
Computers & Operations Research 27 (2000) 399}408

Solving a savings allocation problem by numerical dynamic
programming with shape-preserving interpolation

Sheng-Pen Wang!,*, Kenneth L. Judd"

!Department of Business Administration, Chang Gung University, Taoyuan 33302, Taiwan
"Hoover Institution, Stanford University, Stanford, CA 94305, USA

Received 1 October 1998; received in revised form 1 January 1999

Abstract

This article introduces a bivariate shape-preserving interpolation algorithm to approximate the value
function of a dynamic program. First, we present a savings allocation problem between a pension account
and another non-pension one. With the objective of maximizing the present value of utility over a life cycle,
the investor can distribute his or her savings, in each account, between stocks and cash funds. Formally, this
complex problem involved with various tax rules is in dynamic programming formulation and can only be
solved numerically. It is known that the value function of the associated two-dimensional dynamic program
inherits monotonicity and convexity of the investor's risk-averse utility function. To preserve these shape
characteristics, we apply a bivariate shape-preserving interpolation algorithm in the successive approxima-
tion of the value function. Finally, we have computational results for this savings allocation problem,
showing that the proposed shape-preserving interpolation method is superior to other dynamic program-
ming methods with less sophisticated interpolation techniques.

Scope and purpose

The savings allocation problems with several dimensions of continuous states are too complicated and
thus can only be solved by numerical dynamic programming. Theory of dynamic programming has shown
that the associated value function inherits the shape characteristics } monotonicity and concavity } of
a risk-averse investor's utility function. However, there are no numerical methods which guarantee to
preserve these shape features in the course of approximation of the value function. In this article, we model
a savings allocation problem as a two-dimensional dynamic program and we present a bivariate shape-
preserving interpolation method to solve it. ( 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Dynamic programming; Savings allocation; Interpolation

*Corresponding author. Tel.: #886-3-238-3016-x5413; fax: #886-3-327-1304.
E-mail address: wangsp@mail.cgu.edu.tw (S.-P. Wang)

0305-0548/00/$ - see front matter ( 2000 Elsevier Science Ltd. All rights reserved.
PII: S 0 3 0 5 - 0 5 4 8 ( 9 9 ) 0 0 0 4 4 - 1



1. Introduction

Tax policy discussions often concern how taxes a!ect savings and what policies can
encourage investment. Two such examples are the debates about pension savings accounts
and the taxation of capital gains from investment; see, for example, Shoven and MaCurdy [1].
Any analysis of these issues is seriously hindered by the complexity that tax rules generate.
For example, pension savings are tax-favored and illiquid and thus individuals may
manipulate the realization of capital gains to either minimize tax payments or maximize the
present value of utility. These complexities imply that behavior is not just a function of market
value of one's portfolio but also depends on the history of investment returns, rates of consump-
tion, and the distribution of wealth between tax-favored pension accounts and ordinary savings
accounts.

In this paper we aim to investigate an individual optimal policy of consumption stream and
allocation of investment between a tax-favored pension savings account and a ordinary, taxable
savings account. In each of these two accounts, the individual decides his portfolios between stocks
and cash funds. The optimization criterion is to maximize the present value of utility over
consumption across the investor's life cycle. We use an increasing and concave utility function to
represent the individual risk-averse preference. Formally, this problem is a dynamic programming
problem and can only be solved numerically. Indeed, according to Kendrick [2], the only way to
rigorously analyze investor behavior faced with various tax rules and di!erent consumption
patterns is numerically. We model this savings allocation problem as a two-dimensional dynamic
program and iteratively solve this "nite-horizon problem, starting at the termination time (the last
period of individual life) and working backwards to the beginning. The best approximate invest-
ment policy for this savings allocation problem can be derived from the optimal control variables
while computing the associated value function.

It is important, however, to note that the risk-averse utility function has particular shape
characteristics } monotonicity and concavity } over the consumption domain. Under fairly
standard conditions as indicated in any dynamic-programming text such as Stokey and Lucas
[3], the value function inherits these shape features. As the state variables in this
investment allocation problem } savings in the pension account and that in the non-pension
account } are naturally continuous, we have to apply approximation methods in computing
the discretized value function. To our best knowledge, however, no approximation methods
guarantee to preserve the shape characteristics of value function data; the monotonicity and
concavity of the value function are deformed in the course of approximation, errors propagate and
hence the approximate solution is questionably acceptable. To preserve these shape features of the
associated value function of this savings allocation problem, we propose to apply the Costantini
[4] bivariate shape-preserving interpolation algorithm in the backward computation of the value
iterations.

The paper is structured as follows. In Section 2, we describe the savings allocation
problem and its associated two-dimensional dynamic programming formulation. Section 3
outlines the procedures of Costantini's bivariate interpolation and its special properties
of shape preservation. Section 4 reports the numerical results of the savings allocation problem
solved by shape-preserving approximation. Some concluding remarks follow in the "nal
section.
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2. The savings allocation problem

Suppose a worker earns before-tax wage w
t

in period t for t"1,2, ¹ and is retired for
t"¹#1,2, D (could be life expectancy). His utility function over consumption, u(c), is age
independent. Suppose that in each period the worker decides to allocate his savings after consump-
tion in a pension account and a conventional taxable account. The worker cannot borrow from the
pension account, but he can do so from the non-pension account. In each period he also has to
choose the investment portfolio of each account between stocks and cash funds. His objective is to
choose the stream of optimal consumption Mc

t
N, contributions to the pension account Mx

t
N, savings

to the non-pension account My
t
N, and portfolios between stocks and cash funds to maximize the

present value of his life-cycle utility with a time-preference discount factor 0(b(1.
To make this problem less complicated, we "rst specify the notation as follows:
x
t
: contributions to pension savings in period t, with restriction 0)x

t
)p )w

t
, when 1)t)¹,

where p is the maximal fraction of income allowed to contribute to the pension account; here we
assume there is no early withdrawal before retirement.

y
t
: contributions to the non-pension account in period t, might be negative to represent

borrowing.
X

t
: wealth accumulation in the pension account at the end of period t.

>
t
: wealth accumulation in the non-pension account at the end of period t.

h
t
: fraction of pension savings invested in stocks carried over the period t.

u
t
: fraction of non-pension savings in stocks carried over the period t.

z8
t
: identically and independently distributed rate of return of stocks.

r
t
: nominal rate of return on cash funds.

qw
t
: combined state and federal marginal tax rate on wage in period t.

qr
t
: combined marginal tax rate on cash fund yield in period t.

qz
t
: marginal tax rate on return (such as dividends and capital gains) of stock investments in

period t. Here we focus only on the special case that dividend tax rate is the same as capital gains
tax rate.

Using the above notation and E, the expectation with respect to the stochastic process Mz8
t
N, we

can formulate the savings allocation problem in the form of non-linear programming with the
objective

max
Mct,xt,yt,ht,rt

N
EG

D
+
t/1

bt~1u(c
t
)H

and four constraints:
(1) c

t
"w

t
!x

t
!y

t
!qw

t
(w

t
!x

t
)*0, t"1,2, ¹,2, D. (This is consumption}savings dy-

namics; here we assume the interest rates of return and of borrowing from the non-pension account
are equal.)

(2) X
t
"X

t~1
) (h

t
(1#z8

t
)#(1!h

t
)(1#r

t
))#x

t
*0, t"1,2, ¹,2, D. (This represents the

dynamics of wealth accumulation in pension savings. Note that investment pro"t in the pension
account is tax-free. Let X

0
"0 indicate zero initial pension savings.)

(3) >
t
">

t~1
) Mu

t
(1#z8

t
(1!qz

t
))#(1!u

t
)(1#r

t
(1!qr

t
))N#y

t
*0, t"1,2, D. (This is the

dynamics of wealth accumulation in the non-pension account. Taxes are levied on investment
returns of non-pension savings. Also let >

0
"0 represent no initial wealth therein.)
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(4) 0)h
t
)1, and !1)u

t
)2. (In the non-pension account, leverage in investment between

stocks and cash funds is allowed up to the double of wealth accumulation at the beginning of period t.)
Most optimization software packages can handle the above non-linear program, but they will

fail once the time horizon of the planning problem increases and the number of control variables
grows. On the other hand, due to its strong recursive property, this problem can be easily treated
by the dynamic programming technique. Dynamic programming is a powerful optimization
procedure since it exploits the sequential character of the operation of dynamic models and allows
non-linearities and stochastic inputs to be represented. It uses the value function to decentralize
a complicated stochastic/multiperiod optimization problem into a sequence of simpler determinis-
tic/static optimization problems.

The Bellman [5] equation provides the necessary and su$cient condition for optimality in the
dynamic programming formulation. To start with it, we have to specify the state variables. The
wealth accumulation levels at time period t, (X

t
, >

t
), are the natural choices. If we de"ne the value

iteration at the end of period t as

<t(X
t
, >

t
)"maxEMu(c

t`1
)#2#bD~t~1u(c

D
)N" max

Mcs,xs,ys,hs,rs
N
EG

D~t
+
s/1

bs~1u(c
t`s

)H, (1)

then Bellman's equation for this "nite-horizon dynamic program has the form

<t(X
t
, >

t
)"max

ct`1

u(c
t`1

)#bM<t`1(X
t`1

, >
t`1

) DX
t
, >

t
N, t"0, 1,2, D!1, (2)

with the terminal condition

<D(X
D
, >

D
),0. (3)

Here we impose the constraint (3) to force the worker to spend all his wealth at the last period.
Following the de"nition (1), we can rewrite the objective of the savings allocation problem as the
value function at time period 0; that is

max
Mct,xt,yt,ht,rt

N
EG

D
+
t/1

bt~1u(c
t
)H"<0(X

0
, >

0
). (4)

Starting with terminal condition (3), we shall solve backwards the value iterations } those recursive
equations in (2) } to "nd value function (4) de"ned on the two-dimensional space X]> and its
corresponding optimal control variables. As we typically compute the value function at a "nite
collection of points in X]> and make a guess about its value elsewhere, we need a smooth
interpolation method beforehand to make it work e!ectively the optimization step performed
in (2).

3. The shape-preserving interpolation

An interpolation method is shape-preserving means that the interpolation preserves the shape
characteristics, particularly, the monotonicity and concavity, of interpolating data. Since mono-
tonicity/concavity for bivariate functions is somewhat less clear than for univariate functions, to
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apply a bivariate shape-preserving interpolation method in solving value iterations (2) and (3), we
have to clarify the de"nition of the shape feature in two-dimensional spaces. Let f (x, y) be
a bivariate function de"ned on D"[a, b]][c, d] and suppose that both points z

1
"(x

1
, y

1
) and

z
2
"(x

2
, y

2
) belong to D. We call f a monotone increasing function on D if

f (x
2
, y

2
)*f (x

1
, y

1
),

whenever x
2
*x

1
and y

2
*y

1
; and we call f a concave function on D if

f (az
1
#(1!a)z

2
)*a f (z

1
)#(1!a) f (z

2
)

for any a3(0, 1).
In the last two decades, many papers dealing with surface "tting and with shape-preserving

interpolation have appeared in the literature, but few have been concerned with the intersection of
these two "elds, that is, with bivariate shape-preserving interpolation. Let

M(x
i
, y

j
, f

ij
) : x

i
(x

i`1
, y

j
(y

j`1
, i"0, 1,2, N, j"0, 1,2, MN (5)

be a given set of data, where f
ij
"f (x

i
, y

j
). Dodd et al. [6] used one-dimensional shape-preserving

curves along the grid lines and constructed rectangular patches. Although this method produces
visually pleasing plots, it does not guarantee that the surface will have the same shape of the data
inside the rectangles R

i,j
"[x

i
, x

i`1
]][y

j
, y

j`1
]. On the other hand, Costantini and Fontanella

[7] gave the "rst method for constructing shape-preserving surfaces which interpolate arbitrary
sets of data on rectangular grids using additional information

M(( f
x
)
i,j

, ( f
y
)
i,j

, ( f
xy

)
i,j

) : i"0, 1,2, N, j"0, 1,2, MN. (6)

Note that in the numerical implementation most two-dimensional dynamic programs are expected
to have continuously di!erentiable value functions as in theory. By using the envelope theorem,
which basically states the relationship between the marginal value and marginal utility in the
Bellman equation (see, e.g., Stokey and Lucus), we can derive the extra data of the "rst partial
derivatives and mixed partial derivatives of x and y. With the availability of slope data in (6) and
level information in (5), we can employ in solving dynamic programs more sophisticated approxi-
mation methods by which better computational results can be achieved.

Let the following set of two-dimensional data be given:

M(x
i
, y

j
, f (0,0)

i,j
, f (1,0)

i,j
, f (0,1)

i,j
, f (1,1)

i,j
) : i"0,2, N, j"0,2, M; x

i
(x

i`1
, y

j
(y

j`1
N,

where f (0,0)
i,j

"f (x
i
, y

j
), f (1,0)

i,j
"f

x
(x

i
, y

j
), f (0,1)

i,j
"f

y
(x

i
, y

j
), and f (1,1)

i,j
"f

xy
(x

i
, y

j
). For i, j arbitrary

but "xed, we denote by hx
i
"x

i`1
!x

i
, and by hy

j
"y

j`1
!y

j
the length of edges of

R
i,j
"[x

i
, x

i`1
]][y

j
, y

j`1
] and, for the integers n

i
, m

j
*3, we set the quantities

t
0
"x

i
, t

1
"x

i
#hx

i
/n

i
, t

2
"x

i`1
!hx

i
/n

i
and t

3
"x

i`1
,

u
0
"y

j
, u

1
"y

j
#hy

j
/m

j
, u

2
"y

j`1
!hy

j
/m

j
and u

3
"y

j`1
.

The restriction that n
i
is greater than three ensures the quantities t

1
and t

2
are distinct. The same

explanation applies to m
j
. We say that the data are (coordinatewise) increasing and concave with
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respect to x along the edge [x
i
, x

i`1
]]My

s
N, s"j, j#1, if, for the corresponding x-sections of the

data,

0)f (1,0)
i`1,s

(*x
i,s
(f (1,0)

i,s

holds and where *x
i,s
"( f (0,0)

i`1,s
!f (0,0)

i,s
)/hx

i
. This de"nition can be easily extended to the case where

the data are increasing and concave with respect to y. Moreover, for the "xed y"y
j
, we can easily

construct a one-dimensional piecewise interpolation of the given data M f (0,0)
r,j

, f (1,0)
r,j

: r"i, i#1N
along [x

i
, x

i`1
]]My

j
N and the function is linear on each interval [t

i
, t

i`1
], i"0, 1, 2; another

piecewise linear function in y3[u
0
, u

3
] can be constructed by the same way to interpolate

M f (0,0)
i,s

, f (0,1)
i,s

: s"j, j#1N along Mx
i
N][y

j
, y

j`1
]. By taking the product of these two univariate

piecewise linear functions (in x and y, respectively), we have a bivariate function l(x, y) on R
i,j

such
that for y6 3[y

j
, y

j`1
], and x6 3[x

i
, x

i`1
] arbitrary but "xed,

l(x, y6 )3C[t
0
, t

3
] (continuous on [t

0
, t

3
]) and l(x, y6 )3P

1
(piecewise linear)

for x3[t
i
, t

i`1
], i"0, 1, 2; similarly,

l(x6 , y)3C[u
0
, u

3
] and l(x6 , y)3P

1
,

for y3[u
j
, u

j`1
], j"0, 1, 2.

We outline as follows the construction of the C1(continuously di!erentiable) Costantini bivariate
shape-preserving interpolation on the rectangle R

i,j
"[x

i
, x

i`1
]][y

j
, y

j`1
]:

Step 1: Find n
i
*3, such that

n
i
*maxG

f (1,0)
i,j

#f (1,0)
i`1,j

*x
i,j

,
f (1,0)
i,j

!f (1,0)
i`1,j

*x
i,j
!f (1,0)

i`1,j

,
f (1,0)
i,j

!f (1,0)
i`1,j

f (1,0)
i,j

!*x
i,j

H.
Actually, if (5) and (6) indicate the given data are increasing and strictly concave, "nite n

i
always

exists. The choice of m
j
*3 has the same corresponding form with respect to y.

Step 2: Construct one univariate piecewise linear function "tting M f (0,0)
r,j

, f (1,0)
r,j

: r"i, i#1N along
[x

i
, x

i`1
]]My

j
N and the other one interpolating M f (0,0)

i,s
, f (0,1)

i,s
: s"j, j#1N on Mx

i
N][y

j
, y

j`1
].

Step 3: Take the product of these two univariate piecewise linear functions to form a smooth,
bivariate function l(x, y) on R

i,j
. It can be easily veri"ed that l(x,y) satis"es

l(x, y6 )3P
1

for a "xed y6 3[y
j
, y

j`1
] and x3[t

i
, t

i`1
], i"0, 1, 2,

l(x6 , y)3P
1

for a "xed x6 3[x
i
, x

i`1
] and y3[u

j
, u

j`1
], j"0, 1, 2,

and

l(x
r
, y

s
)"f (0,0)

r,s
, l

x
(x

r
, y

s
)"f (1,0)

r,s
, l

y
(x

r
, y

s
)"f (0,1)

r,s
and l

xy
(x

r
, y

s
)"f (1,1)

r,s

for r"i, i#1, and s"j, j#1.
Step 4: Evaluate the shape-preserving surface Bl(x, y) on R

i,j
de"ned as

1
(hx

i
)ni(hy

j
)mj

ni,mj

+
p,q/0

(ni
p
)(mj
q

)lAxi
#

phx
i

n
i

, y
j
#

qhy
j

m
j
B(x!x

i
)p(x

i`1
!x)ni~p(y!y

j
)q(y

j`1
!y)mj~q.

The mathematical expression in Step 4 is the bivariate Bernstein polynomial of l(x, y) on the
rectangle R

i,j
. The variation diminishing property of Bernstein polynomials will ensure visually
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pleasing and smooth surfaces. Indeed, Costantini and Fontanella [7] proved that (Bl)(x, y)
interpolates the given data (5) and (6) up to the "rst-order degree, namely,

(Bl)(x
r
, y

s
)"f (0,0)

r,s
, (Bl)

x
(x

r
, y

s
)"f (1,0)

r,s
,

(Bl)
y
(x

r
, y

s
)"f (0,1)

r,s
, (Bl)

xy
(x

r
, y

s
)"f (1,1)

r,s
,

for r"0,2, N, s"0,2, M, and (Bl)(x, y) also preserves the monotonicity and concavity of the
interpolating suface over R

i,j
.

Finally, we sum up the application of shape preservation in numerical dynamic programming as
the following proposition.

Proposition 1. Suppose the value function <t( ) , ) ) is dexned on a convex, compact domain X]>. For
any strictly increasing and concave utility u( ) ), the value function <t(x, y) as calculated by Costantini
bivariate shape-preserving interpolation is always increasing and concave.

4. A numerical experiment

In this section we apply the bivariate shape-preserving interpolation in computing the value
iterations (2). For the purpose of illustration by a tractable planning, we take a #at tax system in
the pension savings allocation problem. We assume u(c)"!e~c, and b"0.9; w

t
"(1.05)t~1,

t"1,2, ¹ (wage rises with time,) and w
5
"w

6
"0 (no wage during retirement,) so correspond-

ingly, ¹"4, and D"6 (here one time period may represent, say, 10 years) the upper limit of
fraction of wage contribution to pension accounts is p"20%; the tax rates are
qw
t
"20%, qr

t
"10%, and qz

t
"30% for all t"1,2, D; the cash fund is assumed to have steady

#ows of interests with r
t
"7%, and the return rates of stocks are z8

t
3M!5%, 5%, 15%, 25%N with

equal probabilities to model the nature of high volatility yet higher average returns. Note that the
utility function u(c)"!e~c is strictly increasing and concave, the value iterations <t( ) , ) ) is
expected to be monotonically increasing and concave in the variables (X

t
, >

t
) for t"0, 1,2, 5.

We incorporate NPSOL in the computation procedure. NPSOL is a collection of optimization
subroutines designed to solve the non-linear programming problem: the minimization of a smooth
non-linear function subject to a set of constraints on the variables; see Gill et al. [8] The code is
written in standard Fortran 77, which in a double-precision #oating-point arithmetic allows for
a 16-digit accuracy. We take the grid size as 0.5 unit in each coordinate direction of the state space
[0, 5]][0, 5]. Computing backwards the value iterations by the C1 Costantini bivariate interpola-
tion method, we "rst report in Table 1 the coordinatewise shape preservation } monotonicity and
concavity } at grid points (X

t
, >

t
)3[0, 1.5]][0, 1.0]. Note that application of other methods with

less sophisticated interpolation techniques such as the state increment dynamic programming in
Larson and Casti [9] does not assure the interpolating surface over [0, 5]][0, 5] is shape
preserving, approximation errors hence propagate through the iterations (Table 1).

We then compute the corresponding optimal solutions of all decision variables such as
Mc

t
, x

t
, y

t
, h

t
, u

t
N at all grid points. We go forward from the current period 0, starting with

X
0
">

0
"0, and use bilinear interpolation in each period successively to get the approximate

solutions of those decision variables. We report in Table 2 these optimal streams of consumption
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Table 1
Value iterations preserve the monotonicity and concavity coordinatewise

X > <5(X, >) <5
X
(X, >) <5

Y
(X, >) <0(X, >) <0

X
(X, >) <0

Y
(X, >)

0.0 0.0 !1.00000 0.88000 1.07000 !2.53552 0.46405 0.56420
0.5 0.0 !0.67032 0.58988 0.71724 !2.31273 0.41931 0.50984
1.0 0.0 !0.44933 0.39541 0.48078 !2.11544 0.39541 0.48078
1.5 0.0 !0.30119 0.26505 0.32228 !1.95047 0.39540 0.48076

0.0 0.5 !0.60653 0.53375 0.64899 !2.28362 0.39078 0.47516
0.5 0.5 !0.40657 0.35778 0.43503 !2.07832 0.35670 0.43371
1.0 0.5 !0.27253 0.23983 0.29161 !1.90012 0.33372 0.40577
1.5 0.5 !0.18268 0.16076 0.19547 !1.74266 0.30917 0.37593

0.0 1.0 !0.36788 0.32373 0.39363 !2.05834 0.34792 0.42304
0.5 1.0 !0.24660 0.21701 0.26386 !1.87345 0.31987 0.38894
1.0 1.0 !0.16530 0.14546 0.17687 !1.70975 0.29513 0.35885
1.5 1.0 !0.11080 0.09751 0.11856 !1.56677 0.27306 0.33202

Table 2
Optimal streams of consumption, and optimal patterns of contributions, fractions of account balance in stock invest-
ment, and accumulative savings in both accounts for the savings allocation problem

c
1

c
2

c
3

c
4

c
5

c
6

0.64509 0.65469 0.64297 0.64510 0.61600 0.63114
(0.6451) (0.6511) (0.6387) (0.6302) (0.6103) (0.6553)

x
1

x
2

x
3

x
4

x
5

x
6

0.17342 0.21000 0.22050 0.23153 !0.45759 !0.78893
(0.1736) (0.2146) (0.2261) (0.2298) (!0.4483) (!0.7942)

h
1

h
2

h
3

h
4

h
5

h
6

* 57.14% 57.14% 57.14% 57.14% 57.14%
(*) (57.19%) (57.19%) (57.19%) (57.19%) (57.19%)

X
0

X
1

X
2

X
3

X
4

X
5

X
6

0 0.17342 0.40756 0.68365 1.00888 0.691135 0.00000
(0) (0.1736) (0.4128) (0.7013) (1.0102) (0.7024) (0.0000)

y
1

y
2

y
3

y
4

y
5

y
6

0.01617 0.01731 0.06263 0.11139 !0.24993 0.00000
(0.0160) (0.0172) (0.0624) (0.1119) (!0.2507) (0.0000)

u
1

u
2

u
3

u
4

u
5

u
6

* 39.42% 48.53% 57.14% 57.14% 46.01%
(*) (39.38%) (48.46%) (57.19%) (57.19%) (46.02%)

>
0

>
1

>
2

>
3

>
4

>
5

>
6

0 0.01617 0.03613 0.10439 0.22776 0.00000 0.00000
(0) (0.0160) (0.0358) (0.1039) (0.2281) (0.0000) (0.0000)
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Mc
t
N, contributions to pension and non-pension accounts Mx

t
, y

t
N, and the fractions of each account

savings invested on stocks Mh
t
, u

t
N at each time period t. Note that negative entries of x and

y indicate withdrawal. Also h
1

and u
1

can be anything, denoted by *, since we are starting with
X

0
">

0
"0, no any initial wealth in both accounts.

To compare the numerical performance and verify the accuracy of the results solved by dynamic
programming with bivariate shape-preserving interpolation, we redo this stochastic optimization
problem by using only the NPSOL subroutines to solve the corresponding non-linear program.
We report the decision variable outputs in the corresponding parentheses in Table 2. Note that the
minor di!erences indicate the dynamic programming scheme with shape-preserving smooth
approximation methods can do as well as NPSOL in solving the pension savings allocation
problem. However, if we increase the time periods, ¹ and D, to model, say, every single day's
process, then the number of decision variables will far exceed the capacity that NPSOL can handle;
instead, dynamic programming with smooth, shape-preserving interpolation methods can still
solve the subproblems iteratively and successfully to "nd solutions of the original large-scale
problem within the tolerance of approximation errors.

5. Conclusions and further research

This paper has demonstrated how a bivariate shape-preserving interpolation method can be
used to preserve the shape feature of the value function of a two-dimensional dynamic program.
The numerical outputs indicate that bivariate shape-preserving interpolation can not only improve
the approximation accuracy, but also ensure the stability of value iterations. A much simpler
version of univariate shape-preserving approximation method is discussed in Judd and
Solnick [10]. Wang [11] has numerical analysis for various shape-preserving approximation
methods applied to optimal economic growth problems. To the best of our knowledge, our
treatment provides the "rst study of shape preservation for two-dimensional economic
dynamics. We incorporate the Costantini bivariate shape-preserving interpolation procedure
and a dynamic programming formulation to solve numerically a pension savings allocation
problem whose closed-form solution is not available. The numerical solutions also display
economically important properties. At early ages the worker saves, building up his assets, and the
assets in both accounts are then dissaved during retirement. Quantitative outputs, even approxim-
ate, can usually be of great help to us in reaching qualitative conclusions for a complex economic
problem.

Possible directions for future research in the part of smooth approximation to solving multi-
dimensional continuous-state dynamic economic problems include carrying out a systematical
numerical comparisons of various high-dimensional methods for numerical dynamic programming
and extending the de"nition of shape preservation to higher dimensional spaces.
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