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Abstract

The parametric path method applies projection methods to compute the equilibrium time path
of economic variables in in0nite-horizon dynamic models. We exploit the special structure of
equilibrium paths common in such models to construct a low-dimensional set of candidate so-
lutions, and then use e6cient integration and equation solution methods to 0nd an approximate
solution. Simple illustrative examples show that the parametric path method can 0nd excellent
approximations with little computational cost. ? 2002 Elsevier Science B.V. All rights reserved.
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0. Introduction

Large-scale dynamic general equilibrium models are increasingly used in analyses of
economic problems. However, their use is limited by the numerical di6culty of solving
such models. The perfect foresight aspect of dynamic general equilibrium analysis
creates links between current and future economic variables. This simultaneity generates
an in0nite system of nonlinear equations. Typically, we solve these in0nite-dimensional
systems by truncating them to form a 0nite but large system of nonlinear equations.
If xt is a sequence of endogenous economic variables to be computed, conventional
methods try to solve for each xt up to some large T . Even these truncated systems of
equations are too large to be solved by conventional computational general equilibrium
procedures like Scarf’s algorithm or homotopy procedures. Economists then resort to
general methods for large systems of equations, but they make limited use of the
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special structure of dynamic models. This paper introduces the method of parametric
paths for solving perfect foresight models. The parametric path method chooses a
functional form xt = �(t; a) and then 0nds some value for the coe6cient vector a
which produces an acceptable approximation for the xt path. We use a priori known
properties of the equilibrium path xt to choose a functional form �(t; a) which can
approximate the true path with a low-dimensional vector of parameters a. This reduces
an in0nite-dimensional problem to one of small dimension which can then be solved
by a wide variety of methods.

Previous methods break into three groups. First, Gauss–Jacobi schemes break down
the system of equations into smaller blocks and then solves each of them in sequence.
Fair and Taylor (1983), Fisher et al. (1986) and Hughes Hallett and Piscitelli (1998)
fall into this class. A second approach is contained in Auerbach et al. (1987). They
formulate equilibrium as a 0xed point p = D−1(S(p)) where S(p) is the sequence
of factor supplies if p is the sequence of factor prices, and D−1(p) is the inverse
demand function. They execute the iteration pk+1 = D−1(S(pk)), which is essentially
a “hog-cycle” process: make a guess for prices, compute the supply of goods at those
prices, and then compute the inverse demand function at that supply. Both the Gauss–
Seidel and the hog-cycle approach are intuitive methods but are slow and may not
converge. These methods are examples of 0rst-order methods since they use only the
values of f(x) in solving f(x) = 0 and, at best, converge linearly. As is normal
with 0rst-order methods, convergence problems often force users to rely on ad hoc
dampening parameters.

More recently, LaJargue (1990), Boucekkine (1995), Juillard (1996) and Juillard
et al. (1998) have developed a Newton-style method (called the L–B–J method) for
solving perfect foresight problems. Newton methods use the Jacobian of f :Rn → Rn

to solve f(x)=0 and are second-order methods since they converge quadratically near
the solution. Newton methods are generally impractical since computing the Jacobian
of f requires n2 derivatives, an impossible amount of work if n is large. However, the
Jacobian for many perfect foresight models is sparse, allowing for e6cient computation
of the Jacobian. The L–B–J method exploits this sparseness and is substantially faster
and more reliable than 0rst-order methods. Another recent contribution by Mercenier
and Michel (1994a) uses a time aggregation scheme which chooses a nonuniform set
of time intervals and a 0nite-horizon approximation so that the terminal behavior of the
0nite-horizon model matches the steady-state behavior of the original in0nite-horizon
model.

We propose an algorithm which uses standard methods from numerical functional
analysis and exploits the special structure of many dynamic general equilibrium models.
While there are an in0nite number of unknowns in an in0nite-horizon general equilib-
rium model, the dynamic path is often relatively well-behaved. Speci0cally, dynamic
general equilibrium analyses generally assume convergence to a steady state, or, more
generally, convergence to some known (or easily computed) dynamic path. During
some initial phase, that convergence need not be well-behaved but asymptotically the
convergence is governed by linear approximations about the asymptotic path. The idea
of the parametric path method is to express the time path of economic variables as some
function of time where the number of free parameters in the parameterization is far
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smaller than the number of unknown prices and quantities in the in0nite-horizon eco-
nomic model. It is common in numerical rational expectations models to parameterize
the critical unknown functions; see Gustafson (1958), Wright and Williams (1982),
Wright and Williams (1984), and Miranda and Helmberger (1988) for the seminal
contributions to this literature, and Judd (1992) for generalizations of those ideas that
incorporate e6cient methods from numerical analysis. As long as the asymptotic behav-
ior of equilibrium is well-behaved, it is possible to construct Lexible and parsimonious
parameterizations which can accurately approximate equilibrium. This reduction in the
number of unknowns substantially reduces the complexity of the numerical problem
since the cost of solving methods for nonlinear equations is quadratic (at best) in the
number of unknowns.

We 0rst describe the general perfect foresight model and traditional solution methods.
We then use the projection method (see Judd, 1992) to develop the parametric path
method for solving perfect foresight models. We 0nish with a detailed application to a
familiar perfect foresight model. Even though the basic idea is simple, there are only
a few ways to implement it successfully. We use a simple application to highlight the
critical problems and indicate their solutions. Even though the example is simple, it
illustrates important problems which will come up in any application. Implementing
the parametric path method for large systems will probably present more problems, but
space limitations require us to leave that for further study.

1. Traditional perfect foresight model solution methods

Let xt ∈Rn be a list of the time t values for economic variables such as consumption,
labor supply, capital stock, output, prices, interest rates, wages, etc., and zt ∈R a list
of exogenous variables, such as productivity levels, tax rates, monetary growth rates,
etc., at time t. Perfect foresight models 1 have the form

g(t; x; z) = 0; t = 0; 1; 2; : : : ; (1)

xi;0 = Mxi;0; i = 1; 2; : : : ; nI ; (2)

sup
t
‖xt‖¡∞; (3)

where x ≡ (x0; x1; x2; : : : ; xs; : : :), z ≡ (z0; z1; z2; : : : ; zs; : : :), and g(t; x; z) :R × Rn×∞ ×
R∞ → Rn is a collection of n functions concerning supply, demand, expectations,
or other equilibrium relations among the economic variables. The equations in (1)
represent Euler equations, market clearing conditions, and any other equations in the
de0nition of equilibrium. Some of the economic variables may have 0xed predetermined
values at t=0. These initial conditions are represented by the nI ¡n conditions in (2).
We also want only solutions which are bounded, the requirement in (3). The objective

1 We examine only discrete-time models since that is the focus of most of the literature. The application
of the parametric path method to continuous-time models is a straightforward adaptation of our discrete-time
presentation.
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is to 0nd a sequence of values for xt which satisfy the equation in (1), the initial
conditions in (2), and the boundedness conditions in (3).

We use a simple example to illustrate our analysis. Consider the optimal growth
problem

max
ct

∞∑
t=0

�tu(ct);

s:t: kt+1 = F(kt)− ct ;

k0 = Mk0: (4)

The solution to this problem is the solution to the Euler equations

u′(ct) = �u′(ct+1)F ′(kt+1); t = 0; 1; : : :

together with the boundedness condition limt→∞ |kt |¡∞. In the notation of (1,2), the
growth problem can be expressed as

g1(t; c; k) ≡ u′(ct)− �u′(ct+1)F ′(kt+1) = 0; t = 0; 1; 2; : : : ;

g2(t; c; k) ≡ kt+1 − F(kt) + ct = 0; t = 0; 1; 2; : : : ;

k0 = Mk0: (5)

In this problem, xt ≡ (ct ; kt) and there are no exogenous variables. The functions
in g(t; c; k) are the time t Euler equation and time t gross investment equation. The
capital stock has a predetermined value at t = 0 but consumption is free at all times.
The equations in (5) form a 0rst-order nonlinear system in two variables at each t. We
can eliminate ct and formulate the solution in terms of kt sequence in the second-order
nonlinear system

u′(F(kt)− kt+1)− �u′(F(kt+1)− kt+2)F ′(kt+1) = 0; t = 0; 1; : : : : (6)

We shall use (6) below as an example since the notation is a bit simpler than (5). In
fact, no matter which method is used, we should use identities like ct = F(kt) − kt+1

to reduce the number of unknowns.
The system (1)–(3) is an in0nite set of equations with an in0nite number of un-

knowns. Under some conditions, there will be a locally unique solution; we will make
that assumption as is implicitly done by all other methods. For example, standard the-
ory tells us that the problem in (4) has a unique solution for any given initial capital
stock k0.

Any solution method must reduce the system (1)–(3) in some way. Most methods
use domain truncation to reduce the problem to a 0nite-horizon problem. That is, they
solve the truncated problem

g(t; x0; x1; : : : ; xT−1; xss; xss; : : : ; z) = 0; t = 0; 1; 2; : : : ; T − 1; (7)

xi;0 = Mxi;0; i = 1; 2; : : : ; nI ; (8)

xi;T−1 = xssi ; i = nI + 1; 2; : : : ; n; (9)
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where xss is the steady-state value of x, or some proxy for the long run. n − nI
components of xT−1 are also 0xed at their long-run values to make the number of
unknowns equal to the number of equations. Domain truncation reduces (1) to (7), a
system of nT nonlinear equations in nT unknowns, and reduces (3) to (9).

There are two key decisions in forming (7) and (3). First, the long-run proxy xss

need not be the steady state. The objective is that the choice of xss in (7) and (3)
should not signi0cantly aJect the solution since it 0xes the solution only in the distant
future at t = T . Second, we must choose T . All traditional methods try alternative
values for T and accept a solution only when the choice of T does not substantially
aJect the solution.

Since T is typically large, we need to develop special methods to handle the large
system of equations. Fortunately, we can apply methods from the literature on solving
large systems (see, e.g., Kelley, 1995; Saad, 1996; Young, 1971). Some algorithms
break the problem into smaller systems which are linked and then solve the individual
systems iteratively until the full system converges. For example, Fair and Taylor (1983)
use a block Gauss–Jacobi procedure for a speci0c choice of T and then tests the
sensitivity of the solution to T . Other examples of this approach are Hall (1985), Fisher
et al. (1986), Fisher (1992), and Hughes Hallett and Piscitelli (1998). Convergence
of such methods depends on the order of the equations and is linear at best. The
advantages are their simplicity and small memory requirements. However, they may
not converge even after using various strategies including reordering of equations and
dampening factors.

These methods often have an economic motivation. Given expectations, one computes
the best actions, which in turn generates expectations. While this approach to solving
dynamic economic models has some intuitive appeal, it produces algorithms which
converge linearly if at all. There are alternative methods which have no economic
intuition but are suggested by numerical analysis. One such alternative is Newton’s
method. Newton’s method has no obvious economic “story”, but it oJers the possibility
of rapid convergence. Using Newton’s method appears di6cult because the Jacobian
is large, but the Jacobian for perfect foresight problems is often sparse. Juillard et
al. (1998) pursued a Newton strategy exploiting sparseness. Gilli and Pauletto (1998)
economize on this by using a Newton-style method together with a Krylov method
to compute approximate Newton steps instead of exactly solving for the Newton step.
The Newton approach has been generally useful in solving dynamic problems with a
sparse structure, but not all dynamic models are sparse. For example, the overlapping
generations model used in Auerbach et al. (1987) is not sparse.

This paper continues this approach of incorporating methods from numerical analysis,
and re0nes it. We show that we can achieve even greater e6ciency by exploiting
properties of solutions to perfect foresight models and applying ideas from orthogonal
polynomial theory and numerical integration along with Newton’s method.

2. Parametric path method for perfect foresight models

The parametric path approach employs a strategy substantially diJerent from tradi-
tional methods. Instead of treating each value of xt as an independent variable it applies
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some a priori knowledge about how xt evolves over time. For example, 1; 2; 1; 2; : : : is
not a plausible candidate for the quarterly series for capital stock since it is physically
impossible for the capital stock to change drastically in short periods of time. Simi-
larly, consumers want to smooth their consumption and consumption paths will often
be relatively smooth. This feature of the solution is not exploited by standard methods
since they allow xt and xt+1 be completely independent. Instead, our intuition says that
xt should be a smooth function of time t. This insight allows us to dramatically reduce
(1)–(3) to a much smaller system. This smaller system can be solved using a much
wider variety of methods than can be applied to (1)–(3). This section outlines the
basic ideas, and the next section gives more precise description of the method in the
context of the optimal growth example.

2.1. A simple parameterization

The parametric path method is an application of projection methods (see Judd, 1992,
1998) for solving functional equations. The key idea behind the parametric path method
is to replace the sequence x with a parameterization of components of x in some way
representing our beliefs that x evolves smoothly. First, consider the functional form

xi; t = �(t; ai; �) ≡

 m∑

j=0

aijt
j


 e−�t + xssi (1− e−�t): (10)

In (10) the matrix of coe6cients

a= (aij)
i=1; :::; n
j=0; :::;m ∈R(m+1)×n

parameterize several polynomials in t. The initial value of the path xi(t; a; �) is
�(0; ai; �)= ai0. For any coe6cient matrix a, the path in (10) is a convex combination
of the initial value a0 and the long-run value xss where the time-dependent weights are
e−�t and 1− e−�t . The exponential term e−�t dominates any polynomial term in (10);
therefore, �(∞; ai; �)= xssi for any choice of aj, j=1; 2; : : : . Moreover, for any choice
of a the path in (10) asymptotically satis0es the linear adjustment process

d
dt

(x − xss) =−�(x − xss): (11)

Therefore, the xt path in (10) begins at a0 and converges linearly to the steady-state
xss. The initial conditions (2) 0x some components of a0 since they imply

ai0 = Mx0; i ; i = 1; 2; : : : ; nI : (12)

Other than the conditions in (12), we are free to choose the components of a so that
the sequence in (10) approximately solves (1).

Many features of (10) match our a priori knowledge about (1). The form in (10)
imposes convergence to xss in the long run. Since we often know the steady-state
xss, we can use this knowledge in (10). Traditional methods use knowledge of xss by
specifying that it is the terminal state at some time T but make no restrictions about



K.L. Judd / Journal of Economic Dynamics & Control 26 (2002) 1557–1583 1563

xt at t ¡T . Eq. (10) imposes the natural condition that xt approach the steady state
smoothly.

The choice of � is also one which can use a priori information. Given the asymptotic
behavior in (11), we want � to be the rate of convergence associated with the dominant
stable eigenvalue of the linearization of (1) around xss. Sometimes we can compute this.
In fact, no matter what method one uses, the entire spectrum of the linearized system
should be computed to ascertain local stability and uniqueness properties. Therefore,
using the asymptotic rate of convergence for (1) to choose � imposes no extra cost.
Even if we do not know the spectrum, we often have good guesses about the asymptotic
rate of convergence. We will see that some good guesses are satisfactory. Traditional
methods make no use of the spectrum of the linearized system.

For many problems, the truth is that xt − xt+1 is small, xss is achieved only in the
limit, and x converges smoothly at a known rate to xss, properties which hold for all
examples of (10). Otherwise, (10) is quite Lexible. When t is small, the e−�t terms
have little importance, the polynomial terms dominate, and the free coe6cients allow
�(t; a; �) to be Lexible. This parallels our relative ignorance about xt for small t.
Therefore, (10) is a form which incorporates all of our a priori knowledge, short- and
long-run, about equilibrium but is Lexible enough to approximate equilibrium well.

The formula in (10) treats t as a continuous variable. This may initially seem odd
in a discrete-time framework. However, there is nothing in (1) which requires t to be
an integer. For example, the key expression for the time t in Eq. (6) is

u′(F(kt)− kt+1)− �u′(F(kt+1)− kt+2)F ′(kt+1) (13)

and is well-de0ned for noninteger t if we de0ne kt = �(t; a; �). We shall proceed as
if t were continuous, making it an integer only when desired. This is important since
the whole idea of the parametric path method is to apply approximation methods for
functions of a continuous variable to functions on the integers.

2.2. General parameterizations

The general idea of a projection method is to 0nd some functional form �(t; a) such
that the sequence

xt; i = �(t; ai); ai ∈Rm; i = 1; : : : ; n (14)

nearly solves (1)–(3). The simple parameterization in (10) is natural, but suJers from
some defects. Judd (1992) emphasizes that it is generally better to use orthogonal
polynomials. 2 To this end, we replace (10) with

�(t; a) =


 m∑

j=0

aj�j(t)


 e−�t + xss(1− e−�t); (15)

2 See Judd (1992,1998) for discussions of orthogonal polynomials and their use in developing projection
method algorithms for dynamic general equilibrium methods.
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where the family {�j(t)}∞j=0 is orthogonal. 3 Since we want to allow paths similar to
those in (10), a natural choice is

�j(t) = Lj(2�t)e−�t ; (16)

where Lj(x) is the degree j Laguerre polynomial. Laguerre polynomials are de0ned by
the recursive formulas

L0(x) = 1; L1(x) = 1− x

Lj+1(x) =
(
2j + 1− x

j + 1

)
Lj(x)− j

j + 1
Lj−1(x):

The key property of the �i is that they are mutually orthogonal; that is,∫ ∞

0
�j(t)�i(t) dt =

∫ ∞

0
(Lj(2�t)e−�t)(Li(2�t)e−�t) dt = 0; i �= j

because the Laguerre polynomials Li(2�t) are orthogonal with respect to the weight
e−2�t . The space of functions spanned by the form (15) is the same as that spanned
by the form (10), and (15) is as Lexible as (10) and imposes the same initial and
asymptotic conditions as (10). We prefer the orthogonal representation in (15) since,
as we will see, it has some numerical advantages.

Of course, there are many possible forms for the functional form �(t; a). � should
be Lexible enough to parsimoniously approximate any likely solution. The best choice
of m in (15) cannot be determined a priori. Generally, the only correct choice is
m = ∞. If the choice of the functional form is good then large m will yield very
good approximations. We are most interested, however, in the smallest m that yields
an acceptable approximation. We initially begin with small m and increase m until a
backward error diagnostic, such as the Euler equation error, indicates little is gained by
increasing m. Computational considerations also play a role in choosing a functional
form. For example, � should be simple to compute.

Our task is somewhat simpli0ed since each component of � is a one-dimensional
function of t. This fact implies that we can use a wide variety of possible functional
forms such as splines and rational polynomials. We will stay with polynomial systems
for the purposes of this study.

2.3. Projection conditions

Once we choose a parameterization �(t; a); we need some way to compute the
coe6cients a in our approximation so that �(t; a) approximately solves (1) and (2).
We will follow the procedure for projection methods laid out in Judd (1992). De0ne

3 Here we use the notation �(t; a) and do not include � explicitly. If there were a parameter in (14) like
the � parameter in (10), we fold it into the parameter list a. For the rest of the paper we view � as a
parameter which is 0xed 0rst and then vary the coe6cients a to 0nd a solution.
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the residual function

Ri(t; a) = gi(t; x(0; a); x(1; a); : : : ; x(s; a); : : :); i = 1; : : : ; n;

where again we treat t as a continuous variable. We want to 0nd some a such that
‖R(t; a)‖ is “practically” zero for all t, implying that Eqs. (1) and (2) nearly hold. For
such an a, the time path x(t; a) will be an approximate solution to the perfect foresight
model (1) and (2).

To proceed, we need to specify our notion of ‖R(t; a)‖ being small. There are several
ways to do this. The 0rst direct way is to de0ne the L2 norm (which equals the sum
of squared residuals)

SSR(a) =
∫ ∞

0
‖R(t; a)‖2w(t) dt; (17)

where w(t)¿ 0 is some weighting function. The least squares projection method
de0nes SSR(a) for some w and chooses a to solve

min
a

SSR(a): (18)

We cannot choose an arbitrary w(t) since the domain of integration is in0nite. However,
the functional form (10) converges to the true steady state at rate �, which implies that
R(t; a) also goes to zero at rate � for any choice of a. Therefore, (17) is well-de0ned
even if w(t) = 1.

The least squares method reduces the problem of solving an in0nite number of equa-
tions to solving a nonlinear minimization problem in Rmn, a more tractable problem.
Of course, the standard di6culties will arise. For example, there may be local minima
which are not global minima; since we want a good solution to (18), we would have
to use a global optimization method.

The least squares method is a direct implementation of the idea to make small the
error of the approximation. In general, one could develop alternative implementations
by using diJerent norms. However, most projection techniques 0nd a solution in a less
direct but more eJective fashion. The key concept is that of a projection. Speci0cally,
we choose a weight function w(t), a set of test functions, pi(t); and form projections
of the form

〈Ri(t; a); pj(t)〉 ≡
∫ ∞

0
Ri(t; a)pj(t)w(t) dt: (19)

For these techniques the basic idea is that the true solution would produce a zero
residual error function; in particular, the residual function would have a zero projection
in all directions. Therefore one way to 0nd the nm components of a is to 0x m
projections of the n residual functions, and choose a so that the projection of the
resulting residual function in each of those m directions is zero. That is, we want to
0nd a such that

〈Ri(t; a); pj(t)〉= 0; i = 1; : : : ; n; j = 1; : : : ; m (20)

for all residual functions Ri(t; a) and m test functions pj(t). Eqs. (20) are not su6cient
since the initial conditions must also be included in the analysis. The initial conditions
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(2) imply

x0; i(0) = �i(t; ai) = Mx1; i ; i = 1; 2; : : : ; nI : (21)

Therefore, we aim to 0nd some a∈Rmn which satis0es (21) as well as nm − nI
conditions of the form (20).

We have presented the basic conceptual idea. First, parameterize the xt path with
some parsimonious functional form which can approximate well the equilibrium path.
Second, 0x the coe6cients by directly imposing the initial and asymptotic conditions
on the functional form, and by imposing enough projections from (20). While the
concept is clear, there are many important details in the execution. The important
detail for the parametric path method is the numerical approximation of the integrals
in the projections. We next discuss this step in detail.

2.4. Integral approximations of projection conditions

The integrals in (19) need to be computed approximately. We continue with the
0ction of t being continuous. In fact, the 0ction of a continuous t is essential for
the next step since quadrature methods apply, strictly speaking, only to functions on
R. We will use standard integration methods to approximate the projections in (19).
Numerical integration methods generally take the form∫ ∞

0
h(t)w(t) dt :=

N∑
‘=1

!‘h(t‘) (22)

for quadrature weights !‘ and quadrature nodes t‘. The integration formula in (22)
tells us which t’s to use. The maximum t‘ tells us how much into the future we need
to look in order to approximate the xt path. Fair–Taylor, L–B–J, and other traditional
methods make an ad hoc determination of the horizon. Also, the t‘’s used depend
on the particular integration formula used in (22). In fact, the t‘’s we use are often
optimal given the integration formula used.

In the end, the parametric path method uses some integral approximation (22) and
reduces (1) and (2) to the system of nonlinear equations

Pij(a) ≡
N∑
‘=1

!‘Ri(t‘; a)pj(t‘) = 0; i = 1; : : : ; n; j = 0; : : : ; m; (23)

�(0; a) = Mx1; i ; i = 1; 2; : : : ; nI : (24)

The system (23) and (24) may be overidenti0ed. We want to impose (24), so we drop
nI equations from (23); it is normally preferable to drop projections with some of the
higher-order polynomial test functions. When we refer to the system (23) and (24) we
will be referring to an exactly identi0ed subsystem.

Here we see a critical feature of the parametric path method. In the end, we evaluate
the equilibrium equations at only a small number of times t. Traditional methods choose
some T and compute (1) for all t ¡T for some large T but ignore t ¿T except to
assume that xt =xss. In the parametric path method, we do not have to hunt for a good
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T . Instead, the integration formulas we use produce an e6cient collection of t’s to
use. We may increase N in order to increase accuracy and reliability of the method, a
strategy similar to choosing a larger T . In our examples, we will discuss three possible
integration strategies and show that the parametric path method diJers signi0cantly
from traditional methods.

The quadrature nodes t‘ will typically not be integers. If there is a reason to doubt
the legitimacy of treating t as a continuous variable, one could use the approximation∫ ∞

0
h(t)w(t) dt :=

N∑
‘=1

!‘h(tI‘); (25)

where tIi is the nearest integer to ti, and solve the projection system

Pij(a) ≡
mq∑
‘=1

!‘Ri(tI‘; a)pj(tI‘) = 0; i = 1; : : : ; n; j = 0; : : : ; m; (26)

�(0; a) = Mx1; i ; i = 1; 2; : : : ; nI : (27)

It is only at this point, the 0nal detail in the algorithm, that we even need to consider
restricting t to be an integer. Even in this case, the integration formulas tell us what
choices to make for t.

DiJerent choices of the test functions pj de0ne diJerent implementations of the
projection method and require diJerent integration formulas. We will use the Galerkin
method. In the Galerkin method, the approximation is a linear combination of basis
functions, the test functions are the basis functions, and the weighting function is chosen
so that the basis functions are mutually orthogonal. This produces a projections of the
form

Pij(a) ≡ 〈Ri(x; a); ’j(x)〉= 0; i = 1; : : : ; n:

The Galerkin method is just one possible alternative, but one with a good track record.
Many of the others described in Judd (1992) could also be used.

2.4.1. Gauss–Laguerre quadrature
The 0rst natural choice is Gauss–Laguerre quadrature. Since R(t; a) is bounded and

each �i(t) contains an e−�t factor, it is natural to apply Gauss–Laguerre integration
formula to (34). This approach is expressed in

Pj(a) =
∫ ∞

0
R(t; a)�j(t) dt =

∫ ∞

0
R(t; a)Lj(2�t)e−�t dt

= �−1
∫ ∞

0
R(s=�; a)Lj(2s)e−s ds

:= �−1
N∑
i=1

!iR(si=�; a)Lj(2si);

where si is the ith node in the N -point Gauss–Laguerre quadrature formula and !i is
the corresponding weight. Therefore, the integration formula tells us to examine the
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residual function at times si=�, and give R(si=�; a)Lj(2si), the integrand at t = si=�,
weight !i. If we insisted on using integers, we would use the approximation

Pj(a)
:=
∑

!iR(tIi ; a)Lj(2�t
I
i ):

The mathematics literature, however, does not recommend Gauss–Laguerre quadrature.
Gauss–Laguerre quadrature works best when the integrand is a polynomial multiplied
by e−�t , but R(t; a)Lj(2�t) is not a polynomial since it is asymptotically zero. Our
example below will display some of the weaknesses of Gauss–Laguerre in this context.

2.4.2. Logistic change of variable
We next examine two change of variable (COV) methods. First, consider the logistic

map

t(x) =−1
�
log

(
1− x
2

)
(28)

which maps x∈ [ − 1; 1] to t ∈ [0;∞). Its inverse is x = 1 − 2e−�t . The projection
equations’ integrals over [0;∞) are transformed into integrals over [− 1; 1], according
to

Pj(a) =
∫ ∞

0
R(t; a)�j(t) dt =

∫ 1

−1
R(t(x); a)�j(t(x))t′(x) dx: (29)

The integral in (29) is approximated using some integration formula for functions over
[− 1; 1]. Applying Gauss–Chebyshev integration produces the approximation 4

Pj(a)
:=

N∑
‘=1

R(t(x‘); a)�j(t(x‘))(1− x2‘)
1=2t′(x‘);

where the Chebyshev integration nodes are

x‘ = cos
(
2‘ + 1
2N

(
)
:

In this case, the weight on R(t(x‘); a)�j(t(x‘)) is (1− x2‘)
1=2t′(x‘).

The logistic transformation is somewhat natural since, by construction, R(t; a) is
asymptotically proportional to e−�t . However, it is not as stable as we desire since
the integrand R(t(x); a)�j(t(x))t′(x) is not bounded on [ − 1; 1]. This unboundedness
reduces the eJectiveness of any integration formula we may apply to (29).

2.4.3. Algebraic change of variable
We next examine a second COV transformation. Consider the algebraic map

t(x) = L
1 + x
1− x

; (30)

where L is a free parameter. It’s inverse is x=(t−L)=(t+L). The projection equations
again take the form of (29) but now with the algebraic COV de0ning t(x). We choose L

4 We have dropped a (=N factor since we want to solve P = 0.
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to help the integration in (34). The integral in (29) has range x∈ [−1; 1]. Since R(t; a)
is asymptotically proportional to e−�t we choose L so that the product e−�t(x)t′(x) has a
small derivative with respect to x; this makes the integral in (29) easier to approximate.
The value of L which minimizes the maximum slope of e−�t(x)t′(x) over x∈ [ − 1; 1]
is L = 1=�. Therefore, we choose L = 1=�. Otherwise, we proceed as we did with the
logistic COV. The mathematics literature 0nds the algebraic COV to be more stable
asymptotically. In fact, it corresponds to approximating the solution with a rational
Chebyshev polynomial, a generalization of Chebyshev polynomials to the half-in0nite
interval. See Boyd (1989) and the literature cited there for a discussion of these details.

Our example below will present all three methods. The example will demonstrate
some of the weaknesses and strengths of the alternative integration methods. It is useful
to know all three methods since one may work when the others do not.

2.5. Solving the projection conditions

To identify the coe6cients a we either use a minimization algorithm to solve (18)
or a nonlinear algebraic equation solver to solve (23) and (24). The nonlinear equa-
tions associated with Galerkin and other inner product methods can be solved by the
variety of nonlinear equation methods. A key advantage of the parametric path method
is that it reduces the problem to a small dense nonlinear equation system to which sev-
eral nonlinear equation solution methods can be eJectively applied. Newton’s method
can converge rapidly. Furthermore, if Newton and Gaussian methods do not work,
then one can use globally convergent homotopy methods since they do not require
good initial guesses. We will use Newton’s method in our example, but the user
should keep in mind the full range of methods made available by the reduction in
dimensionality.

2.6. Initial guesses

Good initial guesses are important since projection methods involve either a system
of nonlinear equations or optimizing a nonlinear objective. One advantage of the para-
metric path method is that there is a natural initial guess which may be quite close to
the solution. We know the steady-state values for all variables, and we often have a
good guess for the asymptotic rate of convergence to the steady state. A natural initial
guess is the path which smoothly moves from the initial state x0 to the steady-state xss

at the asymptotic rate of convergence �

xinit(t) = x0 e−�t + xss(1− e−�t): (31)

If � is the asymptotic rate of convergence of the solution to (1), then (31) is prob-
ably a good initial guess. For example, if x is the single state variable in a prob-
lem, xinit(t) is the global extension of the linear approximation based at the
steady-state xss.

The guess in (31) is a very simple one. We may be able to improve on it by using the
least squares method. The least squares approach will generally not produce high-quality
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approximations. However, it may yield low-quality approximations relatively quickly,
and, since the least squares method is an optimization method, convergence to a local
extrema is ensured even for a poor initial guess. These facts motivate a two-stage ap-
proach to 0nding an initial guess. First, begin with (31). Second, use a least squares
approach with a loose convergence criterion to quickly compute a low-quality approx-
imation better than (31). We did not need to do this in our examples, but we oJer it
here as a general guide to 0nding a satisfactory initial guess.

2.7. Checking the solution—error analysis

The system (23) and (24) computes (1) only at a small number, often a very small
number, of t’s. Therefore, a solution to (23) and (24) is perhaps a solution to (1),
the problem of interest, at only those t’s, and not a solution at other times. Before we
accept any solution to (23) and (24) as an approximate solution to (1), we need to
check it at some of the t’s we did not use in (23) and (24). This is a critical step
in any projection method which uses information at only a few points to approximate
a general solution. We will use the approach to backward error analysis used in Judd
(1992,1998).

Suppose that the solution to (23) and (24) implies the approximation xt = �(t; a∗).
To make the parametric path method comparable to traditional approaches, we evaluate

E = max
t=0;1;:::;T

‖g(t; x; z)‖;

where xt = �(t; a∗) and T is some large time. The index E is the maximum error
in Eqs. (1) over a long range of time. Most traditional methods for solving perfect
foresight models continue until E is small since testing E is part of any conventional
stopping criterion for solving nonlinear systems of equations. This check allows us
to use the same stopping rule as traditional methods. In the parametric path method,
if a solution to (23) does not imply a su6ciently small value for E we can begin
again with a more Lexible parameterization. In the case of an orthogonal polynomial
approximation this means using higher-order polynomial terms. In traditional methods,
a high value of E implies that one must increase T . Therefore, the use of E to test a
solution is a common feature of most algorithms. Table 1 summarizes the parametric
path method.

Table 1
Summary of parametric path method

Step 1: Choose parameterization x = �(t; a)
Step 2: Form residual functions Ri(t; a) = gi(t; �(t; a); z)
Step 3: Select test functions pj(t)
Step 4: Form projections Pij(a)

:= 〈Ri(t; a); pj(t)〉, using integration formulas where necessary
Step 5: Solve a system of equations consisting of initial conditions plus projection equations Pij(a) = 0
Step 6: Compute E=maxt=0;1; :::;T ‖g(t; x; z)‖; accept a if E is su6ciently small; otherwise begin again at

Step 1 with a more Lexible approximation
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2.8. Comparisons with alternative methods and extensions

The parametric path method initially appears to be diJerent from standard methods,
but a general perspective shows that they have a common structure. We next take a
general perspective to show the common elements and the diJerences. This compar-
ison will also help us develop hybrid methods combining the strengths of diJerent
approaches.

Problem (1) is an in0nite system of equations in an in0nite number of unknowns
with a solution in R∞. Any solution method replaces R∞ with a 0nite-dimensional
approximation. Solution methods diJer primarily in the 0nite-dimensional approxima-
tions they make. Methods using domain truncation 0nd an approximate solution to (1)
in the 0nite-dimensional subspace

X DT
T = {x∈R∞|xt = xss; t ¿T}:

X DT
T is the space of sequences which equal xss for t ¿T . Domain truncation methods

0nd some element of X DT
T which satis0es some initial set of equations in (1) and

neglects equations at later t. Successively better approximations are produced by in-
creasing the terminal date T .

The parametric path methods also 0nds an approximate solution to (1) in a 0nite-
dimensional space of R∞. The space used implicitly by the parameterization (10) is

X PP
m;� =

{
x∈R∞|xt − xss = e−�t

m∑
i=0

aiti
}
:

As we take m to in0nity, X PP
m;� spans elements of R∞ which converge to xss at rate

�. As we increase T , X DT
T also spans the relevant portion of R∞ in some sense, but

less e6ciently. The key question is which approach uses the smallest 0nite-dimensional
space containing good approximations to the true solution of (1). For problems with
smooth solutions, the space X PP

m;� has many advantages over X DT
T and they are exploited

in the parametric path method.
Mercenier and Michel (1994a) present a time aggregation which is similar to the

parametric path in that they also produce a nonuniform sample of times, ti, to produce
a model with substantially fewer unknowns. However, they do not use an explicit
interpolation scheme across those points (their graphs appear to use piecewise linear
interpolation) and they impose an approximate Euler equation between times ti and ti+1,
whereas we impose the true Euler equation between ti and ti +1. The parametric path
method imposes the asymptotic conditions directly through the functional form whereas
Mercenier and Michel (1994a) use a terminal valuation function in a 0nite-horizon
approximation. Also, their preferred method of choosing the ti (see Mercenier and
Michel, 1994b) aims at improving asymptotic performance whereas the parameter � in
our parametric form handles the asymptotics and our choices of ti aim at improving
initial and intermediate performance.

Some perfect foresight problems do not produce sparse systems of equations. In
particular, the overlapping generations model used by Auerbach et al. (1987) produces
systems of equations which are too dense for sparse methods. The parametric path



1572 K.L. Judd / Journal of Economic Dynamics & Control 26 (2002) 1557–1583

method does not rely on sparseness and could be used to solve overlapping genera-
tions models; we must leave examination of that application to future work. The key
assumption is that the endogenous economic variables behave in a relatively smooth
fashion and that a low-dimensional approximation is good once one focuses the search
on a suitable 0nite-dimensional space of functions.

The parametric path method can be useful even in cases where the equilibrium
paths of economic variables are not smooth. The projection aspect of the parametric
path method implies that the parametric path method will likely produce a smoothed
approximation of the true path. This can then be used as an initial guess for a more
re0ned method such as Fair–Taylor or any of the other methods.

A hybrid approach is also obvious for some problems. Suppose that large mone-
tary and tax policy changes are expected at t = 5; 10, and 15, but that after t = 15
the economy experiences no more shocks. The equilibrium paths for consumption, in-
vestment, and prices are likely to be volatile and not smooth for t ¡ 15. However,
after t = 15 the equilibrium paths will likely be smooth. If the solution is smooth
after t = 15 then one could use a parameterization similar to (15) for t ¿ 15 but
allow equilibrium at t ¡ 15 to be represented by a Lexible sequence, as in domain
truncation methods. The collection of unknowns would be the xt for t ¡ 15, plus
the coe6cients of a parameterization for xt at t ¿ 15. The equations would be the
full set of equations from (1) for t ¡ 15 plus a representative sampling of equa-
tions from (1) at suitable t’s after t = 15. In most problems studied in economics,
the economy eventually settles into a smoothly convergent path. While some initial
component may need to be approximated as in the truncated domain method, the
smooth terminal path is best approximated using the ideas from the parametric path
method.

3. Implementations of the growth example application

We now apply the parametric path method to the optimal growth problem displayed
in (4). We solve the system (6) and compare the parametric path solution with another
solution known to be of high quality. While this example is a very simple one, it does
share the essential features present in many other perfect foresight models: the system
is sparse and nearly diagonal, and equilibrium converges linearly to the steady state.
Also, this simple example allows us to discuss many of the critical details which go
into an eJective implementation of the parametric path method.

Our central example assumes u(c) = c1−+=(1 − +) with + = 1:1. We also examined
the cases + = 0:5; 5:0 and found no signi0cant diJerences in algorithm performance.
We choose � = 0:99, implying that utility is discounted by 1% during one period of
time. If we assume that the annual discount rate is 4%, a common assumption, then
our unit of time is a quarter. All examples assume F(k) = k + Ak- where - = 0:25
and A is chosen so that the steady-state capital stock is kss = 1. Other sensible values
of - produced the same results. We choose the initial capital stock so as to present
a challenge to the parametric path method. If the initial capital stock k0 is close to
the steady state then the 0rst-order approximation expressed in (31) is a very good
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approximation without any help from polynomial terms. Therefore, we choose k0 =0:5,
implying that the initial capital stock is half of the steady-state capital stock.

3.1. Parameterization

We use the parameterization

k(t) =
m∑
j=0

aj�j(t) + kss(1− e−�t); (32)

where �j(t)=Lj(2�t)e−�t . The initial condition is k(0)=k0=
∑m

j=0 aj�j(0) and implies

a0 = �0(0)−1


k0 −

m∑
j=1

aj�j(0)


 :

Therefore, the full parameterization is

k(t) =
m∑
j=1

aj�j(t) + �0(0)−1


k0 −

m∑
j=1

aj�j(0)


+ kss(1− e−�t) (33)

and the unknowns are the coe6cients ai; i = 1; 2; : : : ; m.
There are two key features of (33). First, the exponential decay terms e−�t , some of

which are in the � terms and one explicitly in (33), impose the boundedness conditions.
Second, the initial conditions are also satis0ed for any choice of a∈Rm. These facts
allow us to focus on 0nding an a which produces a good solution to (6).

The 0rst key step in applying the parametric path method is choosing � in (33). We
know from theory that the path of capital solving (6) converges asymptotically to the
steady state at a linear rate equal to ., the stable eigenvalue of the linearized system
around the steady-state kss. This suggests that we use � = . in the parameterization
(33) but we will investigate a range of values for �. It is easy to compute . for each
parametric case of (4) we examine; in particular, when +=1:1 the stable eigenvalue is
. = 0:0122. The second key step is deciding the number of polynomial terms, m, we
include in (33); we will consider several choices of m.

3.2. Projection conditions and integration formulas

Once we have chosen a particular form for (33), we next specify the conditions
which will 0x a∈Rm. The residual function for (6) is

R(t; a) = u′(F(k(t))− k(t + 1))

−�u′(F(k(t + 1))− k(t + 2))F ′(k(t + 1));

R(t; a) is well-de0ned for any real value of t, not just integer values of t, since k(t)
is de0ned for all t in (33). This observation makes us more comfortable with using
continuous variable methods. We want to choose a so that R(t; a) is nearly zero for
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Table 2
Gauss–Laguerre weights and times

10-point formula
Times 22; 115; 285; 536; 875; 1312; 1866; 2564

Weights 0:31; 0:40; 0:22; 0:062; 0:0095; 7:5(−2); 2:8(−3); 4(−5); 2(−7); 1(−11)

20-point formula
Times 5:8; 30; 75; 140; 225; 332; 460; 611; 786; 987,

1214; 1471; 1760; 2086; 2453; 2870; 3347; 3903; 4574; 5452

Weights 0:17; 0:29; 0:27; 0:17; 0:075; 0:025; 0:0062; 0:0011; 1:6(−4); 1:5(−5)
1(−6); 5(−8); 2(−9); 4(−11); 5(−13); 3(−15); 1(−17); 2(−20); 5(−24); 2(−28)

Note: x(−m) means x × 10−m.

all t. By construction, R(t; a) → 0 and t → ∞. The coe6cients a adjust k(t) so that
R(t; a) is small for 0nite t. We will use the Galerkin method where the test functions
are the basis functions �j = Lj(2�t)e−�t . To this end, we de0ne the set of projection
formulas

Pj(a) =
∫ ∞

0
R(t; a)Lj(2�t)e−�t dt; i = 0; 1; : : : (34)

and approximate the Pj(a) with numerical quadrature formulas of the form

Pij(a) ≡
N∑
‘=1

!‘Ri(t‘; a)Lj(2�t‘) = 0; i = 1; : : : ; n; j = 0; : : : ; m: (35)

We apply the three basic integration formulas discussed above to illustrate the
diJerences.

First, we used Gauss–Laguerre quadrature. Table 2 displays the times, 5 t‘, used for
the 10- and 20-point quadrature formulas in the case += 1:1 and �= .= 0:0122. The
most striking feature is the dispersion of times used by the formulas. The 0rst time
used in the 10-point formula is t=22. Therefore, if we use Gauss–Laguerre integration
our algorithm ignores the Euler equation errors in the 0rst 21 periods. This appears
odd since it is the early portion of the equilibrium path which is unknown to us. The
last time used is the distant t=2564. The 20-point formula uses more “early” times—
t=5:8 and 30 are included—but it is still remarkable how few early times are used. If
we chose � diJerent from ., the impact on the ti = si=� is proportional. For example,
if � = 2. then each time t is replaced by t=2. A larger magnitude for � implies that
the approximate solution converges to the steady state faster and that earlier times are
used in the projection equations.

The second important feature of Gauss–Laguerre integration is the pattern of weights.
The weights for both the 10- and 20-point formulas are heavily concentrated on the
early times. The 0rst projection is �1(t) = e−�t and only the early times matter for

5 To economize on space, we only show the 0rst few signi0cant digits of the t‘ values. No time t‘ in
Table 2, or any other similar table, is an integer.
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Table 3
Logistic transformation—weights and times

10-point formula
Times 1:01; 9:2; 26; 52; 90; 142; 213; 315; 477; 834

Weights 0:049; 0:13; 0:19; 0:2; 0:18; 0:13; 0:08; 0:03; 8(−3); 3(−4)

20-point formula
Times 0:25; 2:3; 6:4; 13; 21; 32; 45; 61; 79; 101,

127; 157; 193; 235; 285; 348; 427; 536; 702; 1061

Weights 0:012; 0:036; 0:058; 0:076; 0:09; 0:1; 0:1; 0:1; 0:09; 0:08,
0:07; 0:06; 0:05; 0:03; 0:02; 0:01; 6(−3); 2(−3); 5(−4); 2(−5)

Note: x(−m) means x × 10−m.

P1(a). The formula puts very little weight on the most distant times, but even t =536
contributes makes a 6% contribution to the 0nal approximation of the 10-point formula.
For projections Pj(a) with large j, the small weights for large ti values is partially
balanced by the fact that the Lj(2�ti) values are quite large for large ti, implying that
most !‘Ri(t‘; a)Lj(2�t‘) terms in (35) are nontrivial. Therefore, the large ti values
are important. However, if one were to use more than 20 points, many of the new
points’ weights would come close to machine zero. This would make their contribution
a possible source of error. Therefore, there is little value in using many points. While
the Gauss–Laguerre quadrature method may be useful in small problems like ours, it
is not likely to be reliable in general.

We next used the logistic COV methods. Table 3 displays the times used in (35)
and their weights, again for the case �= 0:0122. In this case, we see that early times
are better represented than in the Gauss–Laguerre case, and that the weights are also
less concentrated. If we chose � diJerent from ., the impact on the times is transparent
in (28). For example, if �=2. then each time t is replaced by t=2. Also, note that the
weights for the large t values are much larger than the weights for the large t’s in the
Gauss–Laguerre formulas; therefore, the terms in (35) make more uniform contributions
to the integral approximation.

The 0nal case used the algebraic COV. Table 4 contains the times and weights used
in the 10- and 20-point formulas when + = 1:1, � = . = 0:0122. We see that the t’s
used by the algebraic transformation are somewhat more concentrated at small values
than in Table 3. As in Table 3, the weights are relatively uniform except for large
t’s. Since R(t(x); a)t′(x) has bounded derivatives on [ − 1; 1], we expect that integral
formulas are more reliable in general. As before, if we choose � diJerent from ., the
impact on the times is transparent from (30) and our choice L= 1=�. For example, if
�= 2. then each time t is replaced by t=2.

Tables 2–4 display the key diJerences among the integration methods. In particular,
the COV formulas use more uniform weights than the Gauss–Laguerre formula and
samples more heavily from the early times. This is a natural feature of using Gauss–
Chebyshev quadrature which also oversamples points at the ends of the [−1; 1] interval.
The Gauss–Chebyshev oversampling near x =−1 corresponds to using early t’s.
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Table 4
Algebraic transformation—weights and times

10-point formula
Times 0:51; 4:7; 14; 31; 60; 112; 218; 478; 1422; 13232

Weights 0:025; 0:075; 0:13; 0:18; 0:22; 0:22; 0:13; 0:015; 7:0(−7); 5:0(−68)

20-point formula
Times 0:13; 1:1; 3:2; 6:5; 11; 17; 26; 37; 51; 70

96; 132; 184; 261; 386; 602; 1030; 2071; 5851; 53091

Weights 0:0062; 0:019; 0:031; 0:044; 0:057; 0:071; 0:084; 0:097; 0:11; 0:11
0:11; 0:10; 8(−2); 5(−2); 2(−2); 2(−3); 3(−5); 2:2(−10); 9:6(−30); 1:2(−278)

Note: x(−m) means x × 10−m.

3.3. Numerical results

The power and precision, as well as the sensitivity to implementation details, of the
parametric path method are illustrated by the numerical results for the example in (4)
with u(c) = c1−+=(1 − +) and F(k) = k + Ak-. The tables below assume + = 1:1 and
� = 0:99. The problem (4) is a trivial one in many ways but we can be con0dent
about the parametric path method only if it performs well for simple problems like
(4). Therefore, it is appropriate to focus on this application before moving on to larger
problems.

We used Newton’s method to solve the various implementations of (35), with the
proviso that we allow only 10 iterates and take that iterate for which the norm of
(35) is smallest. The initial guess is always (31). These choices handicap us somewhat
since there are better nonlinear equation solution methods, such as the Powell hybrid
method. We do this so that we can focus on the basic ideas. We also imposed a very
tight convergence criterion on our Newton algorithm, stopping only when the norm of
(35) was below 10−10. If the parametric path method works well with these handicaps,
then it is likely to work even better generally.

We evaluate the solutions in three ways. First, we compute the maximum Euler
equation error over the 0rst 2500 periods. This is de0ned in

EE = max
t=1;:::;2500

|g(t; k̂ t ; k̂ t+1)|
u′(ĉt)ĉt

; (36)

where k̂ t and ĉt are the capital and consumption paths implied by the solution to (35).
This index can be used for any problem, and should be used to evaluate the accuracy
of any numerical solution. In general we do not know how large m should be to
get a good solution. Therefore, the parametric path method starts with a small m and
increases it until we arrive at a solution where EE is below some target level.

Second, since problem (4) is simple, we compute the optimal consumption policy
function C(k) for (4) using the method outlined in Judd (1992). The normalized Euler
equation errors, as de0ned in (36), from that method were 10−10 or less, so we took
those solutions to be the truth. This means that if a social planner used C(k) at every
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Table 5
Maximum Euler equation error

m � = 0:1. � = 0:5. � = . � = 2.

0 6:4(−3) 4:2(−3) 2:7(−4) 1:8(−2)
1 4:6(−3) 1:4(−3) 7:8(−5) 1:3(−2)
2 3:4(−3) 3:4(−4) 5:2(−6) 1:6(−2)
3 2:5(−3) 2:7(−4) 3:1(−5) 1:8(−2)
4 1:7(−3) 5:9(−5) 8:6(−6) 2:0(−2)
5 1:2(−3) 7:6(−5) 1:2(−5) 2:0(−2)
6 8:4(−4) 7:5(−6) 3:7(−6) 1:9(−2)

point in time then at every point in time his choice for consumption is less than one
dollar per 1010 dollars, a very small error. We used C(k) to compute the true path for
k and c up to t = 2500 given the initial value k = 0:5. These paths were then used to
assess the accuracy of the parametric path method. Speci0cally, we take the true path
kt and the path k̂ t produced by the parametric path method, and report the maximum
error relative error as de0ned in

Ek = max
t=1;:::;2500

|kt − k̂ t |
kt

:

Similarly, the maximum relative error for consumption is de0ned by

Ec = max
t=1;:::;2500

|ct − ĉt |
ct

The 0rst step in the parametric path method is choosing � in (33). The asymptotic
rate of convergence to the steady state of (4) is a natural choice; let . be that value.

For += 1:1; . = 0:0122. It is easy to compute . for each case of (4) we examine.
Table 5 examines the four choices �= 0:1.; 0:5.; .; 2.. Table 5 also examines several
choices of m, the degree of the polynomial pieces of our approximation (16).

Tables 5–7 present results when we use 20-point Gauss–Chebyshev integration with
the algebraic transformation in (30). The tables examine �∈{0:1.; 0:5.; .; 2.} and
m∈{0; 1; 2; 3; 4; 5; 6}. The case m= 0 takes the initial guess as the 0nal solution. The
diJerences between the m=0 and m¿ 0 cases tell us how much we gain from adding
the polynomial terms to the approximations in (10) and (15).

Table 5 presents the maximum Euler equation error. As expected, the choice of �=.
does best, presumably since the asymptotic convergence in the approximated path, �,
equals the known true rate .. In fact, the solution with m = 1 does almost as well
as m = 6. Going from m = 0 to 6 reduced the Euler equation errors by a factor of
100, showing that the polynomial terms reduce the error substantially. When we choose
�=0:5., the procedure does almost as well. The approximation with �=0:5. and m=1
is 100 times worse than that for �= . and m= 1, but the �= 0:5. solutions improve
substantially as we increase m, and essentially catches up to the �=. case when m=6.
The �= 0:1. choice also improves steadily as we increase m, but much more slowly.
These cases show that if we use a � in (16) which is less than the eigenvalue .,
the true asymptotic rate of convergence, then the polynomial terms can compensate.
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Table 6
Maximum error in kt

m � = 0:1. � = 0:5. � = . � = 2.

0 3:5(−1) 1:2(−1) 9:8(−4) 1:3(−1)
1 1:3(−1) 2:7(−2) 5:7(−4) 1:0(−1)
2 1:0(−1) 5:6(−3) 1:6(−4) 6:3(−2)
3 7:0(−2) 2:2(−3) 9:6(−5) 3:7(−2)
4 4:7(−2) 7:1(−4) 3:7(−5) 2:1(−2)
5 3:1(−2) 3:5(−4) 2:2(−5) 1:4(−2)
6 2:0(−2) 1:2(−4) 8:7(−6) 9:4(−3)

Table 7
Maximum error in ct

m � = 0:1. � = 0:5. � = . � = 2.

0 1:3(−1) 7:3(−2) 2:0(−3) 1:5(−1)
1 7:7(−2) 1:0(−2) 2:2(−4) 4:9(−2)
2 4:9(−2) 2:3(−3) 7:3(−5) 3:8(−2)
3 3:0(−2) 1:2(−3) 8:0(−5) 3:3(−2)
4 1:9(−2) 4:0(−4) 3:1(−5) 2:8(−2)
5 1:1(−2) 2:6(−4) 2:5(−5) 2:5(−2)
6 7:0(−3) 7:6(−5) 9:4(−6) 2:0(−2)

The last column in Table 5 shows that choosing �¿. is much more dangerous. In
fact, when � = 2., the approximations do not improve as we increase m from 1 to
6. Therefore, it is much easier for the polynomial terms in (16) to compensate for a
too small choice of � than for an excessively large choice of �. This is intuitive since
large values of � crush polynomial terms quickly, making it di6cult for the polynomial
terms to compensate for a bad choice of �. In contrast, if the � choice is too small,
the polynomial terms can help the path get to the steady state more quickly since they
control the path for small t. For most problems, one has to rely on the EE errors
computed in Table 5 when evaluating a numerical solution. The typical algorithm will
continue until EE is below some target. Table 5 shows that the parametric path method
can achieve small values for EE.

Since our problem is simple, we can also use projection methods from Judd (1992)
to compute the consumption policy function C(k). This will not be possible for large
problems where Fair–Taylor and L–B–J are used, but the ability to use projection
methods to compute C(k) for this problem gives us a chance to directly measure the
error of the parametric path solution (or any other method applied to the example
problem). Tables 6 and 7 report the maximal capital path errors, Ek , and the maximal
consumption path errors, Ec. These errors follow the same patterns as the EE errors.
The errors decline as m increases and increase as � deviates from .. However, the
relative errors in k and c are often larger than the normalized Euler equation errors in
Table 5. In some cases, the relative errors in k and c are an order of magnitude or
more greater than the relativized Euler equation errors. When we solve systems like
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Table 8
Performance indices

Number of iterations 3–5, except when � = 2.
Jacobian condition number 0–5, except when m is close to N

(1) we often rely on the size of the errors in (1) to indicate when we can stop and
accept a solution. These results tell us that we need to put stringent stopping rules on
(1) if we are going to have accurate solutions for the economic variables of interest.

We present only the results for the algebraic COV approach since the results for
the other methods were almost identical. There were a few diJerences. The Gauss–
Laguerre method did worse when �=2. than the other two methods, probably reLecting
the facts that it is di6cult for the method to work when � = 2. and that the Gauss–
Laguerre weights are nearly machine zero for some points. Also, most methods had
di6culty when m = 6 and N = 10. The method where we set m = N , commonly
called collocation, never worked. This arises because, as Tables 3 and 4 indicate, there
are always some points in a quadrature formula which have essentially zero weight.
Therefore, an N -point integration rule is really an N − 2 or N − 3 point formula or
worse. Therefore, in order to avoid ill-conditioning, we need to choose N � m.

The details of these procedures were important. We also tested some Newton–Cotes
rules combined with the algebraic transformation approach and found that they did
much worse. When we used the algebraic transformation (30), we had to choose the
free parameter L, and we argued that L= 1=� was a good value. We tried some alter-
native values for L and found that the rule L=1=� was a good rule, performing better
than alternatives where L was substantially diJerent. The results concerning the choice
of �, the integration rules, and the choice of L in (30), show that the performance of
the parametric path method is sensitive to the implementation. We cannot use arbitrary
functions of the form (10). However, we did 0nd good implementations of the para-
metric path method once we applied basic ideas from approximation and quadrature
theory.

Some other indices indicate the e6ciency of the parametric path algorithm. Table
8 reports some important statistics. Only a few iterations of Newton’s method were
needed in all cases. Recall that we used a very tight convergence criterion of 10−10; a
more standard criterion of 10−6 would have reduced the number of iterations by one
always and sometimes two.

The condition number of a nonlinear system of equations is important for the perfor-
mance of Newton’s method, or any method using the Jacobian. The condition numbers
of the Jacobians were always low, below 6, except for the nearly underidenti0ed prob-
lems. The low condition number of the Jacobian is part of the reason why so few
iterations of Newton’s method were needed. We got low condition numbers because
we used an orthogonal basis for our approximation. When we used (10) the condition
numbers were much higher and convergence much slower. In fact, Newton’s method
often failed when we used (10). Furthermore, the Jacobians were nearly triangular with
the diagonal elements and elements above the diagonal dominating the elements below
the diagonal.
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We maintained the 0ction that t was continuous throughout the computations, only
restricting ourselves to integer t when we evaluated the errors EE; Ek , and Ec. We
could have rounded all the noninteger values of t used in the projection equations,
but when we did so the approximations were substantially worse, often increasing our
error indices by a factor of 10. There was no problem arising from treating t as a
continuous variable.

Our example is a particularly simple one whereas we hope that the parametric path
method is useful for more complex problems. Space limitations prevent us from pur-
suing more interesting examples, but some multidimensional models can be considered
using our results. Consider the problem

max
ct

∞∑
t=0

�t(u1(c1; t) + u2(c2; t))

s:t: ki; t+1 = F(ki; t)− ci; t ; i = 1; 2

ki;0 = 0:5: (37)

This is a problem with two capital stocks and two consumption goods, but utility is
additively separable across time and goods, only good i is used to produce capital
stock i, and only capital stock i is used to produce good i. We are also implicitly
assuming that labor supply to each sector is 0xed. The separability implies that the
good 1 and capital stock 1 can be treated independently from good 2 and capital stock
2. Therefore, we have already solved the two-good model in (37). Our procedure would
0rst 0nd the dominant eigenvalue, which would be the eigenvalue for the single good
economy for good 1 if u1 has the smaller intertemporal elasticity of substitution. It
would then use that eigenvalue to approximate both the k1 and k2 paths. Our results
show that the parametric path method would do well even for the faster converging k2
since we would be using the dominant (slowly convergent) eigenvalue to approximate
more rapidly convergent k2 path. Tables 5–7 showed that the parametric path algorithm
worked well even when ��.. This simple example indicates that the parametric path
method would work well even in more complex multidimensional contexts with a
variety of eigenvalues as long as we correctly identify the dominant eigenvalue.

3.4. Comparisons with alternative methods

Our example is far simpler than any interesting general equilibrium model. Therefore,
any comparisons with other algorithms must be considered preliminary, and any 0rm
conclusions must wait for comparisons based on much larger models. However, our
simple example does highlight trade-oJs which will be present in any application. The
parametric path method performed far faster in our examples than either Fair–Taylor
or L–B–J possibly could. If one truncated the problem at T = 100, then L–B–J must
invert a sparse near-diagonal matrix of dimension 100. This is not di6cult, but it at
least requires evaluating the Euler equation for t=1 to t=100 each time the Jacobian
is needed. The parametric path method evaluated the Euler equation only at 20 points
in our examples, a factor of 0ve times fewer points. Furthermore, the 20 points chosen
were optimal according to some integration scheme, implying a more accurate sample.
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Since 100 quarters, or 25 years, is a rather short horizon in these models and since
the parametric path method converged in just a few Newton steps, it is clear that
the parametric path method dominates for our examples. Also, the advantages of the
parametric path method will likely increase when we move to more complex models
since the Jacobians in the L–B–J method grow larger and more complex faster than
do the Jacobians in the parametric path method.

By transitivity, the parametric path method also outperforms Fair–Taylor by orders of
magnitude. Again, the key factor is that the Fair–Taylor evaluates the Euler equations
at each 0¡t¡T . Furthermore, the slow convergence of such Gauss–Jacobi schemes
implies that this needs to be done many times.

The main idea behind the parametric path method is similar in spirit to Krylov
methods (and their early forms, such as conjugate gradient methods). The inner loop
of a Krylov method reduces a large problem to a smaller one which generates an
approximation using ideas similar to our projection method. The outer loop examines a
succession of 0nite-dimensional approximations, where the new directions are chosen
to keep the smaller 0nite-dimensional problems well-behaved. The parametric path
method also continues by examining successively larger approximation spaces until the
apparent error is small. In our version of the parametric path method, the sequence of
spaces used is exogenously speci0ed, but a more re0ned version could endogenize the
sequence of approximations used.

A closer competitor is the Mercenier and Michel (1994a) approach. The total com-
putational eJort is similar, but direct comparisons (compare their Fig. 1 with our Ta-
bles 5–7) show that the parametric path method produces substantially more accurate
solutions, particularly at early t, than the Mercenier–Michel approach. However, the
examples used in Mercenier and Michel (1994a) and here are too simple to draw any
0rm conclusions. In particular, combining the time aggregation approach in Mercenier
and Michel (1994a) with the L–B–J Newton-style algorithm would likely produce a
good method. Comparisons of these methods using large models will be needed before
we can make any judgment.

The projection equations system (23) could also be a large system. The system
(23) is nearly triangular in many of our examples. This property is expected given the
orthogonality of the projections and indicates that Gauss–Seidel methods, such as those
used in Hughes Hallet and Piscitelli could be applied to (23) if (23) was too large
for Newton’s method. If we used a 0nite-element approach, (23) would be sparse and
we could use the Newton-style methods used in Juillard et al. (1998) and Gilli and
Pauletto (1998). The main accomplishment of the parametric path method is the more
e6cient reduction in dimensionality. The reduced system can still take advantage of
many other techniques for solving large systems.

4. Conclusion

The parametric path method oJers a new approach to solving perfect-foresight mod-
els. It parsimoniously parameterizes the time path of the unknown economic variables
and then solves for the unknown coe6cients. The parametric path method combines
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methods from approximation theory, numerical integration, and nonlinear equations to
quickly 0nd a parsimonious approximation to the dynamic equilibrium. Some simple
examples show that these parsimonious approximations can also be excellent approx-
imations. The algorithm is more Lexible than most alternatives. In particular, it does
not just apply to economic problems which reduce to sparse systems of nonlinear
equations. The ultimate value of the parametric path method can only be determined
by its applications to nontrivial problems, but the Lexibility of the method indicates
substantial promise.
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