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Abstract

We develop methods to compute equilibria in dynamic models with incomplete asset
markets and heterogeneous agents. Using spline interpolation methods we approximate
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iteration methods and acceleration techniques. Exploring the optimization errors implied
by the approximate equilibrium rules we examine the quality of our results. The results
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1. Introduction

The Lucas asset pricing model (Lucas, 1978) has had an important in#uence
on "nancial economics and macroeconomics. However, the model assumes that
there exists a representative agent. Consumer heterogeneity is an obvious fact of
life and an appealing assumption from a theoretical point of view*with several
agents the model constitutes a generalization of the Arrow-Debreu Model of
general equilibrium under uncertainty (see Debreu, 1959) to a world with
incomplete markets, an in"nite time horizon, and smooth discounted utility
functions. Moreover, it is well-known that the representative agent model fares
poorly in explaining observed security prices (see for example Hansen and
Singleton, 1982). The joint hypothesis of incomplete consumption insurance and
consumer heterogeneity seems capable of enriching the pricing implications of
the original model (see Constantinides and Du$e, 1996).

While there are now proofs of existence of an equilibrium in Lucas-type
in"nite-horizon exchange economies with heterogeneous agents and incomplete
markets (see Magill and Quinzii (1996) or Hernandez and Santos (1996)), little is
known about the quantitative nature of these equilibria. In general it is imposs-
ible to compute these equilibria because that would be equivalent to computing
an in"nite number of equilibrium prices. Du$e et al. (1994) show that if the
exogenous shocks follow a "nite-valued time-homogeneous Markov process
then there exists an equilibrium in which the evolution of the endogenous
variables follows a time-homogeneous Markov process having a time invariant
transition with an ergodic measure.

When computing equilibria in in"nite-horizon models, one wants to focus on
dynamically simple, time-homogeneous Markov equilibria. The simplest such
processes are recursive equilibria where the current endogenous variables are
functions of the current state and where this state is of low dimension. Therefore,
one wants to establish the existence of such equilibrium representations and
approximate them by some "nite parameterization.

There are several attempts in the literature to compute recursive equilibria in
models with heterogeneous agents. Telmer (1993) considers a model with two
agents and a single bond and assumes that exogenous shocks together with
agents' current period bond holdings form a su$cient statistic for the future
evolution of the economy. He discretizes the state space and uses a Gauss}Seidel
strategy which searches for asset prices and an allocation of assets which comes
as close as possible to clearing the market given the discretization of the state
space. Because of the discrete state space this approach is likely to yield large
approximation errors. Since in Telmer's model there is only a short-lived bond
he avoids some of the technical problems. His errors are relatively small since for
each exogenous shock he uses 1000 grid points to represent the endogenous
state space. It seems however that his techniques cannot be extended to a more
general model. (In his model he only considers three values for the exogenous
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shock. One would imagine that running times rapidly increase with the
number of shocks.) Heaton (1994), Heaton and Lucas (1996) and Zhang (1997)
use similar techniques to compute equilibria. den Haan (1997) develops an
algorithm to compute an equilibrium when there is a continuum of ex ante
identical agents who di!er in the realization of their ex post endowments. Also
Krusell and Smith (1997) compute equilibria for models with a continuum of
agents.

In this paper we o!er an alternative approach for the case where there are two
types of investors and one long-lived risky asset. We use spline collocation
methods to solve for the approximations to the equilibrium price and asset
investment policy functions. We use a time iteration method to determine the
spline coe$cients. In each iteration the algorithm takes as given the &next'
period's equilibrium functions and computes the &current' period's equilibrium.
To do this, we need only solve the agents' Euler equations together with the
market clearing condition. Instead of searching for portfolio holdings over
a grid space we use homotopy methods to solve the system of nonlinear
equations under consideration. We then interpolate the resulting holdings and
prices with cubic splines and use the new spline coe$cients for the policy
function in the next iteration. Coleman (1990) solves a stochastic growth model
via policy function iteration using bilinear approximations of the functions. We
use cubic splines, resulting in smoother approximations and smoother problems
for our nonlinear equations solver.

Our solutions are approximations and depend only on the equilibrium
behavior on the spline nodes we use. To determine the global quality of our
solution, we examine the Euler equation errors at values of the state which are
not used in our spline collocation procedure. We "nd that our maximum
(relative) errors lie in the range of 10"# and that by increasing the number of
interpolation nodes we can reduce this error even further. This implies that our
solution has agents making, in each period, optimization errors less than one
dollar per million dollars of wealth. Our algorithm can handle general von
Neumann}Morgenstern preferences, that is we allow agents to have di!erent
utility functions and di!erent time discount factors. Using acceleration tech-
niques our algorithm can compute equilibria for dynamic systems with
8 exogenous income states following a Markov process and calibrated to annual
data in less than 20 s on a 233 MHz Pentium PC.

Previous work focussed on calibrations which corresponded to the period of
time being one year. Since much of the interesting behavior in asset markets
takes place at much higher frequency, it is important to be able to solve models
corresponding to quarterly, monthly, and even weekly periods of time. Using
spline collocation and acceleration techniques we can easily compute equilibria
when the income process is calibrated to quarterly or monthly data and the
agents' discount factors are assumed to be close to one. For a simple economy
with i.i.d. income states we show how "rst and second moments of prices, returns
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and trading volume vary signi"cantly with di!erent choices of the length of
a time period.

The paper is organized as follows: In Section 2 we describe the economic
model under consideration. Section 3 discusses conditions under which there
exists a time-homogeneous equilibrium transition. Section 4 describes the algo-
rithm and various technical issues. In Section 5 we illustrate the reliability of the
algorithm and compute some examples to illustrate the algorithm. Section
6 reports running times for the algorithm and various accelerations methods.

2. The model

We consider a standard in"nite-horizon pure exchange economy. Time is
indexed by t3!

$
,!0, 1,2". A time-homogeneous Markov process of

exogenous income states (y
!
)
!%!$

is valued in a discrete set >"!1, 2,2, S". The
underlying probability space is denoted by (!,F,Q) and the transition matrix
by P. We assume that all elements of P are positive. Whenever we think of the
income state in the next period as a random variable we denote it by y# . A tribe
F

!
LF generated by !y

$
,2, y

!
" summarizes the information available at each

time t. Finally, the "ltration F
!
"!F

$
,2,F

!
" depicts how information is

revealed through time t.
There are two types of in"nitely lived agents indexed by h"1, 2, and there is

a single perishable consumption good in each state. Agent h's individual labor
endowment in period t given income state y3> is e"

!
"e"(y

!
)3"

##
. Note that

the function e$:>P"
#

depends on the exogenous income state alone. In order
to transfer wealth across time and states agents trade in each period a long-lived
asset paying a dividend d:>P"

#
at an ex-dividend price q

!
. The asset is in unit

net supply. We denote agent h's security position in period t by $"
!
3" and his

initial endowment of the security by $
"&

. The aggregate endowment of the
economy in period t is denoted by e

!
(y

!
)"e&

!
(y

!
)#e'

!
(y

!
)#d

!
(y

!
).

Each agent h has von Neumann}Morgenstern preferences which are de"ned
by a strictly monotone C', concave utility function u

"
:"

##
P" possessing the

Inada property, that is, lim
%&$

u%
"
(x) "R, and a discount factor &

"
3(0, 1). For

any F
!
-adapted consumption sequence c"(c

$
, c

&
, c

'
,2) the associated utility

for agent h equals:

;
"
(c)"E! (

!
!)$

&!
"
u
"
(c

!
)" .

Let

e"#
e&(1) e'(1)

' '
e&(S) e'(S)$ , d"#

d(1)

'
d(S)$
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denote the matrix of possible individual endowments, e, and the vector of
possible dividends, d, respectively. Let U denote the set of all utility functions
satisfying our assumptions above. The primitives of the economy can then be
summarized as

E"(e, d, P,&
&
, &

'
, u

&
, u

'
)3"''#'#'*'#'

##
!U!U.

2.1. Competitive equilibrium

An equilibrium is de"ned as a collection of F
!
-measurable portfolio holdings

!($&
!
, $'

!
)" and asset prices !q

!
" such that security markets clear and all agents

maximize their utility over their budget sets given the prices. This is a special
case of the model considered in Magill and Quinzii (1996) or Hernandez and
Santos (1996). In order to prove existence of an equilibrium one has to make an
assumption on the agents' budget sets to rule out Ponzi Schemes (the inde"nite
postponement of debt). The conventional transversality condition from repre-
sentative agents models cannot be used since with incomplete markets the
expected present value of future wealth is not unambiguously de"ned. Magill
and Quinzii (1996) de"ne a transversality condition for incomplete markets and
show that under weak assumptions this condition is equivalent to a debt
constraint. To close the model we therefore impose an implicit debt constraint as
an additional requirement of equilibrium: each agent's portfolio process !$$" is
required to satisfy sup

!
($$

!
q
!
(
(

(R, where for a random variable x, (x(
(

"
sup"%!

(x())(. Note that this constraint does not constitute a market imperfec-
tion * it is just needed to ensure existence of a solution to the agents'
optimization problem and in equilibrium it will never be binding. This point is
emphasized in Magill and Quinzii (1996) and in Levine and Zame (1996).

De,nition 1. A competitive equilibrium for an economy E is a collection of
F

!
-measurable portfolio holdings !($&

!
, $'

!
)" and asset prices !q

!
" such that:

(1) $&#$'"1, and
(2) for each agent i, $$3argmax;

$
(c) s.t. c

!
"e

!
#$

!"&
(q

!
#d

!
)!$

!
q
!

and
sup

!
($$

!
q
!
(
(

(R.

For a proof of existence see Magill and Quinzii (1996). Given our assumptions
on the economies' fundamentals we can characterize equilibrium prices and
portfolio holdings. While the implicit debt constraint is theoretically elegant it is
di$cult to impose it in a computational framework. Fortunately for the case
of one in"nitely lived asset there is an easy equivalent formulation of the
constraint.

For each agent i de"ne $$"max
(%)

!(e$(y)/d(y)). De"ne an interval
I"($&,1!$').
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¸emma 1. For each economy E agent 1's equilibrium portfolio holding has to lie in
the bounded set I, that is in each equilibrium and for all t, $&

!
3I.

Proof. Assume that agent i's holding $$
!
4$$ at the end of period t. Let

yH"arg max
(%)

!(e$(y)/d(y)). Our assumption on P implies that for each time
horizon ¹ the probability of the next ¹ income states being yH is positive. Since
agent i's consumption is restricted to be positive the agent has to decrease his
asset holding every period in order to pay the dividends and to consume, that is
$$
!
'$$

!#&
. This implies that with positive probability the agent's portfolio

holding will violate any explicit debt constraint, and therefore also violates the
implicit debt constraint. Because of market clearing agent 1's portfolio holding
is also bounded from above. !

Note that Lemma 1 implies that without loss of generality we can always
impose a short-sale constraint. In equilibrium this constraint will never be
binding.

For our discussion below it is important to emphasize that the agents'
Euler equations together with market clearing fully characterize a competitive
equilibrium.

¸emma 2. For an economy E, F
!
-adapted processes !q

!
" and !($&

!
, $'

!
)" are an

equilibrium if and only if for all t the following Euler equations and market clearing
equation are satisxed with c$

!
"e$

!
#$$

!"&
(q

!
#d

!
)!$$

!
q
!
:

q
!
u%
&
(c&

!
)!&

&
E[(q

!#&
#d

!#&
)u%

&
(c&

!#&
)]"0,

q
!
u%
'
(c'

!
)!&

'
E[(q

!#&
#d

!#&
)u%

'
(c'

!#&
)]"0,

$&
!
#$'

!
"1.

Proof. See Constantinides and Du$e (1996, Appendix A). !

3. Stationary Markov equilibria

In order to compute an equilibrium for an in"nite horizon model it is
necessary to focus on equilibria which are dynamically simple in the sense that
one can choose a simple state space such that the current state is a su$cient
statistic for the future evolution of the system and that this evolution can be
approximated by a "nite number of parameters. Because of agent heterogeneity
the current exogenous state does not constitute such a su$cient statistic. The
state space will also include endogenous variables, because some of them
* such as for example the distribution of wealth or the agents' portfolio
holdings* will clearly in#uence equilibrium prices. Du$e et al. (1994) examine

1052 K.L. Judd et al. / Journal of Economic Dynamics & Control 24 (2000) 1047}1078



a model similar to ours and prove the existence of a time homogeneous Markov
equilibrium (THME). They choose the endogenous state space to include
current and last period portfolio holdings as well as current period prices and
consumptions. Because in our model with two agents market clearing implies
that agent 1's portfolio holding also describes agent 2's holding and because of
Lemma 1 we can write the state space as >!Z

+,-.
with

Z
+,-.

"!($
"
, $, c, q)3I!I!"'

##
!"

##
".

If for a set J, P(J) denotes the space of all measures on J, Du$e et al. (1994)
show that there exists a measurable subset JL>!Z

+,-.
and a time invariant

transition ": JPP(J), such that each time-homogeneous J-valued process with
transition " is an equilibrium for E and (J,") has an ergodic measure (Du$e
et al., 1994, Theorem 3.1).

However, their approach of de"ning equilibrium as distributions is not very
useful for computational purposes. While their approach has the advantage of
being very general since the concept of an equilibrium de"ned as a distribution is
very robust to taking limits (see Mas-Colell, 1992), it has the disadvantage that
the existence theorem does not imply that " satis"es any of the assumptions
usually made in the applied literature such as, for example, the Feller property,
i.e. that the transition function F is such that *

'
h(s%)F(s, ds%) is continuous for

a continuous function h (see for example Altug and Labadie (1994)). Without
any notion of continuity of the transition " it is not clear how to approximate it
by a "nite parameterization.

3.1. Recursive equilibria

The applied literature (see, e.g. Telmer (1993) or Heaton and Lucas (1996))
takes a somewhat di!erent approach to this problem. The usual assumption
made here is that the exogenous income state together with the individuals'
portfolio holdings constitutes a su$cient minimal state space and that there
exists a continuous policy function f as well as a function g mapping last
period's portfolio holdings and current period's income state into current
period prices. In our framework this would imply that the endogenous state
space Z"I and that the policy function f :>!IPI determines agent
1's optimal portfolio choice given portfolio holdings $

"
and the income state of

the current period. Similarly, the price function g:>!IP"
##

maps agent 1's
portfolio holdings $

"
and the income state of the current period into the asset

price.
Let; be the set of all continuous functions f:>!IPI and let < be the set of

all continuous g:>!IP"
##

. De"ne

c&(y, $
"
)"e&(y)#$

"
(g(y, $

"
)#d(y))!f (y, $

"
)g(y, $

"
).
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Let =L;!< be the set of all f and g such that c&(y, $
"
)'0 and

e(y)!c&(y, $
"

)'0 for all y3> and all $
"

3I. For all y"1,2, S and $
"

3I
de"ne a functional F:=PC!C as follows:

F(
&
( f, g)($

"
)"g(y, $

"
)u%

&
(c)!&

&
E

(
[(g

#
#d(y# ))u%

&
(c

#
)],

F(
'
( f, g)($

"
)"g(y, $

"
)u%

'
(e(y)!c)!&

'
E
(
[(g

#
#d(y# ))u%

'
(e(y# )!c

#
)],

where

c,c&(y, $
"
), c

#
,c&(y# , f (y, $

"
)), g

#
,g(y# , f (y, $

"
)).

We are now in the position to de"ne the notion of a recursive equilibrium.

De,nition 2. A recursive equilibrium for an economy E is a collection of
functions ( f, g)3= such that

F (f, g)"0.

Lemma 2 immediately implies that every recursive equilibrium for E is in fact
a competitive equilibrium as in De"nition 1. Unfortunately, no general condi-
tions on an economy's fundamentals are known which imply existence of
a recursive equilibrium. Standard "xed point arguments cannot be applied to
prove existence. In order to establish the existence of the functions f and g one
would have to "nd conditions on the economy's fundamentals which make it
possible to apply Schauder's theorem * a "xed point theorem for function
spaces (see Zeidler (1986) for an overview of "xed-point theorems in in"nite-
dimensional spaces). This is beyond the scope of this paper.

The intuitive justi"cation for assuming existence of a recursive equilibrium is
that in each period with y3> and initial portfolios $

"
3I one can view the

economy as a single-period economy with initial portfolios $
"

3I, income y3>,
and speci"cations for the next period's equilibrium laws, f and g; let E(y, $

"
; f, g)

denote such an economy. From the results of Hernandez and Santos (1996,
especially Corollary 3.7) we know that for all y3> and all $

"
3I there will be at

least one competitive equilibrium for E(y, $
"
; f, g). De"ne

( fM , g+ )(y, $
"
; f, g)"!($

$
, q

$
): ($, q) is a competitive equilibrium

for E(y, $
"

; f, g)".

Since the equilibrium prices and portfolio holdings will depend only on y and
$
"

one might think that these two variables constitute a su$cient statistic for
the evolution of the system.

However, this intuitive reasoning may fail and it seems plausible to argue that
a recursive equilibrium does not always exist. Since generally the economyEwill
not have a unique equilibrium and since there are no known general conditions
which guarantee uniqueness in this model, ( fM , g+ ) will in general not be single
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valued. This implies that it is not clear if there exists a single-valued selection
( f, g) such that ( f, g) constitutes a recursive equilibrium. First note that there is
no reason why there should exist a continuous selection of the correspondence
( fM , g+ ). One could imagine it to be similar to the equilibrium manifold for a simple
Arrow}Debreu exchange economy. Such an equilibrium manifold is in general
not convex-valued and there does not exist a continuous selection. Little is
known about the equilibrium manifold for in"nite horizon incomplete market
models * if anything the correspondence ( fM , g+ ) is likely to be more complex
* for example it is not clear if equilibria are generically locally unique in this
model (see Shannon, 1996).

Secondly, it is not clear whether there exists a selection at all (continuous
or not) which satis"es F( f, g)"0. Given an endogenous state $

!"&
3I in period

t there can be several prices and portfolio holdings satisfying the equilibrium
conditions from t onwards while only one of them is compatible with the
conditions up to period t. However at some period s't one might en-
counter the same endogenous state $

!"&
but di!erent prices and port-

folio holdings $
*

and q
*

are compatible with the equilibrium conditions up
to period s. It is clear that (y, $

"
) is not a su$cient statistic for the future

evolution of the system.

3.2. Recursive equilibria and THME

The above discussion indicates that the larger state space Z
+,-.

might be the
right basis for de"ning a recursive equilibrium. In this case, given an endogenous
state z3Z current period prices and portfolio holdings (q

!
,$

!
) are compatible

with all Euler equations if and only if they satisfy

1. (q, $)3( fM , g+ )(y
!
, $

!"&
)

2. For c$
!
"e$(y

!
)#$$

!"&
(q

!
#d

!
)!$$

!
q
!
,

q
!"&

u%
&
(c&

!"&
)!&

&
E[(q

!
#d

!
)u%

&
(c&

!
)]"0,

q
!"&

u%
'
(c'

!"&
)!&

'
E[(q

!
#d

!
)u%

'
(c'

!
)]"0,

$&
!"&

#$'
!"&

"1.

Applying Lemma 2 and with the above argument one obtains the following
Conjecture.

Conjecture 1. Given an economy E there exists a competitive equilibrium (q, $) and
a function f

+,-.
:>!>!Z

+,-.
PZ

+,-.
, such that for all t"1, 2,2,

f
+,-.

(y
!#&

, y
!
, $

!"&
, $

!
, c

!
, q

!
)"($

!
, $

!#&
, c

!#&
, q

!#&
).

Since Du$e et al. (1994) are in general not able to rule out sunspots, they
cannot prove the existence of a spotless Markov equilibrium. As they point out,
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this implies that their result does not guarantee the existence of a policy function
f
+,-.

(see Du$e et al., 1994, Section 1.6).
Note that the conjecture * if it were true * does not imply that f

+,-.
is

continuous. Throughout the paper we will assume that f
+,-.

is continuous. In
order to prove continuity one has to apply Schauder's theorem, using a some-
what more complicated operator equation (in this case the Euler equations from
two periods are used to describe equilibrium).

If one chooses the large state space Z
+,-.

as the basis for a computational
procedure one faces the problem that even with a single asset and two con-
sumers one has "ve endogenous state variables. This causes various numerical
problems. In order to avoid the problem of being faced with a high dimensional
endogenous state space we make the following argument. Suppose a computa-
tional procedure "nds an approximate recursive equilibrium, that is we "nd ( fK , g( )
such that for a small ,'0 (say ,"10"/),

sup
#%+

F( fK , g( )($)(,.

Such as result trivially implies that we also computed an approximate f
+,-.

,
that is a policy function for a THME. A possible strategy for computing
the policy function for a THME is therefore to assume "rst that there
exists a recursive equilibrium (i.e. guess that f

+,-.
does not depend on

(c
!
, q

!
, $

!"&
)) and to compute an approximate recursive equilibrium. If this

procedure fails one has to use the larger state space. If it succeeds the initial
guess was correct. In all the examples we considered the algorithm described
below found an approximate recursive equilibrium, therefore we computed
an approximate policy function for a THME. This argument leads to the
following proposition.

Proposition 1. There exists a recursive equilibrium for an economy E if there exists
a competitive equilibrium with a continuous policy function f

+,-.
for which

-f (z)
-$

"
"-f (z)

-q
"-f (z)

-c
"0

for all z3Z.

The fact that there existed an approximate recursive equilibrium for all the
economies we considered indicates that the class of economies for which a recur-
sive equilibrium exists is actually quite large. We want to argue that there are
some nontrivial economies E for which a recursive equilibrium can be proven to
exist.

It is well known that for economies where agents have identical CRRA utility
functions and individual endowments are spanned by the securities' dividends
there exists a Pareto-e$cient equilibrium even when markets are incomplete. In
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this equilibrium the exogenous income state alone constitutes a su$cient state
(see Lucas, 1978). A recursive equilibrium as in De"nition 2 exists.

¸emma 3. Let E"(e, d, P,&,&, u, u) be an economy with u(c)"c&"$/1!. and
with e&"/

&
d and e'"/

'
d for some /

&
, /

'
3". Then there exists a recursive

equilibrium (f
$
, g

$
) for E with

f
$
(y, $

"
)"$

"
for all $

"
3I and all y3>.

If endowments, dividends and preferences are &close' to the representative
agent case one would expect that a recursive equilibrium still exists. In order to
verify this, one could possibly use the Implicit Function Theorem for Banach
spaces (see, for example Zeidler, 1986, p. 151). The problem with this approach
lies in the fact that ( f

$
, g

$
) does not lie in the interior of=. It is subject to further

research how to circumvent this problem and to generalize Lemma 3 to a much
larger class of economies.

It is straightforward to extend our theoretical discussion of this section to
the case of several in"nitely lived assets and several agents. Since the emphasis
of this paper lies on the computational aspects however, we chose not to
introduce further assets or agents (see Judd et al., 1999, for the case of two assets
and two agents).

4. The algorithm

The central theme of our algorithm is to approximate the policy functions
f and g by cubic splines which we represent through B-splines and to compute
the spline coe$cients using collocation methods. We solve the collocation
equations with an iterative approach.

4.1. Representing the equilibrium functions

It is necessary to globally approximate the functions f and g by "nitely
parameterized functions fK ,g( using relatively few parameters. Since monomials
form a basis for the space of continuous functions a popular method of doing
this is to represent the functions by a "nite sum of orthogonal polynomials (see
for example Judd (1992) who uses Chebychev polynomials and Judd (1998) for
an overview over di!erent approximation methods). However, functions exhibi-
ting high curvature cannot be well approximated by orthogonal polynomials.
Unfortunately, in our case the functions g frequently exhibit very high curvature
near the boundaries of the interval I. It is for this reason that we chose to
approximate the functions f and g by cubic splines. A cubic spline is a piecewise
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polynomial function where the pieces are third-order polynomials and the
function is twice continuously di!erentiable. It can be shown (see Judd (1998) for
references) that cubic splines yield O(n"0) convergence for f3C0. Since, unlike
Chebychev polynomials, splines are good "ts for functions with high curvature
they perform much better than Chebychev polynomials in approximating the
functions f and g. In the applications below the di!erence between the actually
computed function and the values of the spline function were negligible.

For a general theory of splines and necessary programs for interpolation and
computing B-splines see deBoor (1978). Here we only state the necessary
information needed for our computations. B-splines of order 4 form a linearly
independent basis for one-dimensional cubic splines. For our computations it is
very helpful to represent the cubic splines by a sum of B-splines, since this
representation reduces the number of free parameters by a factor of 4. Given
a grid of knots (x

$
) order k B-splines are recursively de"ned by

B,
$
(x)" x!x

$
x
$#,

!x
$

B,"&
$

(x)# x
$#,#&

!x
x
$#,#&

!x
$#&

B,"&
$#&

(x)

with

B$
$
(x)"!

0, x(x
$
,

1, x
$
4x4x

$"&
,

0, x5x
$
.

Given a function f (x) and points !(x
&
, f(x

&
)),2,(x

-
, f (x

-
))" the knot sequence

can be chosen such that there is a unique interpolating cubic spline
fK (x)"!-

$)&
0
$
B
$
(x). The coe$cients 0

$
can be obtained by solving a linear system

of equations.
To compute the coe$cients 0 we select a grid of as many mesh-points

M"!$
.
: j"1,2, n" as we have unknown coe$cients for each approximating

function. For n mesh points we can write our approximating policy function
fK and price function g( for an income state y3> and a mesh-point $

"
3M as

follows:

fK (y, $
"
)" -

!
$)&

0/
$!(

B
$
($

"
)

and

g( (y, $
"
)" -

!
$)&

00
$!(

B
$
($

"
).

To simplify our notation we write 0,(0/
$!(

, 00
$!(

) for the collection of all coe$-
cients.
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4.2. Collocation

Given an income state y and agent 1's last-period portfolio holding $
"

, let

c( &"e&(y)#$
"
(g( (y, $

"
)#d(y))!fK (y, $

"
)g( (y, $

"
)

denote our approximation for agent 1's current period consumption, let

c# &
#

"e&(y# )#fK (y, $
"

)[g( (y# , fK (y, $
"

))#d(y# )]!g( (y# , fK (y, $
"
))fK (y# , fK (y, $

"
))

denote the approximation for agent 1's random next period consumption. Let
c( '"e(y)!c( & and let c# '

#
"e(y# )!c# & denote agent 2's consumptions. Substitu-

ting all approximations into the system of Euler equations we obtain a system of
2Sn equations, where for y"1,2,S and $

"
3M we have

g( (y, $
"
)u%

&
(c( &)"&

&
E

(
[(g( (y# , fK (y, $

"
))#d(y# ))u%

&
(c# &

#
)],

g( (y, $
"
)u%

'
(c( ')"&

'
E

(
[(g( (y# , fK (y, $

"
))#d(y# ))u%

'
(c# '

#
)].

(1)

Notice that the problem has been transformed from "nding functions f and
g solving the Euler equations over the continuous state space to "nding a zero of
a large system of nonlinear equations that has the real coe$cients 0 as un-
knowns. Note that for the system of equations to be well-de"ned it is necessary
that c( $, c# $

#
'0 for i"1,2. For a given economy E, denote the set of coe$cients

0 satisfying this inequality for all $
"

3I by A.
Two theoretical questions of central importance are whether or under what

conditions the system possesses a solution, and if the functions fK and g( converge
to the true policy functions f and g as the number of mesh points tends to
in"nity. While it remains unclear if (1) always possesses a solution, we always
found an approximate solution yielding a very small error in all the examples
calculated below.

Our discussion of the existence problem in Section 3 above makes clear that
for general economies one cannot prove convergence of the algorithm as the
number of mesh-points tends to in"nity. (For this one would have to use the
larger state space Z

+,-.
and "nd conditions which ensure continuity of f

+,-.
.)

However, for the case of Lemma 3 it is trivial to see that (1) has a solution for all
"nite n and that these functions are the true policy functions. Using the
"nite-dimensional version of Implicit Function Theorem one can show conver-
gence of spline collocation methods at least for economies close to the represen-
tative agent case. For a more general global analysis the approach described in
Petryshyn (1993) seems most promising. He develops the concept of A-proper
operators and shows that if an operator is A-proper and every "nite-dimen-
sional approximation has a solution, the actual operator equation has a solution
and the approximations converge to the true solution.

The most important practical question is how to solve the nonlinear system of
equations (1). Since the system is very ill-conditioned (for the examples below the
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condition numbers were all around 10&$ even close to the true solution)
conventional Newton methods cannot be used for reasonable starting points.
Attempts to solve the system with homotopy methods seem quite promising and
are subject of further research. However the system of equations tends to be very
large. With 30 mesh-points and 12 states we have 720 equations. For the case
with two assets and 8 states (see Judd et al., 1999) the number of equations lies
around 7200, ruling out any algorithm which uses the Jacobian of the system.

We develop a time iteration algorithm which has the advantage of being robust
to ill-conditioning and which can handle large systems. While it cannot be proven
to be globally convergent it converged in all the examples calculated below.

4.3. A time-iteration algorithm

The basic intuition for our iterative approach is that at each iteration i, we
take next period's policy functions as given and compute this period's portfolio
holdings and prices which satisfy the Euler equation. Given functions fK

$
and

g(
$
we obtain fK

$#&
and g(

$#&
by interpolating these portfolio holdings and prices.

More formally, given functions fK , g( with coe$cients 0 and the mesh
M"!$

&
,2, $

-
" de"ne for all y"1,2,S:

#(y, 0)"#
$(y, $

&
, 0)

'
$(y, $

-
, 0)$, Q(y, 0)"#

q(y, $
&
, 0)

'
q(y, $

-
, 0)$ ,

where ($(y, $
"
, 0), q(y, $

"
, 0)) solves the system of Euler equations for $

"
3M:

qu%
&
(e

&
(y)#$

"
(q#d(y))!$q)

"&
&
E
(
[(g( (y# , $)#d(y# )) ) u%

&
(e

&
(y# )#$(g( (y# , $)#d(y# ))!g( (y# , $) fK (y# , $))],

qu%
'
(e(y)!e

&
(y)!$

"
(q#d(y))#$q)

"&
'
E
(
[(g( (y# , $)#d(y# )) ) u%

'
(e(y# )!e

&
(y# )!$(g( (y# , $)#d(y# ))

#g( (y# , $) fK (y# , $))], (2)

where fK and g( are our spline functions with coe$cients 0. We de"ne a function
G:APA where G(0) is the set of spline coe$cients which interpolates the
equilibrium solutions ($(y, $

"
, 0), q(y, $

"
, 0)). We want to "nd an 03A such that

G(0)"0. Given a starting point 0
$

our basic time iteration algorithm sets

0
$#&

"G(0
$
). (3)

The algorithm terminates if

max
(%)! 1#.%12.)&!2!-

!($(y, $
.
, 0

$#&
)!$(y, $

.
, 0

$
)(, (q(y, $

.
, 0

$#&
)!q(y, $

.
, 0

$
)("(,

for some small ,'0.
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This algorithm will converge if G is a contraction mapping. Locally we have
a more concrete condition for convergence. Suppose that at a "xed point of G,
0H, G is Lipschitz and that the spectral radius of the Jacobian of G, 1(-%G(0H)), is
less than 1. Then for 0

$
su$ciently close to 0H the iteration process (3) is

convergent. While we are not able to prove that any of these two conditions hold
for general economies E our algorithm also has a nice economic intuition. If we
start with fK"g("0 we can interpret the ith iteration fK

$
(y, 0.5) and g(

$
(y, 0.5) as

approximations for "rst period portfolio holdings and prices for a i-period "nite
horizon economy. Convergence of our iterative procedure then amounts to
convergence of "nite-horizon equilibria to a THME of the in"nite-horizon
model.

4.4. Solving the Euler equations

During any iteration for given functions fK
$
and g(

$
it is necessary to solve the

nonlinear system of Euler equations (2) at all spline interpolation nodes $
"

3M
and each income state y3>. If we do not have a good starting point, Newton-
method-based algorithms for solving (2) are not likely to perform well because
they are not globally convergent and because the system of equations is not
well-conditioned for many values of the endogenous variables. In this case we
have to use homotopy methods to solve (2). The key insight for solving system
(2) is that it is similar to the equilibrium conditions of the well-known General
Equilibrium Model with Incomplete Markets (GEI Model). Therefore, in order
to solve system (2) we can apply * with some modi"cations * the algorithm
developed by Schmedders (1998,1999) for the GEI Model.

In order to apply Schmedders' algorithm we have to de"ne a homotopy
function. Denoting the homotopy parameter by 2 our homotopy equations
given functions fK

$
and g(

$
were as follows:

0"qu%
&
(e

&
(y)#$

"
(q#d(y))!$&q)

! (&
&
E

(
[(g(

$
(y# , $&)#d(y# ))u%

&
(e

&
(y# )#$&(g(

$
[y# , $&]#d(y# ))

! fK
$
[y# , $&]g(

$
[y# , $&])]),0"2 qu%

'
(e(y)!e

&
(y)!$

"
(q#d(y))#$&q)

! 2(&
'
E

(
[(g(

$
(y# , $&)#d(y# ))u%

&
(e(y# )!e

&
(y# )!$&(g(

$
[y# , $&]#d(y# ))

# fK
$
[y# , $&]g(

$
[y# , $&])])!(1!2)(($

"
!$&) (4)

The term !(1!2)($&!$
"

) is the derivative of the penalty function
!&

'
(1!2)($&!$

"
)'. The penalty function is concave and therefore the Euler

equations are still necessary and su$cient for optimality. For 2"1 system (4) is
equivalent to (2) and so a solution to (4) for 2"1 yields the desired solution of
the Euler equations. Since in our model there exists only one asset with
nonnegative payo!s in all states we cannot have asset redundancy leading to
discontinuous demand functions. Nevertheless the penalty approach is very
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&To see that individual agents' optimality does not bound consumption away from zero consider
the following situation. There are two possible shocks in each period, each shock associated with
a di!erent return of the risky asset and there is an agent with constant relative risk aversion. The
solution to his Euler equations will be such that his optimal consumption will increase by some
fraction in the state where the return on the risky asset is high and decrease by some fraction in the
other state. Assume that the same exogenous shock occurs ¹ times and that for this shock the
agent's consumption decreases. Clearly, since with positive probability there is no upper bound for
¹ there is no positive lower bound for the agents' consumption. The probability that his consump-
tion will reach zero is still zero however.

advantageous for us since it allows for a convenient choice of starting point
when solving system (2). In comparison to Schmedders (1998,1999) we modi"ed
the penalty function so that for t"0 the holding $& at the unique starting point
of the homotopy is $&"$

"
. In order to determine the price at the starting point

the "rst equation of system (4) needs to be solved for $&"$
"
. Since the price

q appears only in the "rst term and we use utility functions with easily invertible
derivatives we can give a closed-form solution for q. Alternatively, we could
solve this "rst equation numerically using a Newton method.

While the homotopy approach always "nds a solution this method is time
consuming. After about 3 to 4 time iterations, the di!erence between the old and
new policy functions are rather small. If we take the values of the old policy
functions ( fK ( y,$

"
), g( (y, $

"
)) as starting points for the Newton method a solution

to (2) can often be found in a fraction of the time necessary for "nding a solution
with homotopy methods. This fact allows us to greatly speed up the algorithm
by using a Newton algorithm for solving (2) after about 4 time iterations. If the
Newton method fails to "nd a solution, the homotopy method is used.

The Inada-condition on agents' preferences which is needed in order to
guarantee that the agents' "rst-order conditions are necessary and su$cient
(negative consumption cannot be optimal) causes great numerical problems
when consumption is close to zero. There is no guarantee that agents consump-
tion is bounded away from zero* in fact in most cases it will not be.& Therefore
we have to allow the interval I to be so large that for values near the boundary of
I one of the agents is almost bankrupt and his consumption is close to zero. For
numerical reasons it is then necessary to extend the utility function for negative
consumption. We applied a quadratic extension of the utility functions for
su$ciently small consumption values. Since with this quadratic extension there
is no guarantee that consumption will be nonnegative we need a device to ensure
that the optimal solution to the Euler equation never violates our debt con-
straint. We examined two alternatives. One way is to introduce a short-sale
restriction on the asset. The homotopy algorithm is easily revised using the
methods of Garcia and Zangwill (1981); see Judd (1998) for a description of this
approach. While this method does yield nonnegative consumption it also slows
down the algorithm since the number of equations we have to solve at each
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Table 1
Time iteration algorithm

Step 0: Select an error tolerance , for the stopping criterion, a mesh M"!$
&
,2, $

-
", and

initial guesses fK
$
, g(

$
Step 1: Given functions fK

$
,g(

$
, ∀$

"
3M, ∀y3> compute $(y,$

"
) and q(y,$

"
) either by

solving the homotopy equations (4) for 2"1 or (if a good starting point is known
from previous iterations) by solving the system of equations (2) with Newton's
method

Step 2: Use the solutions from Step 1 for prices and portfolio trades at the points (y, $
"

) in
M!> to compute, via spline interpolation, the new approximations fK

$#&
, g(

$#&
Step 3: Check stopping criterion: If max

(%)!#"%1!( fK
$#&

($
"

)!fK
$
($

"
)(, (g(

$#&
($

"
)!g(

$
($

"
)("

(, then go to Step 4. Otherwise increase i by 1 and go to Step 1
Step 4: The algorithm terminates. Set fK"fK

$#&
, g("g(

$#&

mesh point and for each state increases to "ve. Alternatively we discouraged
agents to short the asset beyond a certain limit by introducing a very big penalty
on asset short-holdings through a penalty function of the form
Kmax!($!$$)&,0" for 33!2,4". This penalty can easily be incorporated into
both the homotopy and the Newton algorithm and results essentially in the
same solution as a short-sale constraint.

4.5. Summary of the algorithm

Our algorithm is summarized in Table 1.

4.5.1. Implementation in FORTRAN
We implemented our algorithm in FORTRAN on a Pentium 233 MHz PC.

For the homotopy-path following in Step 1 of the algorithm we used the
software package HOMPACK, a suite of FORTRAN 77 subroutines for solving
systems of nonlinear equations using homotopy methods (Watson et al., 1987).
From the three algorithms implemented in HOMPACK we selected the one
that tracks the homotopy path by solving an ordinary di!erential equation
(subroutine FIXPDF, Watson, 1979) since it is generally the most robust
path-following method of HOMPACK. We provided the software with the
starting point of the homotopy path and the Jacobian matrix of the homotopy.
For the Newton-solver we used HYBRD, a suite of FORTRAN 77 subroutines
for solving nonlinear equations using Powell's hybrid method (which is essen-
tially a modi"cation of Newton's method). For the interpolation and the
evaluation of the B-splines subroutines from deBoor (1978) were used.

4.5.2. Interpolation on a bounded set
The interpolation of the policy functions fK (y, ) ): IPI on the interval I could

lead to problems with the simulation of the model. A typical interpolation
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procedure does not take into account any bounds on the function being
interpolated. For every grid point $

"
3I the "rst-order conditions ensure

that fK (y, $
"

)3I. However, the interpolation might result in the existence
of points $I 3I such that fK (y, $I ) ' I. Such a function would lead to an error in
the simulation of the model, when the function fK is e!ectively composed with
itself many thousand times. Since the interpolation is only valid for the
interval I, an evaluation of fK at a point fK (y, $I ) ' I could generate huge simulation
errors.

We have always checked our simulations for the occurrence of function values
outside the set I. While such values are theoretically possible, we have so far
never detected them in any of our examples. In particular in the models with
utility penalties these penalties result in a very strong inward-pointing form of
the policy functions once the penalty becomes su$ciently large.

4.6. Improving running times

For large discount factors & the price function g(
$
converges rather slowly. For

&"0.996, which seems a plausible discount factor for monthly data it often
took over 3000 iterations to reach a stopping criterion of ,"10"#. Since it is
desirable to compute solutions with such short time periods, we would like to
"nd ways to accelerate convergence.

The standard way to improve running times is to alter the iterative scheme.
We tried several acceleration techniques in order to improve running
times. A general theory of acceleration techniques is only available for linear
systems (see for example Axelson (1994) for an overview). For some special
cases the results carry over to nonlinear systems when the unknown is &close'
to the true solution (see Ortega and Rheinboldt, 1970). The intuition is, that
for 0 close to the solution 0H Taylor's theorem allows us to use only the
Jacobian of G in approximating G(0). We discuss methods to accelerate linear
schemes and examine if they can also be applied to our nonlinear problem. Here
we present some acceleration methods used in the linear operator literature.

4.6.1. Stationary iterative methods
We "rst consider a "rst-order stationary method. A "rst-order stationary

method uses only G(0
$
) and 0

$
to determine 0

$#&
. Given an iterative scheme

0
$#&

"G(0
$
) one can increase its rate of convergence by using the "rst-order

extrapolation method

0
$#&

")G(0
$
)#(1!))0

$

for an acceleration-factor )3(0, 2). For linear systems of the form 0
$#&

"J ) 0
$

the optimal ) can be found as follows. Assume that all the eigenvalues of J are
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real and let 2
&

denote the smallest eigenvalue, let 2
-

denote the largest. The
optimal ) is then

)H" 2
2!2

&
!2

-

.

It can be shown that an acceleration-factor )52 is never optimal (see Judd,
1998).

Determining the optimal acceleration factor ) for our nonlinear problem is
di$cult. First it is very costly to compute all eigenvalues of the Jacobian. For
a simple example of only two states and 15 nodes this takes around 30 s. Since
one has to compute the Jacobian using "nite di!erences, computing the Jac-
obian for a system with n unknowns amounts to n#1 evaluations of G( ) ).
Secondly, for most of the examples the Jacobian of G has complex as well as real
eigenvalues. In this case there is even for linear systems no general theory of how
to determine the optimal ).

We can do better than "rst-order methods. Intuitively, we suspect that the last
iterate 0

$"&
might also contain useful information for determining 0

$#&
. Sec-

ond-order methods try to use this information. A second-order iterative scheme
has the form

0
$#&

")G(0
$
)#(4!))0

$
#(1!4)0

$"&
.

For 4"1, a second-order scheme degenerates into a "rst-order method. For the
linear case* assuming all eigenvalues are real* it is again well-known how to
optimally determine the acceleration factors ) and 4 (see Axelson, 1994) from
the smallest and largest eigenvalues. Again, these results do not apply directly to
for our nonlinear problem, but they do motivate us to try them here.

4.6.2. The Chebyshev iterative method
Stationary iterative methods are characterized by the fact that the acceler-

ation factors remain constant over all iterations. The Chebyshev iterative
method is a variable parameter version of the second-order stationary methods
above. The Chebyshev second-order iterative scheme has the form

0
$#&

")
$
G(0

$
)#(4

$
!)

$
)0

$
#(1!4

$
)0

$"&

where

4
$
"a#b

2
)

$
, )

$
"#a#b

2
!#b!a

4 $
'
)

$"&$
"&

and )
$
"4/(a#b).

Let 2
$%&

and 2
$!'

be estimates of the smallest and largest eigenvalue of the
Jacobian of G, respectively (for the more general case of complex eigenvalues see
Axelson (1994)). Then we want to take 0(a"1!2

$!'
and b"1!2

$%&
. For

all the examples in the applied parts below we implemented the Chebyshev
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method with a"0.05 and b"1.4. For the linear case it is well known (see
Axelson, 1994) that the asymptotic rate of convergence for this method is the
same as for the second-order stationary method with optimal parameters.
However the Chebyshev method is much less sensitive to estimates of the
extreme eigenvalues and also applies to the case of complex eigenvalues.

5. Examples

We now present the details of some examples.

5.1. Errors and their interpretation

When approximating policy and price functions we have to deal with com-
putational errors. Stopping rules do not specify when the approximate equilib-
rium prices are close to the true equilibrium prices but instead when the
di!erence between consecutive iterates is small. Therefore it remains unclear
how close the computed prices and portfolios are to the actual equilibrium
prices and portfolios. However, for a given approximation it is straightforward
to compute the errors in the agents' "rst-order conditions. For all computations
in this paper we compute the maximum relative errors in agents' Euler equa-
tions and decrease the stopping criterion if these errors turn out to be too high.

Unfortunately, low errors in agents' Euler equations do not give any indica-
tion of how close we are to an equilibrium either. This is a well known fact and
there are various interpretations of this in the literature. Judd (1992) argues that
it is not sensible to expect in"nite precision from agents and that therefore the
computed prices and allocations are likely to be a good description of the actual
economic outcome. For this line of reasoning it is important to show how small
the errors actually are. Without knowing the actual solution this is not unam-
biguously possible. Judd (1992) suggests to evaluate the Euler equations at the
computed prices and allocation and compute the wealth equivalent of the Euler
equation residual when projected in directions not used to compute the approxi-
mation. A small error here would be consistent with the interpretation of an
approximate equilibrium in the sense that agents are close to rational.

Since for $& close to $& consumption for agent one is close to zero, our
quadratic extension of the utility function becomes relevant (the same is true for
agent two when 1!$& lies close to $'). It is clear that in this region the
computed errors in the Euler equation are not reliable and generally much
larger than outside this region. Since the probability that in equilibrium $ will
ever reach this region is negligible, larger errors in the Euler equations here do
not a!ect the reliability of the computed equilibrium functions. Note, however,
that in situations with heterogeneous time discount factors the boundary of the
interval might be important (see the example in Section 5.2). We performed

1066 K.L. Judd et al. / Journal of Economic Dynamics & Control 24 (2000) 1047}1078



a second check on the method by computing equilibria for the case where we
know the solution. For dividends, endowments and preferences satisfying the
conditions in Lemma 3 we know f($) and g($) for all $3I. When we computed
the equilibrium functions for such an economy the maximum errors were on the
order of 10"&#, that is negligible, even close to the boundary of the interval I.
A lower theoretical bound on any error is clearly machine precision* around
10"&# on most computers.

Below we will always report the maximum error in wealth equivalents from
the Euler equations, since we, of course, consider cases where we do not know
the true equilibrium.

5.2. Introductory example

The purpose of the example in this section is to show the versatility of our
algorithm and to obtain a "rst impression about what the approximated
functions fK and g( can look like. Also we show how we use fK and g( to obtain
interesting parameters describing the economy through simulations of the
model.

We consider a model with S"2 exogenous income states. The Markov
transition probabilities are p(1(1)"p(1(2)"p(2(2)"p(2(2)"0.5. The agents'
functions and discount factors are as follows:

u
&
(c)"60c!5c', &

&
"0.96,

u
'
(c)"log(c), &

'
"0.94.

The asset dividends and the agents' endowments and original portfolio holdings
are as follows:

e&"#
1.5

1.5$ , e'"#
2.0

1.0$ , d"#
1.0

1.0$ , $&
"&

"$'
"&

"1
2
.

Note that this economy does not satisfy our assumptions from Section 2.1.
There is no guarantee that agent 1's debt constraint will never bind. However, as
we point out below, the di!erences in time preferences lead to an equilibrium
where agent 1 is always very long in the asset.

For the given data we have to determine fK and g( over the interval
I"(!1.5, 2). We chose 30 interpolation nodes $

"
3M with 5 nodes very close

to each the left and the right boundary of I (distributed on 10% of interval
length at either side) and the remaining 20 nodes in uniform distances
distributed over the remaining middle portion (80%) of I. For the termination
criterion

max
#"%1!(%)

!( fK
$
(y, $

"
)!fK

$"&
(y, $

"
)(, (g(

$
(y, $

"
)!g(

$"&
(y, $

"
)("(,
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Fig. 1. Computational errors (log
&$

) in Euler equations of Agent 1.

we choose ,"10"3. We should not accept fK and g( as acceptable approximations
of the true functions f and g just because the termination criterion is satis"ed.
The algorithm which constructs fK and g( just checks the Euler equations at
a small number of points. Before we accept fK and g( , we should also check the
quality of fK and g( at many other points in the state space. To check this, we
plotted in Fig. 1 the base 10 logarithm of the absolute value of the relative errors
in the Euler equation at various values of the state space which result from sub-
stituting fK and g( into the Euler equations. These errors represent the Euler
equation error relative to the marginal utility of consumption, arriving at a rela-
tive wealth equivalent of the optimization errors of the agents. We plot the error
function both income states, one represented by the broken line and the other by
a solid line; the lines are barely distinguishable. The errors are consistently below
1!10"0 and get much lower as we move away from the right boundary, implying
that the agents are making mistakes of less than one dollar per $10,000 of
consumption. The errors are relatively high for high $

"
because agent 2's Inada-

condition causes numerical problems. Otherwise, the errors are quite small.
Fig. 2 displays the portfolio trading policy computed by our algorithm, that is,

the net investment functions ( fK (1, .)!$, fK (2, .)!$) of agent 1. The portfolio
functions fK reveal the striking di!erences between the two agents. Note that when
agent 1 is very short in the asset, that is, when he is very poor, he still makes a large
net investment into the asset. Obviously, he can only do this while allowing
negative consumption. This is only possible because his quadratic utility function
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Fig. 2. Net investment functions of Agent 1 (oldtheta,$
"

).

violates the Inada condition. The behavior of agent 2 with his CRRA utility func-
tion satisfying the Inada condition is very di!erent. When he is poor he barely
changes his portfolio holdings. Note that as $

"
tends to 1!$' agent 2's net invest-

ment is nonpositive in both states. This is guaranteed by the Inada condition.
We also "nd that the price of the asset depends crucially on the distribution of

wealth in this example. When the agent with the high & owns most of the asset its
price will be much (up to 50%) higher than when agent 2 owns it. A large
variation in the distribution of portfolio holdings will lead to a high price
volatility. The question is, however, how much variation of the distribution of
portfolio holdings one can expect in equilibrium.

The next step of our analysis was to simulate the economy over 1500 time
periods using the functions fK and g( and to determine the values of some
interesting parameters. We repeated this simulation process 200 times. For each
simulation of the economy we computed the average price and price variance as
well as the average volume and the variance of the volume. The average of these
values over the 200 runs were:

average price"24.01,

price variance"13.43,

average volume"1.507!10"',

volume variance"2.607!10"'.
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Fig. 3. Asset prices for ."1.

5.3. Security prices in a stylized economy

To demonstrate how market incompleteness a!ects the behavior of aggregate
time series we "rst examine a simple example. There are only two exogenous
income states, there is no aggregate risk and a console in zero net supply paying
one unit in each state and each period. The two agents have identical constant
relative risk aversion and identical discount factors of &"0.99. We considered
two values for the coe$cient of relative risk aversion, namely 1 and 4. The
agents' endowments are

e&"#
2.0

1.0$ , e'"#
1.0

2.0$ , $&
"&

"$'
"&

"0.

with the Markov transition probabilities p(1(1)"p(2(2)"0.9 and
p(1(2)"p(2(1)"0.1.

It is clear that in the complete market solution c& and c' are constant over
time and that the price of the console is q

!
"&/(1!&)"99 for all t. However,

when there is only one asset markets are incomplete and both the price and
individual consumption vary over states and times. In Fig. 3 we display a
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Table 2
Asset prices

Average price Volatility

Complete markets 99.0 0.0
Incomplete markets ."1 100.40 0.32

."4 109.75 2.71

simulation of the price of the console over 1500 time periods for ."1. It is clear
that the average price of the console is above 99 and that it varies signi"cantly
over time. The picture for ."4 is similar except that the price range is 108 to
118 instead of 100 to 102. This shows that the e!ects of incomplete markets are
greatly magni"ed by moderately larger coe$cients of relative risk aversion. In
Table 2 we show the "rst and second moments of the price for the cases ."1,4.
When agents have higher risk aversions the price of the asset is signi"cantly
larger and also more volatile.

5.4. Diwerent time horizons

Earlier papers that computed dynamic stochastic equilibria with heterogen-
eous agents and incomplete markets calibrated their models to yearly data. The
main reason for this is that when the time discount factor & lies close to 1 the
system becomes quite ill-conditioned and one faces considerable numerical
problems. Although even for the case of one asset these problems are severe, our
methods allow us to compute equilibria for quarterly data (&"0.988) and even
monthly data (&"0.996). We assume that each period there are shocks to each
agents' labor income as well as to dividends and that all three shocks are
independent and i.i.d. over time. The "rst question that arises is how to calibrate
the shocks to the US economy for di!erent time periods. A natural approach
would be to choose the shocks such that "rst and second moments of total
yearly dividends and labor incomes remain the same regardless of the length of
the trading period. If the monthly dividend is d$, the dividend for n months
then must be nd$,(n. The formula for labor income is analogous. We
considered three cases corresponding to annual, quarterly, and monthly
calibrations.

Yearly calibration:

e&"#
12!(0.12

12#(0.12$ , e'"#
18!(0.48

18#(0.48$ , d"#
7.8!(0.27

7.8#(0.27$ ,

&"0.953.
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Table 3
Return and trading volume for di!erent time horizons

& 0.996 0.988 0.953
Time unit month quarter yr

Average return per period 1.0058 1.0177 1.0508
Std. Dev. return per period 0.1875 0.1079 0.05525
Average trading volume per period 5.213!10"0 8.989!10"0 17.569!10"0
Average annual return 1.0725 1.0610 1.0508
Average annual trading volume 6.421!10"4 3.307!10"4 1.757!10"4

Quarterly calibration:

e&"#
3!(0.03

3#(0.03$ , e'"#
4.5!(0.12

4.5#(0.12$ , d"#
1.95!(0.0675

1.95#(0.0675$ ,

&"0.988.

Monthly calibration:

e&"#
1!0.1

1#0.1$ , e'"#
1.5!0.2

1.5#0.2$ , d"#
0.65!0.15

0.65#0.15$ ,

&"0.996.

Agents have identical constant relative risk aversion preferences with a coef-
"cient of relative risk aversion of 1.5. Table 3 shows "rst and second moments of
returns as well as trading volume for the three cases. We can make the following
observations. Average returns are higher when we calibrate the economy
to shorter time periods. Note that there is a negative serial correlation in returns
* total yearly returns of the risky asset are not equal to the product of
twelve monthly or four quarterly rates of return, respectively. These results
contradict the intuition that the equilibrium yearly return of the risky security
should only depend on the mean and the variance of dividends and income
because the resolution of uncertainty is irrelevant. The yearly trading volume
is larger when the trading periods are shorter. This result con"rms the intui-
tion that risk-sharing opportunities increase as the length of a trading period
decreases.

6. Performance of the algorithm

In this section we discuss the performance of our algorithm and the various
acceleration strategies. There are several factors which in#uence running times.

1072 K.L. Judd et al. / Journal of Economic Dynamics & Control 24 (2000) 1047}1078



It is obvious from our iterative algorithm that the number of spline colloca-
tion points is almost proportionally related to running times. In most of
the applications below we used 15 collocation points. We placed 5 points
close to each boundary, where the functions f and g tend to exhibit high
curvature and 5 points in the middle. For less than 15 collocation points there
is a signi"cant trade-o! between running times and maximum errors in the
Euler equation. While the maximum errors can be reduced by using more than
15 points these gains seemed rather trivial.

The choice of the starting point, i.e. fK
$
, g(

$
is another important determi-

nant of running times. When one wants to compute several similar examples
it is useful to use the computed policy functions of the previous example as
a new starting point. However, in order to give an objective evaluation of
the performance of the algorithm it seems reasonable to choose starting
points which are independent of the actual economy under considera-
tion * the reported running times below all refer to the case where fK

$
,0,

g(
$
,0.

6.1. Parameter specixcations

We consider an economy with random dividends and idiosyncratic labor
incomes for each agent type. We assume that agents have identical utility
functions equal to log(c) and an identical discount factor &.

We consider the three cases of endowment and dividend processes. For Case
1 we assume that these three random variables are independent and that
they take two possible values with identical probabilities. We therefore have
8 income states,

e&"(1.9, 1.9, 1.9, 1.9, 2.1, 2.1, 2.1, 2.1),

e'"(1.8, 1.8, 2.2, 2.2, 1.8, 1.8, 2.2, 2.2),

d"(0.8, 1.2, 0.8, 1.2, 0.8, 1.2, 0.8, 1.2),

with each state s having probability p(s)"0.125 independently of the previous
period's state. We also assume $&

"&
"$'

"&
"&

'
.

For Case 2 there is in addition to the shocks in Case 1 a ninth exogenous
shock with very low probability in which agent 1 experiences a large
decrease in income. We choose e&

5
"0, e'

5
"2.2 and d

5
"0.4. The transition

probabilities are p(i ( j)"0.12375, p(i ( 9)"0.05, p(9 ( i)"0.01 for i, j(9
and p(9 ( 9)"0.6. In this case there is a precautionary motive for savings since,
in order to avoid starvation in state nine, agent one has to hold the risky
asset.
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Table 4
Cases 1 and 2 running times with acceleration

Case 1 Case 2

(), 4) &"0.95 &"0.99 &"0.996 &"0.95 &"0.99

(1,1) 0:49 3:31 8:45 0:59 8:01
(1.25,1) 0:43 3:13 7:23 0:41 7:19
(1.5,1) 0:39 2:51 6:54 0:33 6:37
(1.75,1) 0:30 2:07 5:04 NC NC
(1.75,1.6) 0:16 0:59 2:32 NC NC

Table 5
Case 3 Running times with acceleration

)54 1.0 1.1 1.2 1.4 1.5 1.6

1.0 4:09 } } } } }
1.25 3:26 3:11 } } } }
1.5 2:54 2:39 2:24 } } }
1.75 2:31 2:19 2:05 1:38 1:19 1:12
1.8 NC 2:15 2:02 } } }
1.9 NC 2:09 1:57 } } }
2.0 NC NC 1:51 1:26 1:06 1:07
2.1 NC NC 1:46 1:22 1:01 1:05
2.15 NC NC NC 1:20 1:00 1:02
2.25 } } } 1:16 0:57 NC
2.55 } } } 1:02 0:56 NC
2.6 } } } NC NC NC

Case 3 is a variation of Case 2 with &"0.99. There are nine states but the
ninth state is not a bad state as in Case 2 but an average state.

6.2. Stationary iterative methods

We "rst consider a "rst-order stationary method with 0
$#&

"
)G(0

$
)#(1!))0

$
. Table 4 shows how di!erent acceleration factors in#uence

running times. The term NC refers to the case where the algorithm did not
converge. Our stopping criterion was ,"10"#. The corresponding maximum
errors in the Euler equations lie in the range of 5!10"3. Table 4 indicates that
for the nonlinear case there is not one &optimal' acceleration factor as there is in
the linear case. For the examples from Case 1, picking an acceleration factor
between 1.5 and 1.75 seems like a good general strategy to improve convergence.
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Table 6
Sequence of weights

Iter. ! 4
$

)
$

1 1.7650 2.4344
2 1.6194 2.2336
3 1.5407 2.1250
4 1.5012 2.0706
5 1.4822 2.0444

10 1.4656 2.0216
15 1.4653 2.0211
20 1.4653 2.0211

However, as Case 2 shows this can be a dangerous strategy. Table 4 also shows
that running times can be substantially improved by using second-order
methods as opposed to "rst-order methods. Tables 5 displays the impact of
second-order iterative accelerations applied to Case 3. Here, blank boxes indi-
cate (), 4) which were not run.

In general it seems that "rst-order methods (that is, 4"1) do not improve
running times dramatically. While second-order methods often yield much
larger improvements in running times they are sensitive to the choice of the
acceleration parameters. Second-order methods are recommended if one wants
to compute several examples with similar endowments. In such cases it is worth
the e!ort to try out several di!erent (),4) choices to "nd good combinations
which can then be used across many di!erent examples. Second-order methods
are also recommended when discount factors are close to one since standard
acceleration methods are quite slow.

6.3. The Chebyshev iterative method

We next consider the second-order Chebyshev iterative scheme with variable
parameter. Table 6 shows how the values of 4

$
and )

$
change over the iterations

for estimates a"1!2
$!'

"0.05 and b"1!2
$%&

"1.4. Note that the se-
quences converge very fast and after 15 to 20 iterations the values barely change.
The values are comparable to good values for the second-order stationary
method.

As we pointed out above it does not make sense to determine the extreme
eigenvalues for our complicated nonlinear problem. Table 7 shows how di!erent
estimates for a and b in#uence running times.

The table shows that for conservative estimates of the extreme eigenvalues
the Chebyshev iterative method is very robust and yields considerable
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Table 7
Running times depending on (a, b)

(a, b) (0.05, 1.4) (0.05, 1.6) (0.02, 1.4)

Case 1a &"0.99 1:00 1:22 0:37
Case 1b &"0.996 2:31 3:04 1:41
Case 2 &"0.99 2:07 2:39 NC
Case 3 &"0.99 1:08 1:31 0:49

improvements of running times. The main advantage of the Chebyshev iterative
method is that it is not very sensitive to the quality of the estimates of the
extreme eigenvalues. This method should only be applied after a number of
iterations of the algorithm and some signi"cant progress towards the solution
has been made.

7. Conclusion

This paper develops an algorithm to compute stationary equilibria in in"nite
horizon incomplete market models with heterogeneous agents. For the special
case of two agents and only one asset we show that there exist stationary
equilibria which can be described by a time-homogeneous policy function.
Assuming that this function only depends on the agents' portfolio holdings and
the exogenous shock, we develop a spline collocation algorithm to approximate
the policy function. The algorithm is faster than previous methods, allowing us
to compute solutions for models with short time periods and to do so with
small error. In particular, in many models calibrated to quarterly data we
can compute equilibria in a minute with optimization errors on the order
of 10"#. Errors of this magnitude make it seem likely that, at least for the
cases we considered, we are justi"ed to assume that the agents' portfolio
holdings form a su$cient endogenous state space. We then show how these
results can be used to derive results concerning asset pricing, trading volume,
and investor welfare.

The algorithm can also be used to compute equilibria for models with several
assets. Judd et al. (1999) consider a model where there is a short-term bond and
an in"nitely lived stock. While in this model it is not clear if there exists
a recursive equilibrium, their results are also very encouraging. The spline
collocation method combined with a time iteration process is a stable, fast, and
accurate approach to dynamic recursive models.
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