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ABSTRACT 

Trading volume of infinitely lived securities, such as equity, is generically zero in 
Lucas asset pricing models with heterogeneous agents. More generally, the end- 
of-period portfolio of all securities is constant over time and states in the generic 
economy. General equilibrium restrictions rule out trading of equity after an in- 
itial period. This result contrasts the prediction of portfolio allocation analyses 
that portfolio rebalancing motives produce nontrivial trade volume. Therefore, 
other causes of trade must be present in asset markets with large trading volume. 

EACH DAY FINDS INVESTORS actively trading assets. However, the Lucas (1978) asset 
pricing model, the foundation of much of general equilibrium finance theory, says 
little about volume since it assumes a representative agent (or, equivalently, sev- 
eral identical investors) and has no trade in equilibrium. If markets are complete 
or can be completed through dynamic trading of the available securities (as in 
Kreps (1982)), then asset prices evolve as if there is a single agent even when there 
are several agents with different tastes and income processes. Therefore, repre- 
sentative agent models are generally valuable for a theory of asset pricing with 
complete markets. This approach says nothing about trading volume, which is 
unfortunate since data on volume may give us additional information about the 
operation of asset markets and the underlying tastes of investors. This paper ex- 
amines equilibrium asset trading in the Lucas model with agent heterogeneity 
and dynamically complete markets. We characterize equilibrium in a construc- 
tive fashion and present an algorithm to compute equilibrium prices and trading 
volume. We find that trading volume of infinitely lived assets is zero in the generic 
economy. In general, we find each investor's portfolio is constant over time and 
states once one controls for the maturing of finitely lived assets. 

The intuition is clear and follows directly from linear algebra and market com- 
pleteness. Suppose, for the sake of simplicity, that the current dividend sum- 
marizes all information about future dividends.1 Then the dividend process is a 

* Judd is at the Hoover Institution, Kubler is at Stanford University, and Schmedders is at 
Northwestern University. We are grateful to Larry Jones, Mordecai Kurz, Michael Magill, 
Tom Sargent, and seminar participants at Carnegie Mellon University and the Hoover Insti- 
tution for helpful comments. We also thank two anonymous referees and the editor Richard 
Green for useful remarks. Any errors are our own. 

1 This is not necessary. All that is needed is that the current state of the dividend process is 
common knowledge. 
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Markov process where we identify the current state2 with the current dividend. 
Suppose that there are S states and S long-lived securities where each security's 
payoff depends solely on the current dividend. If utility is separable over time 
with constant discount rate (as assumed in Lucas (1978) and in most of the port- 
folio allocation literature) then each agent's optimal consumption policy is a 
function of the exogenous state, and is also a vector of S numbers. If markets 
are dynamically complete, then the state-contingent dividends from the S long- 
lived assets are S independent vectors, and any state-contingent consumption 
plan equals the returns generated by some unique fixed and constant combination 
of the S assets. If an agent's endowment does not equal the fixed portfolio that 
produces the desired consumption process, he can obtain that fixed portfolio 
through trading in the initial period. Therefore, any consumption plan can be im- 
plemented by some trade-once-and-hold-forever trading strategy. By concavity, 
there is a unique optimal consumption plan; hence, the trade-once-and-hold-for- 
ever strategy that implements the optimal consumption process must be the un- 
ique optimal trading strategy. This is true for each agent and for any price 
process. Therefore, it must hold in equilibrium. We show that this intuition gen- 
eralizes to a mixture of long- and short-lived assets, finding that the holding of 
assets of any specific maturity is constant after initial trading when markets are 
dynamically complete. 

Our analysis shows that general equilibrium effects have a substantial impact 
on asset volume; in fact, they rule out asset trading in the standard Lucas model 
with heterogeneous agents. This no-trade result is initially surprising. When an 
agent trades a small set of securities, then, for almost all price processes, he will 
need to trade assets to implement his desired consumption plan. Therefore, one 
would expect nontrivial equilibrium trading volume in response to new informa- 
tion about future security returns even with symmetric information and dynami- 
cally complete security markets. This intuition is confirmed by the classic 
continuous-time portfolio analysis in Merton (1971), which predicts infinite 
transaction volume. The recent literature on portfolio allocation also predicts 
substantial transaction volume; this includes the Brennan and Xia (2002) analy- 
sis of how inflation affects dynamic asset allocation, Viceira's (2001) examination 
of life-cycle asset allocation, and the Dammon, Spatt, and Zhang (2001) study of 
asset allocation in the presence of capital gains taxes. These studies are partial 
equilibrium analyses and argue that trading volume is generally substantial for 
arbitrary combinations of utility functions and price processes. In these models, 
investors trade because they have targets for their portfolio allocations, but con- 
sumption and price movements push portfolios away from these targets, making 
trade necessary to get back to the target allocations. In contrast, we show that 

2 We need to be careful to distinguish the two possible meanings of the term "state"' In the 
Arrow security approach, the states differ in both the time and dividend dimensions. In a 
Markov chain, the term state typically refers only to the current state of information about 
the current and future value of the dividend. In this paper, we will mean the state of the 
Markov process describing dividends when we say "state" unless it is clear we mean other- 
wise. The term date-event refers to what is called a "contingent state" in Arrow (1964) and 
"event" in Debreu (1959). 
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when markets are complete and investors face equilibrium prices, there will of- 
ten be no trade in equilibrium, essentially because consumption and prices move 
together in general equilibrium so as to negate any need for trading to get back to 
target portfolios. Our results indicate that we need to be careful when interpret- 
ing partial equilibrium results. In general, partial equilibrium can tell us about 
investors' consumption target portfolios and their consumption processes, but 
partial equilibrium analysis is less reliable in predicting the equilibrium trading 
volume. 

The paper is organized as follows. Section I describes the standard model of an 
infinite-horizon pure exchange economy, and Arrow-Debreu equilibrium and fi- 
nancial market equilibrium are defined. In Section II we present the numerical 
procedure for computing equilibrium, and show that end-of-period asset holdings 
are generically constant. Section III illustrates the main points with an example. 
Section IV concludes. 

I. The Asset Market Economy 
We examine a standard Lucas asset pricing model with heterogeneous agents 

and complete asset markets. Time is indexed by te N0 {0, 1, 2, ... }. A time-homo- 
geneous Markov process of exogenous states (yt)tENo is valued in a discrete set 
Y= {1,2, ..., S}. The Markov transition matrix is denoted by I- A date-event at is 
the history of states up to time t, that is, at= (yo, Y1, ... Yt). Let It denote the possi- 
ble histories at up to time t. Let 

I_= 
u 

t.t 
denote all possible histories of the exo- 

genous states. 
We assume a finite number of types - = (1, 2,..., H} of infinitely lived agents. 

There is a single perishable consumption good, which is both produced by firms 
and included in individual endowments. The firms distribute their output each 
period to its owners through dividends. Investors trade in securities in order to 
transfer wealth across time and states. We assume that markets are complete 
with J= S linearly independent assets traded on financial markets. Without loss 
of generality and for ease of notation, we assume that each asset is either an in- 
finitely lived (long-lived) asset or a single-period (short-lived) asset. Short-lived 
assets are in zero net supply. 

There are j > 0 long-lived assets. Asset j pays a dividend d': Y-+ - +, j= 1,..., 
J, which depends solely on the current state yc Y In addition, there are 
J = S - 'e > 0 short-lived securities issued in each period. Short-lived assetj is- 
sued in period t pays d : Y--~ R, , j + 1, ..., S, in period t + 1, and then expires. 
Agent h's portfolio at the end of period t at ae is Oh(a) h 
OhS)) ( (O(a), (OSh(a)) E ES, where Ohl(a)E hJt(Ohs(a) . "8) denotes agent 
h's portfolio of long-lived (short-lived) assets. His initial endowment of the long- 
lived assets prior to time 0 is denoted by 8h. We assume that the agent has zero 
initial endowment of the short-lived assets and, in order to rule out speculative 
bubbles, that all infinitely lived assets are in positive net supply. Agent h also has 
an individual endowment eh: Y- - + + of the consumption good at each time. The 
aggregate endowment of the economy in state y is e(y) = 

E=, 
(eh(y) 

l 
Ohdl(y)). 
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Each agent h has a time-separable state-dependent utility function 

Uh(c) = E fl tuh(ct, Yt) , (1) 
t=O 

where c is a consumption process. We assume that the state-dependent utility 
functions Uh(.,Y)): R + + - [R are strictly monotone, C2, strictly concave, and satisfy 
the Inada property, that is, limc-ou'(c, y)= co where we let u'(c, y) denote 
9(u(c, y)). We assume that the discount factor fl3e (0, 1) is the same for all agents, 
and that all agents agree3 on the transition matrix for the dividend process. 

Let the matrices 

el(1) 
". 

el(S) d'dl(1) 
"'" 

d'(S) 
e . , d = .. (2) 

eH(1) ... eH(S) ds(1) ... ds(S) 

represent individual endowments and security dividends. The vector of utility 
functions is u = (ul,..., UH). We collect the primitives of the economy with finan- 
cial markets in the expression = (e, d, H, fl, U). 

This is a simple model but includes many features thought to affect trading 
volume. For example, we include income shocks to individuals4, a feature present 
in many models, such asViceira (2001).We also allow individuals to have different 
tastes for risk and for the dividend process to have time-varying mean and var- 
iance. The presence of these factors makes it a reasonable model to study trading 
volume with heterogeneous agents. In particular, we can examine the portfolio 
rebalancing and risk-sharing function of asset trading. 

A. Arrow-Debreu Equilibrium 
We define the Arrow-Debreu equilibrium for an economy S which would arise 

in a world with an Arrow contingent security for every date-event. We take con- 
sumption at time 0 to be the numeraire. The price of the consumption good at a is 
denoted p(a); similarly, we define y(a) and c(a). Let wh(y) = eh(y) + Ohd(y) de- 
note the initial endowment of agent he f in state y. 

DEFINITION 1: An Arrow-Debreu equilibrium for an economy 8 is a collection of prices 
(p(a)),, and consumption plans (c(u)),,j satisfying the following conditions: 

(1) H 
I ch(") -- 

•_I wh(y(a)) for all ae. 
(2) For each agent, the consumption plan c maximizes Uh(Ch) given the lifetime 

budget constraint Z C6:p(a)- h (y( )) = Cep( )ch( 

3 Conventional rational expectations assume that the agents know the true transition prob- 
abilities. The only thing we need for our analysis is that agents agree. 

4 More precisely, we allow shocks to income of agent types, not purely idiosyncratic shocks. 
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Bewley (1972) proved, under slightly different assumptions on the fundamen- 
tals, the existence of an Arrow-Debreu equilibrium and the first and second wel- 
fare theorem for the economy f. Mas-Colell and Zame (1991) generalized the 
results to our framework. 

B. Financial Market Equilibrium 
It is unreasonable to assume a separate security for each time and state con- 

tingency. Instead, the Lucas model and our generalization forces agents to use 
the S available assets to achieve the desired consumption stream. Let qt(a) 
(q(a),..., qS(a))T - (q(a), q(a6))T be the ex-dividend price of assets in period t 
at node a. At each node at = (yo, ..., Yt), agent h faces a budget constraint5, 

h eh(yt) + OldS(yt) + Ohl1(q + dl(yt)) - Ohqt, (3) 

where d(yt) (dS(yt)) is the column vector of the payoffs of the long-lived (short-lived) 
assets at Yt. The notion of a financial market equilibrium is defined as follows. 

DEFINITION 2: A financial market equilibrium for an economy i is aprocess of portfolio 
holdings {((1,..., H) } and asset prices { (, ... , J) } satisfying the following condi- 
tions: 

(1) E•=1 8 _ EHI Ohl for all t > 0. 

(2) For each agent h: 

(h, c-h) E argmax Uh(c) 
8,c 

ch eh(yt) + O1dS(yt) + Ohl1(q + d(yt)) - Ohqt 
sup Iq(a)h(a)h < oo 

It is well known that in the absence of speculative bubbles, if there are as many 
assets as states, then there is generically a one-to-one correspondence between 
Arrow-Debreu equilibria and efficient financial market equilibria; we make this 
point precise below. The following existence theorem is proven in Kubler and 
Schmedders (2003). 

THEOREM 1: For a generic set of short-lived asset dividends, the economy i has at least 
one efficient financial market equilibrium. 

II. A Theorem on Constant Portfolios 

In this section, we show that for a generic set of short-lived assets' dividends 
every contingent market equilibrium is equivalent to a financial market equili- 
brium in which the end-of-period portfolio holdings of each agent is constant 

5 We now drop the a arguments to make the expressions less clumsy. 
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after an initial adjustment in period 0. We prove this in a constructive fashion. 
The constructive proof also provides an algorithm for the computation of equili- 
bria in our model. 

We proceed in three steps. First, the welfare theorems tell us that the equili- 
brium allocation is the solution of a representative agent's maximization problem 
over h consumption goods. The artificial representative agent has a separable uti- 
lity function 

h=1 t=0 

where the Xh are the Negishi weights (see Negishi (1960)). Each choice of the Ne- 
gishi weights Ah, h = 2, ..., H implies a Pareto efficient allocation which corre- 
sponds to an equilibrium (with transfers) with security prices q and portfolio 
choices 0h for all agents h= 1, ..., H. In fact, once we have computed a Pareto 
efficient consumption allocation we will be able to give closed-form solutions for 
both asset prices and portfolios. An equilibrium corresponds to a set of Negishi 
weights such that each agent's consumption process equals his wealth when va- 
lued at the prices implied by those weights. 

A. Equilibrium Solution 

The following lemma is the basis for showing that all relevant economic vari- 
ables exhibit time homogeneity. It follows directly from the first welfare theorem. 

LEMMA 1: For an economy 8 every efficient equilibrium exhibits time-homogeneous 
Markovian consumption processes for all agents. 

Proof: The lemma follows from Pareto efficiency and time separability, and is well 
known in the general equilibrium finance literature. In particular, section 20 in 
Duffie (1988) develops these points in the same manner we use here. U 

The recursive property of equilibrium proven in Lemma 1 is the key to all of our 
results." First, note that the artificial representative agent's utility function can 
be rewritten as 

Eht=O 
h=l 1(5) 

where the 2h are state- and time-independent weights on individual utilities. 
Second, we take advantage of recursivity in our notation. We change the nota- 

tion and express the dependence of all variables on the exogenous state through a 
subscript. The notation here will be inconsistent with the notation above, but will 

6 In this paper we focus solely on efficient equilibria. To our knowledge there are no (non)- 
existence results for inefficient equilibria. 
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allow us to exploit the recursive nature of any equilibrium. For example, ch will 
denote the consumption of agent h in state y. 

We introduce some other useful notation. The state in a current period is de- 
noted by y and the random variable of the subsequent state is denoted by y + We 
will use a circle, o, to denote element-wise multiplication of vectors. Specifically, 
if x, ye Rs then 

xlyl 
x2Y2 xoy x s. (6) 
xsYs 

Finally, Is is the S x S identity matrix. 
With these model definitions and our notation, we are now ready to solve for 

equilibrium. A three-step process will compute the Negishi weights, individual 
consumption processes, asset prices, and individual portfolios. 

Step 1 computes the Negishi weights. At the optimal solution to the represen- 
tative agent's optimization problem, the derivatives u' (Ch,y) at each state y are 
collinear across agents; that is, 

u (c, y) = h uh (Ch, y), h = 2,..., H. (7) 

Since marginal utilities are collinear, we can replace Arrow-Debreu prices 
with the marginal utility of agent 1. Therefore, we define py, u, (cl, y) 
to be the price of consumption in state y, and we letp = 

(py)y ye Rs be the vector 
of prices. 

The budget constraint for each agent h states that the present value of his con- 
sumption must equal the present value of his initial endowment. Let Vh be the 
present value of consumption for agent h if the economy starts in state ye Y 
We can compute Vh by solving the recursive equation 

Vh pyCh+flE{Vh y}, ye Yy. (8) 
In matrix terms, (8) implies Vh=poCh+pflVh and has the unique solution 
Vh -[Is - 

] - 1(p o Ch). Let Wh denote the present value of agent h's endowments 
and portfolio dividends if the economy starts in state y 

•Ec Wh is the solution to 

Wh pyh + fE{Wh y}, ye Y. (9) 

The unique solution to (9) is Wh S [Is - /1] - l(p o h). 
If the economy starts in the state yo e Yat period t = 0, then the budget con- 

straint for the Arrow-Debreu model requires that Vh - Wh for h 1, ..., H. Due 
to Walras' law, it actually suffices to require this last equation for the first H- 1 
agents only. So, we require 

[Is - p ] (po (ch 
oh))yo 

= 0 (10) 
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for h = 1, ..., H-1. Market clearing requires that 

H H 

cy=h Vy. (11) 
h=1 h=1 

The system of equations (7, 10, 11) has HS + (H- 1) unknowns, HS unknown state- 
contingent, agent-specific consumption levels ch, and H-1 Negishi weights )h 
Any solution to (7, 10, 11) is an equilibrium state-contingent consumption ch for 
agent h= 1,..., Hin state yeY 

Step 2 computes asset prices using the Euler equations of agent 1 and the nor- 
malization py = u'l(c, y). For a long-lived asset j, the Euler equations for agent 1 
imply 

qypy = fE{ppy+(q+ + dJ+)ly},y Y, (12) 

which is a system of S linear equations in S unknowns. The solution is 

qJ 
qop - [Is - 

1]1f• 
(pod'). (13) 

For a short-lived assetj, the Euler equations for agent 1 are 

qyppy 
= E{py+ d,+y }. (14) 

Therefore, the price for short-lived assetj in state y is 

, jfE{p 
o 

dly} flB(podJ) (15) 
Py Py 

Step 3 computes the equilibrium portfolios. We show that they are also recursive; 
that is, depending solely on the state y and any state to which the dividend pro- 
cess can move from y. The result is well known if we had only long-lived assets; 
for example, see section 20 in Duffie (1988). Here we state and prove the general- 
ization to our case with short- and long-lived assets. 

LEMMA 2: In a financial market equilibrium with time-homogeneous Markovian con- 
sumption processes, the equilibrium portfolio holdings of all agents must also be time- 
homogeneous Markovian processes. 

Proof: To simplify the notation, we omit the agent superscript h in this proof. By 
assumption the dividend process is Markovian. Lemma 1 and Step 2 imply that 
both the agents' consumption processes and the asset price processes must be 
Markovian in an efficient financial markets equilibrium. Therefore, an agent's 
utility maximization problem with these Markovian dividend and price pro- 
cesses can be equivalently stated as a stationary dynamic programming problem. 

V(w,y) = max{u(cy) + /E(V(w*+,s))}, (16) 0 
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where 

Cy = ey + w- 
.- 

q, 

ws+ 
- 0. (ql + ds) + Os - d 

. 
Define D1 - (ql + ..., q d,..., , d dJ+l1,..., dS)T. Kubler and Schmedders (2003) 
show that D1 has full rank generically in the dividends of the short-lived assets. 
Thus, there is a one-to-one relationship between portfolios and the S-vector of 
next-period wealth w +. Moreover, the strict concavity of the utility function im- 
plies that there exists a policy function determining the unique optimal choice 
0 = O(w, y). In equilibrium, the dynamic programming problem yields the equili- 
brium consumptions. At every date-event node a an agent's wealth w equals the 
present value of his future excess consumption, that is; the difference between 
the present value of his future consumption and his future endowments. The pre- 
sent values of future consumption and future endowments are both Markovian; 
therefore, wealth must also be Markovian. Hence, at most S, different wealth va- 
lues w., y = 1, ..., S can appear in equilibrium, and only S different portfolios 
8,- =O(w, y) can appear in equilibrium. M 

Lemma 2 implies that we can write h for the portfolio of agent h at node a with 
y = y(a). Assume that the transition matrix HI has no zero elements; therefore, all 
states can be reached in one transition from each state. Then the budget con- 
straint implies that if the current state is y and the previous state was z, then 
the end-of-period portfolio in state z must finance the consumption and invest- 
ment choices in state y. This collection of budget constraints for agent h across 
the various states implies 

zOh(qy + d) + 
8"S(dy) 

-c -e +Oqy, yz E Y. (18) 

Equation (18) is a collection of S2 equations for the S2 unknown end-of-period 
portfolios. The key fact is that the right-hand side of (18) is the allocation of 
wealth across consumption and investment in state y and, because of recursivity, 
cannot depend on z, whereas the left-hand side of (18) depends strongly 
on the previous period's state. Recursivity implies that an agent must have 
the proper resources in state y to carry out the stationary plan for current and 
future consumption no matter what the state was in the previous period even 
though the initial wealth in state y depends on the portfolio at the end of the pre- 
vious period. This clearly puts strong constraints on the possible values of O8, the 
end-of-period portfolio of type h agents in state z. In fact, we will see that, gener- 
ically, this is possible only if O8 is independent of the state z. We now present the 
details. 

The system (18) is equivalent to 

he(q + d ) + 8S(d ) = 8Oe(q + d) + Ohs(d ) y,z, sE Y,z,y s (19) 

Oh(q + d) + O (dS) = Ch - eyh + hqy 
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Recall that D1 = (ql + d ... ., qJ + dgJ, dJi+1,... , ds). Equation (19) is equivalent 
to: 

(oh- hs hs)D1 = 0, Vy, z e Y (20) 

fOhdy +0hs(dy - qyh) = c - eh, Vy E Y, (21) 

where the row vector qJ = (q,,. . ., q's) denotes prices of assetj across states ye Y 
Similarly, d j - (dJ,..., dJs) denotes the row vector of dividends of asset j across 
all states. We have argued above that the S x S-matrix D1 has (generically) full 
rank S. Then equations (20) imply that h = 0h, for all states y, z Y Hence, we 
can define the state-independent portfolio vector Oh 

yh 
for all ye Yand equa- 

tions (21) become 

((he, ohs)D2 = Ch - eh, (22) 
where D2 = (d', ..., dJt, dJf+1 - qj+1l .., dS _ qS)T. The S x S-matrix D2 has full 
rank S if and only if D1 has full rank. So, for generic dividends of the short-lived 
assets, the system (22) implies that for all h= 1, ..., H 

(ohf, Ihs) = (Ch - eh)D21. (23) 

Substituting the equilibrium prices j into equation (23) leads to the equilibrium 
portfolio holdings Oh for all agents h = 1, ..., H. 

Furthermore, there is a special case that deserves attention. Suppose that 
there are no short-lived assets and that the dividend payoff matrix d is nonsingu- 
lar. Being nonsingular is a generic property, so its assumption is natural. The 
absence of short-lived assets implies that asset prices q do not appear in (23). 
Then, the nonsingularity of d implies that (23) is surely solvable. This is the key 
special case that captures the basic intuition of the result. 

We summarize our findings for the equilibrium portfolios in the following the- 
orem. 

THEOREM 2: Consider an economy & = (e, d, H, /, u). For any choice of u, e and fl if 11 
has no zero entries and the rows of d ', the dividends for the long-lived assets, are line- 
arly independent, then for a generic set of dividends of the short-lived assets, ds, in 
every Pareto-efficient equilibrium, the end-of-period portfolio of each agent is constant 
after the initial round of trading. Therefore, the trading volume for each infinitely lived 
security is zero after the initial round of trading. Furthermore, if there are no short- 
lived assets, then the portfolio of each agent is constant after the initial period. 

Theorem 2 shows that there will be no trade in assets after an initial period. This 
is a strong result that relies on many assumptions. We assume infinitely lived 
agents with additively separable utility and a common discount factor. An over- 
lapping generations model will produce trade as may models with nonseparable 
preferences. The result is still surprising, since we may think that heterogeneous 
risk preferences would motivate some portfolio rebalancing in equilibrium even 
in this simple model. 
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B. Complete Markets with S-1 Short-lived Assets 

For infinite-horizon economies with only short-lived assets, we can use Theo- 
rem 2 to obtain another surprising result about equilibrium portfolios. 

THEOREM 3: Consider an economy 6 = (e, d, II, /f, u) with S-1 short-lived assets. As- 
sume H has no zero entries. Furthermore, assume the economy starts in state yo at t - 0 
and that all short-lived assets have zero payoff in state yo. For any choice of u, e and /f, 
there is a generic set of dividends of the (short-lived) assets, d, such that there exists a 
financial market equilibrium that is equivalent to the Arrow-Debreu equilibrium. In 
those cases, the financial market equilibrium is complete with S - 1 securities and the 
end-of-period portfolio of each agent is constant over time and states. 

Proof: Consider an infinite-horizon pure exchange economy with a time-homoge- 
neous discrete Markov process of exogenous states and S short-lived assets. The- 
orem 2 implies that in equilibrium the type h budget constraint at time t = 0 is 

hh hh ch0 - h 
Oh-q. Theorem 2 also implies that, in equilibrium, we can write the 

type h budget constraint in state yo at any time t > 0 as ch - eh + hdyo - 0h. 
These two equations imply that Ohdyo 

- 
0 for all h. Now suppose that there is 

only a single asset with nonzero payoffs in the state yo. In that case, the last equa- 
tion implies that every agent has a zero position in that asset in all states. In 
other words, the agents only trade the other S- 1 short-lived assets and still ob- 
tain complete markets consumption. This observation completes the proof of the 
theorem. M 

C. Generalizations 

We next present two extensions of Theorem 2. Space limitations prevent us 
from presenting the details, but the statements of these results help highlight 
our basic points and indicate the limitations of Theorem 2. 

Theorem 2 assumes that all assets are either infinitely lived or one-period 
bonds. There is some trade in the sense that new bonds are issued in each period. 
Suppose that there are many risk-free assets with finite maturity exceeding one 
period. For example, there may be 10- and 20-year bonds. Then the generalization 
of Theorem 2 says that each investor holds the same amount of each kind of se- 
curity at the end of each period. When we interpret this result, we must keep in 
mind that any particular finite-term bond changes maturity over time. For exam- 
ple, a bond maturing in 2020 is a 20 -year bond in 2000 but becomes a 10 -year bond 
in 2010. In 2010, an investor may need to sell or buy some 2020 bonds to bring his 
holdings of 2020 bonds to the desired level for bonds maturing in 10 years. There 
is portfolio rebalancing, but it is just the maturity rebalancing necessary to neu- 
tralize changes in maturity structure that would occur without trade. Similar 
considerations apply to options. The key general result is that the end-of-period 
holding of any kind and maturity of security is unchanged over time. 

Theorem 2 assumes that -I has no zero entries. While most II have no zero en- 
tries (in the sense of genericity), some natural dividend processes have sparse HI 
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matrices. For example, if dividends follow a simple random walk, then from each 
state y e Y there are only two states z e Y for which Iyz # 0. In this case, only two 
assets are needed to dynamically complete the market; see Kreps (1982). Theorem 
2 does not apply, and there will be trade in this case. This is clear, since constant 
holdings of two assets can span only a two-dimensional space of consumption 
plans, but the efficient allocation will lie in a larger space. The techniques of The- 
orem 2 can still be used to determine that volume, as long as the consumption 
allocation is efficient. 

III. A Numerical Example 
The three steps in our construction of equilibrium can be executed numeri- 

cally. The first step, computing the Negishi weights and consumption functions, 
requires solving the nonlinear system of equations (7,10,11). The second and third 
steps, computing the asset prices and the portfolios, respectively, require solving 
linear systems of equations. For small examples it is possible to implement the 
algorithm in an Excel spreadsheet utilizing the solver add-in. We find equilibrium 
allocations, prices, and portfolios in a few seconds, even when we require a rela- 
tive numerical error7 of less than 10 -10. 

We use this algorithm to compute a simple example illustrating the key fea- 
tures of Theorem 2. We construct an example where demand considerations lead 
us to think that there should be trading over time and, indeed, would cause sub- 
stantial trade for most price processes. Of course, Theorem 2 shows that equili- 
brium conditions imply that there will be no trade. This example will help clarify 
the basic insights of Theorem 2. 

Assume H= 2 agents with CRRA utility functions, u(c) = c -/(1 - y). Type 1 
agents will be relatively risk tolerant with Ty = 0.5 and type 2 investors will have 
72 = 4. The common discount factor equals f = 0.95, assuming a period of time 
equal to about a year. Assume S = 3 exogenous states. The first asset is long-lived 
(call it stock 1) and has a dividend vector dsl = (1, 1, 0.8)T'.The second asset (stock 
2) is also long-lived and has a dividend vector ds2 - (0.8, 1, 1)T. The third asset is a 
riskless short-lived bond paying one unit of the consumption good in every state, 
so db = 1 for ye {1, 2, 3}. Both stocks are in unit net supply, and the agents have 
both an initial endowment of 

01s•" 
= 2s_ = 0.5 for i - 1, 2. The bond is in zero net 

supply, and the agents have zero initial holding of this security at the beginning 
of period 0. The agents' individual state-contingent endowments are e1 = (1.5, 1, 1) 
and e2 = (0.5, 1, 1). The Markov transition matrix is 

0.48 0.48 0.04 
= 0.48 0.04 0.481 

0.04 0.48 0.48] 
We assume that the economy starts in state 2. 

7Relative numerical error refers to the consumption equivalent error in the Euler 
equations. For example, when we say that we had an error less than E in solving an 
equation of the form ui(c ,1y) - _AhUh(Ch,y), we mean that our solutions satisfied lu'(c, y) 
_Ahul1(ch,y) <EIUI(c1,y) . 
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This example captures two interesting features of asset markets and income 
processes. First, the conditional variances of the two stocks' dividends change 
across the three states. In state 1, stock 1 has a low one-period dividend variance, 
and stock 2 has greater conditional variance. In state 2, the stocks have equal 
dividend variance. Finally, in state 3, the two stocks have reversed their roles 
compared to state 1, making stock 2's dividends less risky in the short run. Stan- 
dard portfolio rebalancing intuition would have the risk tolerant agent 1 holding 
the riskier stock 2 in state 1, but then trading it for stock 1 when state 3 occurs, 
since stock 1 is then riskier. We specify the dividend process here; when we later 
compute the equilibrium price process, we will check to see if the assets' condi- 
tional returns display the same pattern of conditional riskiness. 

Second, agents have substantial endowment risk that may lead them to trade 
assets in response to endowment shocks in order to smooth out consumption. In 
state 1, agent 1's endowment is more correlated with stock 1's dividends than 
stock 2's dividends, whereas in state 3, these correlations are almost eliminated. 
Agent 2 faces the opposite situation. Therefore, standard intuition says that 
agent 1 (2) should hold more (less) of stock 2 over stock 1 in state 1, but be rela- 
tively indifferent in state 3. This example is constructed so that the risk aversion 
and endowment shock effects work, according to partial equilibrium logic, in the 
same direction, pushing agent 2 to hold stock 1 in state 1, but to sell it off in state 
3. 

We first compute the Negishi weights. Without loss of generality, we can fix 
-= 1. Solving the optimality and feasibility conditions shows that A2 = 6.8017. 

We also find that state-contingent consumptions are 

C'= (2.0351, 2.2162, 2.0351) 
c2 = (1.7649, 1.7838, 1.7649). 

The consumption solution allows us to compute asset prices for all assets. The 
Euler equations of agent 1 imply that the prices of the stocks and the bond are 

qSl= (17.5466, 18.2178, 17.4030) 
qS2 = (17.4030, 18.2178, 17.5466) 
qb = (0.93097, 0.98971, 0.93097). 

The conditional expected stock returns are 

rSl = (0.074569, 0.010468, 0.074750) 
rS2 = (0.074750, 0.010468, 0.074569) 

and the risk-free rates are rf = (0.074146, 0.010394, 0.074146). The asset price process 
is similar to the dividend process. The conditional expected excess returns of the 
two stocks are (in percentages)s 

S This example is grossly inconsistent with observed equity premia, as is any simple Lucas 
model with moderate risk aversion. 
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rSl 
- rf = (4.23 x10-2, 7.43 x10-3, 6.04x 10-2) 

rs2 - rf = (6.04 x10-2, 7.43 x10-3, 4.23 x10-2). 
This pattern of excess returns follows the riskiness of the dividends, since each 
stock has a larger conditional excess return and conditional equity premium in 
those states where its dividends have greater conditional one-period ahead var- 
iance. Therefore, asset 2 is unambiguously riskier than asset 1 in state 1, and vice 
versa in state 3. 

Step 3 of the algorithm tells us that the constant portfolio for agent 1 is 

1 -= (Ols, 812, 01b) = (-.61529, 1.8847, -5.1778) 
and the constant portfolio for agent 2 is (1, 1, 0) - 01. The holdings are easily un- 
derstood in terms of unconditional covariances. Each agent shorts that stock 
with dividends positively correlated with his endowment process and goes long 
in the other stock, which has dividends negatively correlated with his endow- 
ment process. In particular, agent 1 shorts the first stock and buys the second 
stock. The holdings of the safe asset correspond to relative risk aversion of the 
agents, with the more risk-averse agent 2 buying the riskless bond from agent 1. 
There is no need to trade across states, since the returns of the three assets are 
linearly independent and portfolio Oh of these three assets implements the de- 
sired three-dimensional consumption plan of type h households. 

IV. Conclusion 

Volume is an important aspect of financial markets. We show that the standard 
intuitions about asset trading and portfolio rebalancing implied by standard par- 
tial equilibrium portfolio theory are misleading when we include general equili- 
brium considerations. Portfolio allocation models predict that an investor will 
engage in substantial trading, unless the price process lines up precisely with 
his marginal utility process, a seemingly unlikely occurrence. However, we show 
that this coincidence will often hold in general equilibrium, and that trading vo- 
lume is zero in equilibrium in the generic Lucas (1978) model with heterogeneous 
agents. Therefore, general equilibrium conditions have a substantial impact on 
trading volume. This result indicates that other factors considered in the litera- 
ture, such as life-cycle factors, asymmetric information, heterogeneous beliefs, 
and incompleteness of the asset market, play a significant role in generating 
trade volume. 
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