2013 15:51:58 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Closed-loop equilibrium in a multi-stage innovation race 683 

Continuing in this fashion, one can recursively compute kn(x) for any n justified 

by the known smoothness of m in terms of p. Note that no smoothness of m in x 

need be assumed. 

It is usually quite tedious to do all the differentiation explicitly. A standard trick 

in perturbation analysis is to take the polynomial approximation for m in terms of 

p in (10), insert it into (8), and conduct the algebraic operations indicated in (8) to 

get an approximate polynomial representation of (8). Equation (8) then becomes 

pk1(x)+p2k2(x) + ... = 

pF(x)2 + 
2p2(j 

k1(s)f(s,x)ds)-k\x)) + ..\ (13) 

If we equate terms linear in p in(13), we find that A:1 (x) 
= 

F(x)2. Combining p2 
terms and using the computed solution for k1 demonstrates (12). Continuing in 

this fashion will yield all kn functions. Since this approach yields the terms of the 

Taylor series more efficiently, we will use it below. 

From these expressions we may infer several obvious properties of the optimal 
control for small p. For example, if p is small, effort increases as one is closer to 

the finish. This follows from the observation that the pF(x) term dominates in (9) 
since m is 0(p) implying that u rises as F(x), and hence x, rises. Also, u falls and 

as a and p rise, an intuitive result since both represent costs. Using this approach, 
we next examine the total social optimum when we have two separate projects and 

two firms. 

5 The social optimum 

Let W(x, y) be the social value function when current states are x and y. Then the 

Bellman equation becomes 

W(x,y) 
= max -(?au2 

? av2 ? 
?w2 

? 
?z2)dt 

u,v,w,z 2 

a: 

+udt / W(s, y)f{s, x)ds + BF(x) (1 
- 

pdt) 

+vdt 
(J 

W(x, s)f(s, y)ds + 
BF(y)) 

(1 
- 

pdt) (14) 

+ (wG(x) + zG{y)) (1 
- 

pdt)Bdt 

+(1 
- 

pdt) (1 
- 

(u + v + wG{x) + zG(y))dt) W(x, y) 

The first-order conditions of (14) imply 

au = 
J?W(s,y)f(s,x)ds + BF - 

W(x,y) (]5 
?w = G(x)(B-W(x,y)) 

av and ?z may be expressed similarly. Using the first-order conditions, (15), for m 

and w, and the corresponding conditions for v and z, (14) becomes 

0 = (Ex {W(s, y)} 
- 

W{x, y)f /2a + (Ey {W(x, s)} 
- 

W(x, y)f /2a (16) 

+ (G(x) (B 
- 

W(x, y))f /2? + {G(y) (B 
- 

W(x, y)))2 /2? 
- 

PW{x, y) 
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684 K. L. Judd 

where 

Ex{W(s,y)}= [ W(s,y)f(s,x)ds + BF(x) 
J X 

Ey{W(x,s)}= f W(x,s)f(s,y)ds + BF(y) 

Theorem 3. There exists a unique solution, W(x, y), to the social optimum prob 
lem, and W(x,y) is analytic in B, a, ?, and p. 

Proof. The RHS of (16) is an analytic operator on bounded functions over the 

nonpositive reals. When P = 0, the unique solution is W = 0. Furthermore, the 
cross Frechet derivative, first with respect to P then with respect to W, is ? 

p, which 

is an invertible operator on bounded functions. Therefore, the conclusions follow 

from Theorem 2. D 

We next compute an approximation for W. Suppose W(x, y) 
= 

B(bhl (x, y) + 
b2h2 (x, y) +...) is the approximating series for W around B = 0, which exists by 
the Implicit Function Theorem. We let b = 

B/2ap be a dimensionless measure of 

the social value and 7 = 
a/? be the dimensionless ratio of costs across projects, 

and use them to create a dimensionless representation of W/B. The linear term, 

h1, is computed to be 

h\x, y) = F(x)2 + F(y)2 + 7 {G(xf + G(y)2) (17) 

and the investment rules are approximated to 0(b2) by 

2bF(x) + 
2b2(j 

h1(s,y)f(s,x)ds-h1(x,y)\ (18) 
u 

P 
~ 

*2(b-b2hl(x,y))1G(x) 

and similarly for v and z. The first-order approximations for u and w are as if the 

current hazard rate of immediate success was common to all stages since au ? 

BF(x) and ?w ? BG(x) to 0(B). This indicates that the first-order behavior of 

this multi-stage game at any stage reduces to the behavior of a single-stage game. In 

particular, to a first order, the presence of other projects has no impact on investment 

rules. Intuitively, this is because for small B, effort levels are "small," the probability 
of success for any one project is "small," and by independence the probability of 

success by two projects is "small squared," hence negligible. Therefore, most of 

the interesting multi-stage questions we ask below will require examination of the 

h2 function that appears in the 0(b2) term. 

Straightforward combinations of (17) and (18) prove Theorem 4. 

Theorem 4. For small B, the following hold for the optimal innovation policy: 

1. as x(y) increase, u(v) and w(z) increase and v(u) and z(w)fall; 
2. w(z) is increasing and concave in B; 
3. u(v) is increasing in B but may be convex or concave in B; 
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4. W is increasing and convex in (x, y) ifF(x) and G(y) are convex; 
5. u and v (w and z) are decreasing in p and a(?); 
6. and w and z are decreasing in a. 

Particularly note that, if the two firms were managed in a socially optimal 
fashion, each firm would increase its efforts on both projects as it advances, and 

the other would decrease its effort. Also, the magnitude of these reactions are on 

the order of B2. These features will be substantially different in the equilibrium of 

the R&D race. 

6 Equilibrium of the innovation game 

We next solve for the symmetric subgame-perfect equilibrium of the corresponding 
game. We are implicitly assuming that the current states of both firms are common 

knowledge since if we had assumed that no firm could observe the position of his 

competitor then the open-loop solution would be the correct equilibrium concept. 
While this common knowledge aspect is certainly valid in sports races, it may appear 

awkward here. It asserts that a firm may know how much its opponent knows without 

knowing exactly what its opponent knows. This is not an unrealistic description 
of matters in knowledge-intensive activities. Academics, for example, should not 

be uncomfortable with this assumption since they often judge colleagues' relative 

levels of knowledge about a subject without having an equivalent level of expertise 
in the area. In sum, we are assuming that firms may determine their relative positions 

without actually having access to each other's knowledge. 
Let V(x,y) represent the value to firm one of state (x, y). We will examine 

symmetric equilibria, implying that V(y, x) will represent the value to firm two of 

state (x, y). We also limit our examination to equilibria which depend only on the 

current state of the game. The Bellman equation for firm one is 

V(x, y) = max {- (au2?2 + ?w2/2) dt + wG(x)P(l 
- 

p dt) dt 
u,w 

+udt(f V(s,y)f(s,x)ds + PF(xU(l-pdt) (19) 

+vdt( V(x,s)f(s,y)dsj(l- pdt) 

+(1 -pdt)(l-(u + v + wG(x) + zG(y)) dt) V(x, y)} 

The first-order conditions from (19) allow us to express firm one's strategy in 

terms of the value function: 

au(x, y) = 

j 
V(s, y)f(s, x)ds + PF(x) 

- 
V(x, y) (20) 

?w(x,y) = (P-V(x,y))G(x) 
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By symmetry, the strategies of firm two are 

(x,y)= [ V(* 
>y 

av{x,y) = V(s,x)f(s,y)ds + PF(y)-V(y,x) (21) 
Jy 

?z(x,y) = (P-V(y,x))G(y) 

Equilibrium is characterized by substituting the equations for strategies into the 

Bellman equation, which then reduces to 

? = 
? (/ 

V{S'y)/(S'X)ds + PF{X) ~ 
V{X'y)) 

+ 
^(P-V(x,y))2G(x)2 

(22) 

+ -( I V(s, x)f(s, y)ds + PF(y) 
- 

V(y, x) 
-K/> 

(f 
V(x,s)f(s,y)ds-V(x,y) 

,t|f-f|';lw>i,,) 
Theorem 5. There exists a P > 0 such that for P G [0, P], there is a unique 

symmetric subgame perfect equilibrium V(x, y), which is analytic in P, a, ?, and 

p, and represented as a solution to (22). 

Proof. Same as Theorem 3. D 

Theorem 5 is a strong result, but one which fits the focus on equilibria which 

depend on only the current state. Implicitly, we are ruling out equilibria where 

current actions depend on past history. This eliminates some reputation effects, 

trigger strategies, and other phenomena which can support implicit collusion in such 

infinite-horizon dynamic games. This is reasonable in the case of leap investment 

since such investments are unobserved and any cheating could be inferred only 
when a leap occurred, which would be too late. Some implicit collusion in partial 

jump investment may be possible since, as long as neither had won, each could 

infer cheating if the other seemed to be moving too quickly. The uniqueness result 

in Theorem 5 does not rule out the existence of reputational equilibria since it just 

says that there is a unique function V (x, y) that is analytic in (x, y) and solves the 

equilibrium equations for small P. 

Suppose V(x, y) 
= 

P(pgl (x, y) -\-p2g2(x, y) + ...) is a Taylor series approx 
imation of V(x, y) for small p. By Theorem 5, such a representation exists and is 

unique for small p. Even though (22) is not expressed in p, it can be straightfor 

wardly rewritten so that V/P, the dimensionless value of the game, depends on 

P, a, ?, and p only through p and the dimensionless ratio 7 = 
a/?. By substituting 
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Closed-loop equilibrium in a multi-stage innovation race 687 

this representation for V in (22) and equating coefficients of like powers, we find 

g1(x,y) = F(x)2+7G(x)2 

g2(x, y) = 2F(x) 
(J 

(F(s)2 + 7G(s)2)/(s, x)ds 
- 

F(x)2 
- 

jG(x)A 

-2(7G(x)2+7G(y)2 + F(2/)2) (F(x)2 + jG(x)2) (23) 

The equilibrium strategies are therefore approximated to 0(p3) by 

^1^2pF(x) 
+ 

2p2^ g1(s,y)f(s,x)ds~g1(x,y)"j 
+2p3 

(J 
g2(s, y)f(s, x)ds - g2(x, 

y))) 
(24) 

^^ 
? 2tp(1 -pg\x,y) -p2g2(x,y))G(x) 

and similarly for v(x, y) and z(x, y). This solution and its approximation now allow 
us to compare equilibrium with the social optimum and evaluate the competitive 

equilibrium allocation of resources. 

7 Comparisons of the optimal and equilibrium outcomes 

We next will compare the levels of innovative activity under social control with those 

levels in the game equilibrium. If P = B, the difference between innovative effort 

under competition, uc, wc, and the socially optimal levels, us, ws, is expressed, 

upto0(p2),by 

p-\us 
- 

uc) ? -2p2 (F(y)2 + 7G?/)2) F(x) (25) 

p-\ws 
- 

wc) ? -21P2 (F(y)2 + 7G(y)2 + 7G(y)2) G(x) (26) 

The difference between firm two's choices, vc and zc, and the optimal controls vs 

and zs, are similarly expressed. First note that there is excessive investment in all 

projects under competition, a conclusion common in these models. The excess is 

greater as either firm is closer to success. Also the excess investment relative to the 

socially optimal investment increases for each firm as the other firm is closer to 

success. These results are expected since each firm ignores the social value of the 

other's presence in the innovation process. 

We also note that it is not clear which firm is more excessive in R&D investment. 

If Euv is the difference, (uc 
? 

us) 
? 

(vc 
- 

vs), between the two competitor's 
excessive investment in their partial jump processes, then 

Euv/ {2pp2) ? F(y)F (x) (F(y) 
- 

F(x)) + 7 (G(y)2F(x) 
- 

G(x)2F(y)) 
to 0(p2). If there are no leaps, then G = 0 and Euw < 0 if x > y, that is, the 

laggard's investment is more excessive than the leader's. This holds also if the leap 
and partial jump processes are sufficiently similar, in particular if G = XF for some 
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? > 0. However, if F (y) is small but G(y) is not, then Euw > 0, and the leader 

invests more excessively in partial jumps. 
In relative terms, however, we can be more precise since 

V^^^p(F(y)2+1G(y)2) 
(27) 

is increasing in y. (wc 
? 

ws)/ws is similarly found to be increasing in y. The 

dependence of vc 
? 

vx and zc 
? 

zs on x are symmetrically expressed. Therefore, 

the laggard's excess investment in both partial jumps and leaps expressed as a 

fraction of the socially optimal investment is greater. Theorem 6 summarizes these 

comparisons. 

Theorem 6.IfB is small and P = B then 

uc ? Us Ve ? Vs wc ? ws sc ? zs - 
> 

- 
and 

- 
> 

- 

Us Vs ws zs 

if and only ifx<y. 

These comparisons do not necessarily say anything about the efficiency of 

resource allocation given that there is competition. For example, in deciding whether 

to subsidize the current leader a social planner should consider its impact on the 

future nature of the distorted allocation of resources due to the competition. We 

next address this issue for the case P = B. 

If P = B, the social value of the game is V(y, x) + V(x, y) since all benefits 

of innovation are appropriated by the firms. At any position, the net social marginal 
values, NSMVU and NSMVV, of u and w per dollar of expenditure equal the ratio 

of the net contribution to the social value and the marginal cost: 

f?V(y,s)f(s,x)ds-V(y,x) 
NMSVu = n Jx Ky )JK }-K-^-1 

?l V(s, y)f(s, x)ds + PF(x) 
- 

V(x, y) 
(28) 

NSMVW = 
-/{l)X , 

P-V(x,y) 

where we use (20) to simplify expressions. Using our expansion for V(x, y), (28) 

implies that, as p converges to 0, 

p-1 NMSVU ? -gl(y,x) 
= 

~F(y)2 
- 

iG(y)2 
p~lNMSVw ? -F(y)2 

{^> 

Symmetric expressions for NMSVV and NMSVZ hold. If x > y then F(x) > 

F(y) and G(x) > G(y), implying that NMSVZ < NMSVW, and NMSVV < 

NMSVU. Therefore, the social value of more investment in either project is greater 
at the leading firm, even when we consider the distortions implicit in the competi 
tion. 

Theorem 7. If P = B and P is small, social welfare at any stage would be 

increased by shifting innovation effort from the laggard to the leader. That is, if 

(x, y) is the current state and x > y, V(x, y) + V(y, x) is increased ifu(x, y) is 

increased and w(x, y) is decreased, and similarly for z(x, y) and w(x, y). 
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Theorem 7 shows that any small temporary subsidy/tax scheme which reallo 

cates effort towards the leader is socially desirable since combinations of subsidies 

and taxes can induce such a switch and the objective of V(x, y) + V(y, x) ignore 

any redistributive component of such a policy. Therefore, in this limited sense, 

policy should favor the current leader over the laggard. 
Another interesting issue which we can address in this model is that of the 

efficiency of the allocation of resources between the risky leaps and the less risky 

partial jumps. The social efficiency of the portfolio choice by firm one is determined 

by comparing the net social marginal values of u and v. NSMVU > NSMVW iff 

gl(x,y) 
- 

Jx g1(s,y)f(s,x)ds < F(x)g1(x,y) which is true since gl(x,y) is 

increasing in x. Hence, there is an excessive share of resources allocated to the 

"risky" project. To get an intuitive grasp on this result, we should compare the 

social valuation of the intermediate stages with the equilibrium valuation by firm 

one. Since the difference between g1 and h1 is independent of x, we need to compare 

g2 with h2 to study differences relevant for one's portfolio choice between u and w. 

Straightforward manipulation of the expansions for V and W shows that, ignoring 
terms which are of o(P3), 

V(x, y)-W(x, y) ? 2p2 (F(x)2 + lG(x)2) (F(y)2 + 7G(y)2) P+Z(y) (30) 

where Z(y) depends only on y. Therefore, V - W is increasing in x for small p. 

First, this implies that investment is even more excessive than indicated by p2 terms 

since the gap between social and private values of R&D is increasing at 0(P3). 
Second, it indicates a bias towards risky R&D projects. Since this excess increases 

in x, those projects which are more likely to yield big jumps, holding the expected 

jump constant, will find their private value to be more excessive relative to their 

social value. 

Theorem 8. If P ? B and P is small, social welfare would be increased if re 

sources were shifted from the risky R&D projects to the less risky projects. 

The last comparison we will make is between the optimal and equilibrium 
reactions of firms to each other's partial successes. Before using our approximations, 

note that our expression for firm one's equilibrium choice of w in equation (20), 
differs substantially from the expression for the social choice in equation (15), 

despite their formal similarity. In (15), it is clear that the optimal choice of w falls if 

the social value of the social position (x, y) increases but x, the position of firm one, 
remains unchanged. In particular, an advance in firm two's position will increase 

the social value, and hence lead to a reduction of expenditure at firm one on the 

leap investments. In (20), we find that expenditure on w will rise as the value of the 

game to firm one falls, which is the expected response to an advance by firm two. 

Hence, if the social and private value functions vary with position in the intuitive 

fashion, firm one will increase leap investments in response to an advance by firm 

two, even though the socially optimal response would be a reduction in effort. 

Proving these conjectures globally would be quite difficult given the nonlinear 

nature of the expression for the equilibrium value functions. However, our approx 

imations will immediately confirm them. Since g2(x, y) is independent of y, the 
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dependence of u and w on y for small P, is determined by the dependence of g3 
on y, and is summarized in 

p-1uc = ... + 2p:i(F(y)2 + jG(y)2) (31) 

x([ (F{s)2 + ~fG{s)2) F{s, x)ds 
- 

F(x)2 
- 

7G(x)2' 

p~lwc = ... + 27p3 {F(y)2 + 7G(?/)2) (F(x)2 + jG(x)2) G(x) 

where we have displayed all terms of 0(p3) that depend only on y. 

Theorem 9. IfP 
= B and P is small, 

0 < 
duc 

dy 

dus 

dy 

dwc dws 

dy dy 
' 

that is, firm one's equilibrium reactions are less than the optimal reactions in 

magnitude. Furthermore, duc/dy is always positive and dwc/dy is of ambiguous 

sign. Symmetric results for firm two hold. 

Proof. The comparisons of magnitude follow from the fact that duc/dy is 0(p3) 
by (31) but dus/dy and dws/dy are 0(p2) by (18). The sign conditions for wc 

and zc follow from (31). If F(s) and G(s) are large relative to F(x) and G(x) 
for s > x, then the integral in (31) dominates and duc/dy > 0. However, if 

F(s) ? F(x)mdG(x) ? G(x)fors > x,thm?*(F(s)2+ ^G(x)2)f(s,x)ds ? 

(F(x)2 + lG(x)2) (1 
- 

F(x)) and duc/dy < 0 in (31). D 

In comparing the dependence of strategies on the positions of the firms, first 

note that there is no reaction of one firm to another's position to 0(p2). Hence, the 

equilibrium reactions of the firms to each are smaller than the optimal reactions. 

Furthermore the direction may be wrong. In the case of leap investment, the reaction 

will always be in the wrong direction. This is intuitively seen from (20): we expect 
that as firm two advances, the value of the game to firm one, V(x,y) decreases, 

thereby raising firm one's choice of w. In the social control case, the value increases 

as firm two advances, reducing the social choice for w. 

However, the reaction of u is ambiguous. The reaction of a partial jump's control 

to the other firm's movement depends on just how different the stages are. If the 

stages are similar in that the probability of winning immediately per unit of effort 

with a leap, G(x), or partial jump, F(x), is nearly as large at x as at any later 

stage, then u will fall. On the other hand, if later stages have substantially greater 
likelihoods of getting one to success, then a firm's effort in partial jumps may 
increase as its opponent moves ahead. In the latter case, the improvement in the 

opponent's prospects prompts one to work harder, as if one must either work hard 

or concede the race. Also note that if a mean preserving spread in the probability 

weights f(s,x) will increase the likelihood of a perverse reaction for u since the 

integral in (31) has a convex integrand. 
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This result about the reaction of u differs substantially from previous papers. 

Fudenberg et al. (1983) and Harris and Vickers (1985) make very specific assump 
tions about the R&D process and arrive at more definitive results. They made 

special assumptions since they were necessary to arrive at conclusions given their 

approach. The perturbation approach used here can handle models that are much 
more general in many dimensions. Of course, we assume that the prize is small, 
a loss of generality. The perturbation method does not uniformly dominate alter 

native analytical approaches, but the results here show that it can investigate new 

territory. 
At this point we should expand on the appropriate interpretation of our juggling 

of these various orders of magnitude. For example, the fact that the reaction of uc to 

y is zero at 0(p2) and possibly nonzero only at 0(p3) does not imply that reactions 

are generally unimportant and uninteresting when compared to the effects which 

show up at 0(p2). In fact, in many games where reactions are generally important 
we would find that, as the payoffs go to zero, the reactions go to zero faster than other 

elements of equilibrium strategies. Only for nearly degenerate games does the order 

reflect the relative importance of various effects. Since our objective is to gain more 

general insight, we make no comparisons. On the other hand, one cannot infer that 

an 0(p3) effect will eventually dominate any 0(p2) effect since other, even higher, 
orders also contribute. Our goal in these calculations is to sign various effects and 

determine the critical structural elements for an open set of games, hoping to elicit 

general qualitative insights about the nature of the subgame equilibria. Arguments 
which mix various orders of magnitudes are either illegitimate or focus too tightly 
on the small p nature of the analysis. 

8 Implications for social innovation policy 

We next examine the optimal values of two parameters of social innovation policy, 
the portion of social benefits to be awarded to the winner and the stage at which a 

patent is to be granted. We will find that when B is small, the difference between the 

optimal P and B is negligible relative to B. This result validates our focus on the 

case P = Bin the previous section since it implies that all those results continue to 

hold for an optimally chosen P. In particular, this shows that the misallocation of 

resources between projects of varying riskiness will not change with an optimally 
chosen P. While these results are not surprising, it is instructive to show how to 

rigorously demonstrate them within our approach. 
Let P = 9B, i.e., 6 is the portion of social benefits of innovation which the 

innovator is allowed to appropriate. We are making the simplifying assumption that 

this allocation of social benefits to the innovator can be made in a nondistortionary 
fashion. In the case of patents this is only valid if demand is inelastic. If a prize is 

awarded, this assumes that it is financed by nondistortionary revenue sources. 

Presumably, 9 is a parameter at least partially chosen by policy markers. Given 

that we found that there was excessive allocation of resources for innovation in 

the equilibrium of the innovation game, the optimal 6 is never unity. Let W again 

represent the social value function except now we make explicit the dependence on 
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9 and B. Then 

W(x, y, 6,B) = - 
[a(u2 + v2) + ?(w2 + z2)} ?dt (32) 

+(1 
- 

pdt) (uF(x) + vF(y) + wG(x) + zG(y)) Bdt 

+(1 
- 

pdt) (1 
- 

(u + v + wG(x) + zG(y)) dt) W(x, y) 

+(l-pdt)(uj 
W(z,y)f(z,x)+v 

j 
W(x,s)f(s,y)ds)dt 

where u, v, and z are the equilibrium policy functions if the prize is OB. 

We can use the characterization in (32) to generate some information about 

the optimal 9, 9*(B), when B is small. 6*(B) is defined by the equation 

We(x,y,6*(B),B) 
= 0 This is not a completely trivial calculation since any 

9 is optimal when B = 0. Therefore we compute 0* (0+), the limit of 0* as B falls 

to zero. 

First, 0*(B) is implicitly defined by W0(x, y, 9*(B), B) 
= 0. For sufficiently 

small B, 6*(B) is continuously differentiable by the Implicit Function Theorem 

applied to the equation We(x,y,9*(B), B) 
= 0, since direct calculation shows 

that Woe is not zero and Wqb exists for B close to zero. Since 9*(B) is optimal 
for the initial position (x,y), 

lim W(x,y,e*(0+),B)-W(x,y,0,B)>0 
B->0+ Bz 

for all 6. Since W(x, y, 9, B) and Wb (x, y, 9, B) both converge to 0 as B converges 
to 0, by l'Hospital's rule (33) equals 

lim WBB(x,y,9*(0+),B)-WBB(x,y,9,B) 
B-+0+ 2 

for all 9. Therefore, WBB(x, y, 0*(O+), 0) 
- 

WBB(x, y, 9,0) > 0 for all 9, imply 

ing that #*(0+) G arg max eWBB(x, y, 9,0) and 

WBBe(x,y,9*(0+),0) 
= 0 (34) 

Direct substitution of the asymptotic equilibrium strategies into (34) shows that 

aPWBB(x,y)=4(6- 62/2) (F(x)2 + F(y)2 + 7 (G(x)2 + G(y)2)) (35) 

which is maximized at #*(0+) 
= 1. Therefore, when the prize is small, the social 

surplus maximizing policy gives nearly all of the social benefits to the innovator. 

Note that this does not contradict our earlier result that innovation is excessive 

whenever the prize equals the benefit, just that the difference between the optimal 

prize and the social benefit goes to zero faster than the social benefit. This is not 

surprising since it just says that the externalities due to the competition over the 

rents fall more rapidly than B as B goes to zero. The primary point of this exercise 

is to illustrate how to determine the limit. 

Second, further expansion of the social value function and application of 

l'Hospital's rule shows that the optimal 9 falls more rapidly as B increases when 
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F(x) and G(x), the probability of an immediate success from the current posi 
tion (assuming the firms begin at the same position), rises. This implies that the 

shorter the race, the smaller should be the winner's share under competition. Since 

the details entail only repeated applications of the foregoing calculations, they are 

omitted here. 

Another crucial aspect of patent policy is the stage at which a patent is granted. 
A patent may be granted before final and complete success is achieved. In fact, in 

the existing patent system, a patent is granted when a description of an invention 

has been completed, before the development stages leading to a workable and 

commercial prototype have been achieved. This may be socially optimal if the 

effort of followers is so excessive and wasteful that it is better to force them out 

of the race, bearing the possible inefficiencies that may result when an innovator 

is given the monopoly early. In our model, this can be modeled by assuming that 

a patent is granted to the first firm which crosses c < 0. If c = 0, the firm must 

complete the project before acquiring a patent worth P. If c < 0, then a firm receives 

a patent at c and may finish development without any competition. 

Proceeding as in the c = 0 case, we find that the equilibrium value function for 

the firms satisfies 

? = 
h (?V^y)f^x)ds^ J M(s)f(s,x)ds+PF(x)-V(x,y)\ (36) 

(JC 
V(s, x)f(s, y)ds + 

J 
M(s)f(s, y)ds + PF(y) 

- 
V(y, x)\ 

/ V(x, s)f(s, y)ds 
- 

V(x, y) j 
- - 

pV(x, y) 

+ v 

x 

where M(-) is the monopoly value function computed in Section 4 with the exten 

sion to two instruments, u and v or w and z. We expand (36) as before for the case 

of a small social benefit and prize. We find that when B is small and P ? B, the 

value of V(x, y) + V(y, x), the social surplus value function, for c < 0 minus the 

value when c = 0 is approximated by 

-F(y) 
j 

g1(x,s)f(s,y)ds-F(x) 
j 

g1(y,s)f(s,x)ds < 0 (37) 

Hence, the major factor is that if c < 0, the contest is ended early and the resulting 
loss in total effort is excessive relative to the cost savings. Note that this strict 

inequality depends critically on our standing assumption that F (x) > 0 for all x. 

Theorem 10 summarizes our findings concerning optimal policy. 

Theorem 10. When B is small, the optimal policy is to award a prize only when 

the race is completely won and the prize should be nearly the entire social value 

of the innovation. Furthermore, the closer the innovators are to final success when 

competition begins, the less should be their share in the social benefit. 

While these conclusions are surely not globally true, we have shown their 

validity for an open set of problems and that contrary conjectures cannot be globally 
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true. More important, we have shown how to address these questions for that set of 

problems. Other exercises, such as the impact of suboptimal innovation resource 

allocation on the optimal prize, can be conducted by straightforward examination 

of the higher-order terms of our expansion for W, the social planner's objective. In 

the interest of space, we leave such extensions to the reader. 

9 Generalizations 

There are many other exercises which could be used to demonstrate the applica 
bility of perturbation methods. We examined one that most clearly illustrates the 

general approach advanced here. To indicate that the perturbation approach is not 

too specialized, we will now discuss some other possible applications. 
All models with closed-form solutions are degenerate in some sense. When 

we use them we hope that the features that these tractable models ignore are not 

important. Perturbation methods can be used to test this presumption. Take, for 

example, the model used by Loury (1979) and Reinganum (1981). While it yields 
closed-form solutions for the quadratic cost specification, it abstracts from the 

possibility of intermediate stages, our focus here. Recall that our model with F and 

G equal to constant functions is exactly that model. To examine the importance of 

intermediate stages on the nature of equilibrium, we could have assumed that F and 

G deviated slightly from constant functions. This alternative would have allowed 
us to determine the nature of equilibrium for arbitrary prize but with only a small 

deviation from the implicit stage-independence assumption sometimes used. 

Another possible generalization is allowing intermediate payments. The per 
turbation analysis conducted above could also allow intermediate payoffs since 

nothing we did used the absence of intermediate payoffs in an essential fashion; 
we focussed on the more simple payoff structure since our purpose was to present 
a robust analysis of the positional dynamics among competitors for one kind of 

race. A more general analysis with intermediate payoffs could generate insights, 
for example, into strategic implications of the learning curve; one approach would 

be to approximate the slow-learning case by knowing the solution to the no-learning 
case. However, we leave such an analysis to another study. 

While this is certainly not an exhaustive list, it shows that perturbation methods 

are useful in examining the robustness of simple models generally, allowing us to 

add otherwise intractable elements to the analysis of a problem. While our analysis 

got started by examining the trivial case of no payoff, generally one can begin 
with any tractable case, making perturbation analysis a generally valuable tool for 

dynamic strategic analysis. 

10 Conclusion 

We have analyzed a simple closed-loop subgame perfect model of multi-stage 
innovation. We found the usual result of excessive innovative effort when the prize 

equals the social value. Under the assumption that the net social value of innovation 

is small, we have also found that there will be excessive risk-taking, that at any 
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moment the following firm is a less efficient innovator relative to the leader, that the 

prize to the innovator should nearly equal social benefits, and that the competition 
should not be ended before one of the competitors has succeeded completely. While 

these results have obvious limitations on their generality, they do tell us that the 

contrary propositions cannot be generally true. While many of the results, e.g., the 

excessive investment when the prize equals the social benefit, follow naturally from 

the fact that these subgame perfect equilibria are close to some open-loop equilibria 
others, in particular the computation of the equilibrium reactions, are specific to 

the subgame-perfect solution. They have therefore given us a peek into the nature 

of subgame perfect equilibrium in such innovation models. 
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