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1For example, Ausubel (1990b) and Bernardo (1999) argue that the costs and bene"ts of insider
trading cannot be analyzed rigorously except in models where all traders rationally use all available
information to maximize well-speci"ed objectives.

1. Introduction

Much of the literature analyzing asset markets with asymmetrically informed
traders makes very special and simple assumptions about preferences, the
distribution of returns, and the information asymmetries to derive closed-form
expressions of equilibrium. Furthermore, many analyses add a group of traders,
called &noise' or &liquidity' traders, whose actions are insensitive to prices and
their information content. The focus on closed-form solutions and the inclusion
of noneconomic behavior substantially limits the generality of the analyses and
the range of questions which can be addressed. In this paper, we present
a computational approach which can examine a far broader range of models
and address many more questions.

Grossman (1976) used the combination of negative exponential utility func-
tions, normally distributed payo!s, and normally distributed prediction errors
to obtain closed-form solutions in a trading model with N competitive, privately
informed traders. In this setting, all private information is summarized by
a single statistic, allowing a single price to also be a su$cient statistic for all
private information. Therefore, even when information is private, there is a mar-
ket-clearing price rule which conveys the total content of all information. While
the result is interesting, it is too good. For example, Jordan (1983) has shown
that the strong revelation properties of the Grossman model is atypical among
such economies, calling into question the wisdom of basing a theory on such
a special example.

Grossman and Stiglitz (1980) developed a model in which traders have
incentives to acquire private information even if it is partially revealed in
equilibrium. To avoid the strong aggregation properties of the Grossman (1976)
model they introduced &noise traders' into their analysis. The key fact is that
noise traders generate shocks to aggregate demand which are unrelated to the
asset's payo!. This causes traders to wonder, for example, if a high price is due to
some traders having good information or due to unexpected &noisy' demand.
Since this decomposition matters, there is no one-dimensional su$cient statistic
which conveys all information. This &noise trader' approach has been extensively
used in analyses of asset markets with asymmetrically informed traders.

There are many undesirable features to this approach. The addition of &noise
traders' limits the type of analyses which can be conducted. For example, welfare
analyses of such markets is di$cult because the noise traders do not have
well-de"ned preferences.1 All of the assumptions in the Grossman}Stiglitz
approach are special, not just the noise traders. The assumption of exponential
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2The reasons for these strong results are clear: when the price space is large relative to the
complexity of the world, the full information price is (generically) di!erent for each state, and prices
can reveal all information. However, most would argue that the dimension of the information space
exceeds the dimension of the price space, making it unlikely that reasonable price functions could
convey all information.

utility implies that a trader's holding of risky assets is unrelated to his wealth,
an unreasonable assumption making dynamic, general equilibrium extensions
(De Long et al., 1990,1991; Wang, 1994) of this model unrealistic. The assump-
tion that the informed trader's prediction error is normal with known variance
and that all traders know the true unconditional variance of the return is also
very special. For example, it rules out asymmetric information about the
variance of an asset's return, whereas in reality traders often disagree about an
asset's riskiness as well as its expected return. The assumption of normally
distributed asset payo!s is problematic because it implies unlimited liability,
allows for negative consumption in equilibrium, and excludes assets, such as
options, whose payo!s are not normally distributed. As emphasized by Admati
(1989): &For tractability, all of the models of noisy rational expectations equilib-
rium2 assume exponential utility functions and normal distributions. Al-
though these models capture many important phenomena, this limitation
should be noted. Needless to say, tractable models with di!erent parametric
assumptions are sorely needed'.

In this paper, we develop a general computational approach to rational
expectations modeling that can handle many more speci"cations of tastes,
return distributions, and information structures. The numerical approach used
here is based on the projection method described in Judd (1992). There the
projection method was applied to conventional numerical problems arising in
a simple stochastic growth model, and related methods have been re"ned to
solve a variety of symmetric information economic problems. Unfortunately, no
methods have been developed to analyze general models of asset markets with
asymmetric information. The key novel di$culty is that the endogenous price
law we want to compute appears in both the trader's decision rules and the
information set used in computing each trader's conditional expectations. This
feedback from equilibrium prices to traders' expectations imply that the equa-
tions de"ning a rational expectations equilibrium do not "t into any of the
conventional categories of partial or ordinary di!erential equations or integral
equations we usually see in economics and mathematics and their numerical
literatures. Furthermore, Radner (1979) showed that rational expectations equi-
libria are generically fully revealing when there are only a "nite number of states
and prices are from Rn.2 These results are also important for developing
a numerical approach. Some might say that we could approximate a continuous
model using an approximate model with a "nite number of states. Radner's
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results tell us that the discretized version would generically have a fully revealing
equilibrium, thereby eliminating its value as an approximation to partially
revealing rational expectations equilibrium.

The focus of this paper is to present projection methods for solving models
with asymmetric information, discuss the problems and limitations of this
approach, and present various diagnostics which can be used to test the quality
of the numerical solution. We do not prove existence, leaving that problem for
theoretical analysis. If there does not exist an equilibrium then the diagnostics
would likely detect the nonexistence. In any case, our method did produce
e-equilibria for economically small e for many interesting examples, and we
advocate that no numerically computed equilibrium should be accepted unless
it can be veri"ed to be a e-equilibrium for economically small e.

We present our numerical methodology in the context of the Grossman and
Stiglitz (1980) model of endogenous information acquisition. We replace their
assumptions of negative exponential utility functions and normally distributed
returns with the assumptions of constant relative risk aversion (CRRA) utility
functions and lognormally distributed returns. Our assumptions preclude
closed-form expressions of equilibrium and allow us to demonstrate the #exibil-
ity of our numerical approach. We show that the results in Grossman and
Stiglitz are not robust to this alternative parameterization of their model. For
example, Grossman and Stiglitz found that the informativeness of the price
system is invariant to the variance of liquidity trades. In their model, an increase
in liquidity trade variance reduces the informativeness of prices for a "xed
proportion of informed traders. However, an increase in liquidity trade variance
increases the equilibrium proportion of informed traders and does so to the
extent that it exactly o!sets the former e!ect on the informativeness of prices. In
our model, however, we "nd the surprising result that an increase in the liquidity
trade variance increases the equilibrium informativeness of prices: thus, in-
creased information acquisition more than o!sets the static e!ect of liquidity
trade variance on the informativeness of equilibrium prices. Grossman and
Stiglitz also derived a similar invariance result with respect to the residual
uncertainty (after private information is observed) of the stock return. In our
example, we "nd that greater residual uncertainty decreases the equilibrium
informativeness of prices. While the equilibrium amount of information acquisi-
tion increases when residual uncertainty increases, it does not completely
counteract the static e!ect that residual uncertainty has on the informativeness
of the price system.

We also derive a novel comparative static result relating the equilibrium
proportion of informed traders and the informational e$ciency of prices to the
wealth of potentially informed traders. In Grossman and Stiglitz, traders have
negative exponential utility functions which exhibit no wealth e!ects. In our
model, however, we show that increasing wealth decreases the proportion of
informed traders but increases the informativeness of stock prices. This may
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seem surprising but there is a simple intuition. Wealthier traders act more
aggressively on their information because they have decreasing absolute risk
aversion. Thus, for a "xed proportion of informed traders, prices become more
informative and the marginal bene"t of acquiring information (beyond what can
be inferred from the price) falls. In equilibrium, fewer traders acquire informa-
tion but the impact on price informativeness due to the aggressive trading
behavior of the informed more than o!sets this.

Finally, we derive comparative statics results relating unconditional expected
stock returns to the underlying parameters of the model. We "nd that expected
stock returns are increasing in risk aversion, decreasing in wealth, increasing in
residual payo! variance, and largely invariant to liquidity trade variance. This is
another interesting exercise that is di$cult to carry out in the standard exponen-
tial-normal models in which expected returns are not well-de"ned because
normally distributed payo!s allow negative prices in some states. This is an
important concern if one is interested in applying asymmetric information
models to stock market return data (e.g., Campbell and Kyle, 1993; Spiegel,
1998). In contrast, computing expected stock returns is a straightforward exer-
cise with our distributional assumptions.

We "nd that our computational approach quickly produces excellent approx-
imate solutions. We test our approach on some numerically nontrivial bench-
mark cases where we know the true solution. In those cases, our numerical
solutions correctly identify the known equilibrium prices and demands to four
and "ve signi"cant digits. To measure the quality of our approximations for
cases where we do not know the solution, we take the bounded rationality
approach described in Judd (1992) and compute norms of Euler equation errors
implicit in our approximate solutions. We "nd small Euler equation errors for
our approximate solutions, demonstrating that our solutions are e-equilibria for
small e, on the order of a dollar mistake for each $1,000,000 traded. We argue
that such an e-equilibria is as plausible a prediction of what real, boundedly
rational, traders would do as is any exact equilibria. Approximate rational
expectations concepts have also been developed in Anderson and Sonnenschein
(1982) and Allen (1985a). The notion we adapt is motivated by computational
considerations, but corresponds to an equilibrium where traders are not in-
"nitely rational, but approximate the information content of prices using stan-
dard econometric methods. Our approach for evaluating the quality of our
approximations corresponds to the tests an econometrician living in our model
would use to evaluate statistical models to decide if some alternative is economi-
cally signi"cantly better. We also "nd that projection methods applied to
asymmetric information models produce far smaller errors than some other
methods in the numerical asset pricing literature.

The speed displayed by these methods when applied to nontrivial problems
indicates that more complex problems are tractable. Also, in this paper we use
only elementary and general numerical methods; future versions which use
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problem-speci"c applications of asymptotic methods and more sophisticated
integration methods will increase speed by at least a couple orders of magnitude.
We believe that our numerical procedure for computing approximate equilibria
will make it possible to examine many interesting problems that are otherwise
intractable.

The remainder of the paper is organized as follows. Section 2 describes
a version of the Grossman and Stiglitz (1980) model with CRRA preferences and
lognormally distributed returns. The numerical methodology is developed in the
context of this model in Section 3. We then discuss the results of our model.
Section 4 tests our numerical algorithm on problems where we know the true
solution. We then develop a methodology for checking the quality of approxim-
ate solutions in cases where we do not know the true solution. Section 5
concludes.

2. A model of endogenous information acquisition

In this section we consider an adaptation of the canonical Grossman and
Stiglitz (1980) model of information acquisition. We replace their assumptions of
negative exponential utility functions (implying constant absolute risk aversion)
and normally distributed returns with the assumptions of constant relative risk
aversion (CRRA) utility and lognormally distributed returns. In the next section,
we will develop our general numerical methodology within the context of this
model and we will demonstrate that the results of the Grossman and Stiglitz
model are not robust to our alternative parameterization.

Consider a one period (two date) economy in which risk-averse traders
allocate their wealth between a stock and a bond at date 0, and consume the
proceeds at date 1. The bond is in perfectly elastic supply and pays a certain
amount R dollars at date 1 for every dollar invested at date 0 while the stock
pays a random amount ZI dollars per share at date 1. The stock payo! is
lognormally distributed with ZI "exp(SI #e8 ), where SI is normally distributed
with mean k and variance p2

S
and e8 is normally distributed with mean zero and

variance p2e . The bond price is normalized to one, thus the price of the stock is
expressed in units of bonds. We also normalize the supply of the stock to one.

There are two types of traders in the economy. The "rst type, the &potentially
informed', can acquire information about the stock payo! at a cost c. Following
Grossman and Stiglitz, we assume that if information is acquired the random
variable SI is observed precisely. The &potentially informed' have identical cash
endowments, =, identical share endowments, hM , and identical CRRA prefer-
ences of the form u(c)"1/(1#c)c1`c where c(0 is the parameter of relative
risk aversion. The proportion of such traders who choose to acquire informa-
tion, denoted by j, is determined endogenously. The second group of traders
submit random demands x8 which are normally distributed with mean zero and
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3We have also solved a similar model without liquidity traders which yields the same results. That
model replaces the liquidity traders with a group of traders whose average risk tolerance is not
known with certainty. The introduction of another source of uncertainty ensures that the equilib-
rium prices are not fully revealing. However, because all traders have well-de"ned preferences
complete welfare analyses can be conducted in such a model. This is not true of liquidity trader
models because liquidity traders do not have utility functions.

variance p2
x
. Such &liquidity traders' are used throughout the literature to ensure

that the equilibrium price does not perfectly reveal the private information
about SI . Introducing noise into equilibrium prices is critical for any model of
information acquisition because without it no trader would have the incentive to
acquire costly information when it could be observed at no cost by observing the
equilibrium price. Although there are many problems with using such a device,
we ignore them in this example so that we can directly compare the e!ects of our
parametric assumptions to those in the Grossman and Stiglitz model.3 Finally,
the random variables SI , e8 , and x8 are mutually independent.

Consider a trader who has chosen to acquire information SI "s at cost c. The
informed trader solves

max
hI

EC
1

1#c
c8 1`c
I KSI "sD,

where c8
I
"h

I
ZI #[=!c!(h

I
!hM )p]R represents the random date-1 con-

sumption when the informed trader holds h
I
shares of stock after trade at date

0 and the share price is p dollars per share.
The "rst-order condition for the choice of h

I
is given by

E[c8 c
I
(ZI !pR) DSI "s]"0. (1)

For the informed traders, the price p contains no payo!-relevant information
that is not contained in s. For the uninformed traders, the information set is the
equilibrium price alone. Let P(s,x) be the asset price function which depends on
the realizations of the random variables SI and x8 . Then the uninformed trader
solves

max
hU

EC
1

1#c
c8 1`c
U KP(s,x)"pD,

where c8
U
"h

U
ZI #[=!(h

U
!hM )p]R represents their random date-1 con-

sumption.
The "rst-order condition for the choice of h

U
is given by

E[c8 c
U

(ZI !pR) DP(s,x)"p]"0. (2)
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A rational expectations equilibrium is a collection of price and demand rules
such that h

I
satis"es the "rst-order condition (1), h

U
satis"es the "rst-order

condition (2), and the market for the stock clears in every state of the world

jh
I
(s)#(1!j)h

U
(P(s,x))#x"1 ∀s, x. (3)

Since the utility functions are concave, the second-order conditions are auto-
matically satis"ed. The equilibrium proportion of informed traders, j, is deter-
mined by requiring that the expected utility achieved by those who choose to
gather information, net of information gathering cost c, be equal to the expected
utility achieved by those who do not. Finally, the assumption of rational
expectations implies that the trader computes expectations using the distribu-
tion of ZI conditional on the trader's private information and the correct
equilibrium relation between prices and information.

3. Numerical methodology

We cannot in general compute rational expectations equilibria. In fact, as
demonstrated in Kreps (1977), there may not exist a rational expectations
equilibrium. Allen (1985a,b) and Anderson and Sonnenschein (1982) have for-
mulated notions of approximate equilibria and proven existence theorems for
these notions. Since our computational approach does not exactly correspond
to either of these approaches, we will present our own de"nition of e-rational
expectations, which we are attempting to compute.

De5nition 1. (P(s, x), h
I
(s), h

U
(p)) is an e-rational expectations equilibrium if and

only if for all states in a set of probability 1!e:

1. for all trader types i with information sets F
i
, decisions are nearly optimal,

that is

K
E[u@

i
(c

i
) (Z!P(s,x)R) DF

i
]

E[u@
i
(c

i
)(=#hM P(s,x)) DF

i
] K)e

and
2. markets nearly clear, that is, Dh

I
(s)#h

U
(P(s, x))#x!1D)e for all s, x.

Our notion of e-equilibria asserts that the market nearly clears and that
traders nearly optimize in nearly all states. Our &nearly optimal' criterion is
a ratio which expresses the optimality error in terms of the fraction of wealth. It
is necessary to take this ratio if we want to make the concept of approximate
equilibria independent of inessential transformations of u and changes in the
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4See Judd (1992) for a discussion of the advantages of orthogonal bases in projection methods.

5The set of complete polynomials of degree N over Rm is de"ned to be

P
N
,Gxi1

1
2xim

m K
m
+
l/1

il)N, il*0, l"1,2, mH.
An alternative is the tensor product of degree N over Rm:

T
N
,Mxi1

1
2xim

m
D0)il)N, l"1,2,mN.

The use of complete polynomials generally results in little loss of accuracy as compared to the full
tensor product basis but has the advantage of many fewer unknown parameters. We use the tensor
product notation in the paper to avoid clutter.

units of wealth. If we do not focus on relative quantities, anything can be an
e-equilibrium for arbitrarily small e just by replacing each u

i
with u

i
/M for very

large M. This is a detail which arises when one does numerical work since we
actually want to state the magnitude of e, not just examine the limit as e goes to
zero. The near market clearing condition is similarly expressed in relative terms
for the same reasons.

This de"nition may also include the asymptotically fully revealing approxim-
ate equilibria in Jordan (1982). However, we do not want to approximate these
equilibria since they utilize unintuitive functions with large (asymptotically
in"nite) variation to reveal information. To avoid this, we approximate the price
function P(s,x) and the trading functions h

I
(s) and h

U
(p) with smooth functions

of low variation. In many respects, our approximate equilibria most resembles
the method used in Ausubel (1990a,b) but is more #exible.

3.1. Formulating the equilibrium approximation

We now formulate the numerical approximation for the equilibrium func-
tions. Generally speaking, our method approximates equilibrium by "nitely
parameterizing P(s,x), h

I
(s), and h

U
(p) and imposing a "nite number of the

conditions implicit in our de"nition of equilibrium. We now turn to the precise
details in our model. We begin by approximating the price law with the
polynomial

p( (s,x; a)"
Np

+
j/0

Np

+
k/0

a
jk

H
j
(s)H

k
(x),

where H
j
denotes the degree j Hermite polynomial, and N

p
represents the total

degree of the polynomial approximation. We use Hermite polynomials because
these polynomials are mutually orthogonal with respect to the normal density
with mean zero.4 We also use the complete set of polynomials, rather than the
full tensor product, to reduce the number of unknowns.5
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An informed trader's demand rule will be a function of their private informa-
tion s. The informed learn nothing from the equilibrium price that is not already
privately observed, thus we postulate the following approximation to the in-
formed's demand function:

hK
I
(s; bI)"

Nh
+

m/0

bI
m
H

m
(s).

The demand policies for the uninformed traders, however, will be a function of
the equilibrium price alone thus we postulate the following approximation:

hK
U
(p( (s,x; a); bU)"

Nh
+

m/0

bU
m
H

m
(p( (s,x; a)).

Our goal then is to determine the unknown a
jk

, bI
m
, and bU

m
coe$cients. Their

number depends on the choice of Nh and N
p
. We will (for reasons stated below)

let Nh"N
p
"3, resulting in eighteen unknown coe$cients if complete poly-

nomials are used: ten for the price function and four for each of the two demand
functions. To determine the unknown coe$cients we impose projection condi-
tions on the traders' "rst-order conditions and market clearing. The total
number of conditions will equal the number of unknown coe$cients, hoping
that they are su$cient to "x the unknown coe$cients. In this paper, our
approach is, using an econometric term, to exactly identify the unknown
coe$cients by imposing an equal number of projections.

3.2. Computing conditional expectations

Numerical implementation of the conditional expectation conditions implied
by (1) and (2) is the most challenging aspect of this problem. Suppose that X and
> are random variables with a joint density function f (X,>), and let Z be the
expectation of > conditional on X. We will use the following de"nition of
conditional expectation:

De5nition 2. The function Z(X)"E[>DX] if and only if

E[(Z(X)!>)g(X)]"P (Z(X)!>)g(X) f (X,>) dXd>"0 (4)

for all continuous bounded functions, g(X), of X.

Intuitively, this says that the prediction error of the conditional expectation,
E[>DX], is uncorrelated with any bounded, continuous function of the condi-
tioning information, X. This de"nition replaces the conditional expectation
with an in"nite number of integration conditions. This approach can be used
to approximate the conditional expectations implicit in the "rst-order
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6There are many obvious connections with statistical regression analysis. However, it is not
advantageous to develop those analogies. It is more e$cient to think of Z(X)"E[>DX] as
shorthand for a list of integrals, and formulate the problem in terms of integrals. Probabilistic ideas
tend to lead one to think in terms of random variables and Monte Carlo methods, an approach
which is substantially inferior here.

conditions (1) and (2).6 To check if Z(X)"E[>DX], one need only verify
0": (Z(X)!>)g(X) f (X,>) dX d> for g3G where G is a set of functions which
spans the space of continuous bounded functions of X. Of course, one cannot
compute an in"nite number of integrals. In practice, we approximate Z(X) by
"nitely parameterizing Z(X) and use a "nite number of the unconditional
expectation conditions to identify the free parameters. Below we will outline the
details of applying these ideas to our speci"c model.

Using the de"nition of conditional expectation given in (4) we numerically
approximate the "rst-order condition for the informed in (1) with the conditions

E[c8 c
I
(ZI !p( (s,x; a)R)H

m
(s)]"0, m"0,2, Nh . (5)

Similarly, we approximate the "rst-order condition for the uninformed with the
conditions

E[c8 c
U
(ZI !p( (s,x; a)R)H

m
(p( (s,x; a))]"0, m"0,2, Nh . (6)

The projection conditions (5) constitute only a portion of the conditional
expectation in Eq. (1). According to the de"nition (4) we would need to project
c8 c
I
(ZI !p( (s, x; a)R) on all bounded, continuous functions of the conditioning

information to get equivalence. The hope is that a small number of projections
can yield a useful approximation. Below we will make diagnostic checks of our
candidate approximations.

It is clear from the representation of the "rst-order condition in Eqs. (5) and
(6) why we can examine models with general tastes, returns, and information
structures. In the exponential-normal framework, linear closed-form solutions
can be obtained because of a number of very special assumptions including (i)
the joint distribution of asset payo!s, information, and liquidity trades is
multivariate normal, (ii) consumption is normally distributed conditional on
observed information and prices, and (iii) expected utility with negative exponen-
tial preferences has a closed-form representation when consumption is condi-
tionally normal. Relaxing any of these features makes it virtually impossible to
obtain a closed-form solution. The requirement that consumption be normally
distributed conditional on observed information and prices rules out (i) non-
linear equilibrium prices; (ii) general information structures; (iii) non-normally
distributed securities such as options; and (iv) traders conditioning on other
market statistics, such as trading volume, which are generally not normally
distributed. Our method, however, does not make such stringent requirements.
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7An alternative is to force one of the investor types to hold the remaining shares after all other
investor types optimize. This will guarantee market clearing in every state of the world and reduce
the number of unknowns. However, this is problematic because the residual investor's demand will
not be measurable with respect to his information set.

The only implicit assumptions are that the utility functions are smooth and that
the random variables describing returns and information have continuous (or,
better yet, C=) cumulative distribution functions. While these restrictions are
mathematically substantive, they impose few economically substantive assump-
tions.

Equilibrium also requires market clearing. We cannot impose market clearing
in each and every state and simultaneously have all traders follow rules measur-
able in their individual information. Therefore, we assume that deviations from
market clearing are orthogonal to several of our basis functions:

EM[jhK
I
(s)#(1!j)hK

U
(p( (s,x))#x!1]H

j
(s)H

k
(x)N"0, j, k"0,2, N

p
.

(7)

The disadvantage of (7) is that the market would not exactly clear in all s and
x, but each trader's rule is measurable in his information. The deviations from
perfect clearing can be interpreted as inventory noise on the part of market
makers. Of course, it would be better to model the market maker behavior
directly. This may sound like trading noise similar to the undesirable noise
trader device, but we work to reduce the deviations from pure market clearing
to an arbitrarily small magnitude, whereas in models with noise traders one
cannot reduce the noise without also eliminating the substantive results.
A simple way to check the market clearing condition is to compare the sum of
the demands to the supply for randomly chosen s and x: in all the examples
below we "nd that the deviations from market clearing are small (of the order
of one-in-one-million) and can be made smaller by using more projection
conditions.7

We now have reduced the equilibrium problem to the combined system (5)}(7)
which is a collection of nonlinear equations. Hopefully this system has a solution
for the unknown coe$cients of p( (s,x; a), hK

I
(s; bI), and hK

U
(p( (s, x; a); bU). The

equilibrium relation between the proportion of informed, j, and the cost of
information, c, is determined by xxing j and "nding the value of c which equates
the expected utilities of the informed and the uninformed. The unconditional
expectations in (5)}(7) are not yet in a computable form, since they are integrals
which generally have no analytic solution. To implement the system we need to
replace these integrals with approximations. We use Gaussian quadrature
techniques to approximate these integrals (see Judd, 1998). The details are
available from the authors upon request.
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To compute solutions to our system of non-linear equations, we use the
MINPACK program HYBRD, which is an implementation of the Powell
hybrid method, an adaptation of Newton's method. If it has di$culty "nding
a solution, HYBRD switches to a least-squares mode and returns the para-
metersr (a, bI, bU) which minimizes the sum of squared errors. Our experience is
that HYBRD will "nd solutions in the sense that it "nds values for (a, bI, bU)
where the deviations from zero in the system (5)}(7) are all numerically indistin-
guishable from zero.

3.3. Results

Figs. 1}6 plot the equilibrium proportion of informed traders, j, and the
noisiness of equilibrium prices as a function of one of the exogenous parameters
of the model. We provide a unit-free measure of equilibrium price noise by
computing the mean absolute deviation of equilibrium prices from the full-
information price divided by the equilibrium price. The results are qualitatively
identical for several other reasonable measures of informational e$ciency. For
all of these experiments, we choose the base-case parameterization of
c"!3: p2

S
"p2e"0.1; p2

x
"0.01; ="1; hM"0.5; R"1.03; k"1; and c"0.01.

These parameters yield reasonable annual, individual stock return data (6%
equity risk premium and 35% annual standard deviation) and bond return data
(3% real rate).

Several of our comparative statics results are consistent with those found in
Grossman and Stiglitz (Theorem 4). For example, Fig. 1 demonstrates that
increasing the cost of information, c, decreases information acquisition and
decreases the informativeness of equilibrium prices. With fewer informed
traders, equilibrium prices convey less information. Fig. 2 shows that increasing
p2
S
, keeping p2

S
#p2e constant, "rst leads to an increase then a decrease in

information acquisition but always increases the informativeness of equilibrium
prices. The intuition for these results are discussed in Grossman and Stiglitz.

Some of our results, however, di!er in important ways from those in Gross-
man and Stiglitz. For example, they found that increasing p2e while holding the
ratio p2

S
/p2e "xed has no e!ect on the informational e$ciency of equilibrium

prices. On one hand, for "xed j, increasing p2e while holding the ratio p2
S
/p2e

constant decreases the informativeness of prices. The reason for this is that
risk-averse informed traders act less aggressively on their private information
when there is greater residual risk (after observing SI "s). However, the marginal
bene"t of observing the signal precisely (compared to observing the price)
increases which leads more traders to acquire information which in turn in-
creases the informativeness of prices. In their model, these two e!ects exactly
o!set each other in equilibrium! In our model, however, the increase in price
informativeness due to increased information acquisition always overwhelms
the decrease in price informativeness due to the static e!ect of increasing p2e in
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Fig. 1. The equilibrium proportion of informed traders, j, and the noisiness of equilibrium prices as
a function of the cost of information, c. The noisiness of equilibrium prices is measured by the mean
absolute deviation of the equilibrium price from the full-information price divided by the equilib-
rium price. The equilibrium j is plotted in black and the noisiness of equilibrium prices is plotted in
gray. The base-case parameters are c"!3;="1; R"1.03; k"1; p2

S
"p2e"0.1; and p2

x
"0.01.

equilibrium. Fig. 3 demonstrates that as p2e increases, holding p2
S
/p2e "xed,

equilibrium prices become less informative. We veri"ed that this comparative
statics result is robust to a large space of values for the other parameters of the
model.

Grossman and Stiglitz derived a similar invariance result with respect to the
liquidity trade variance parameter, p2

x
. Again, they showed that for "xed j, an

increase in p2
x

makes prices noisier, however, an increase in p2
x

also increases the
marginal bene"t of becoming informed thereby leading to greater information
acquisition. In their model, these two e!ects exactly o!set each other. Fig. 4
shows, however, that in our model an increase in p2

x
actually makes equilibrium

prices more informative! The increase in information acquisition dominates the
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Fig. 2. The equilibrium proportion of informed traders, j, and the noisiness of equilibrium prices as
a function of p2

S
, holding p2

S
#p2e"0.2 "xed. The noisiness of equilibrium prices is measured by the

mean absolute deviation of the equilibrium price from the full-information price divided by the
equilibrium price. The equilibrium j is plotted in black and the noisiness of equilibrium prices is
plotted in gray. The base-case parameters are c"!3; ="1; R"1.03; k"1; p2

x
"0.01; and

c"0.01.

static e!ect that increasing p2
x

has on the informativeness of prices. Again, this
comparative statics results is robust to a large space of values for the other
parameters.

As in Grossman and Stiglitz, Fig. 5 demonstrates that decreasing the traders'
risk aversion decreases information acquisition but also increases the informa-
tiveness of equilibrium prices. An important limitation of the Grossman and
Stiglitz model is that the assumption of negative exponential utility implies no
wealth e!ects. In our model, however, there are wealth e!ects because traders
have CRRA preferences. In Fig. 6 we show that increasing the wealth of the
potentially informed traders decreases equilibrium information acquisition but
increases the informativeness of equilibrium prices. At "rst glance, this seems
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Fig. 3. The equilibrium proportion of informed traders, j, and the noisiness of equilibrium prices as
a function of p2e , holding p2

S
/p2e"1. The noisiness of equilibrium prices is measured by the mean

absolute deviation of the equilibrium price from the full-information price divided by the equilib-
rium price. The equilibrium j is plotted in black and the noisiness of equilibrium prices is plotted in
gray. The base-case parameters are c"!3; ="1; R"1.03; k"1; p2

x
"0.01; and c"0.01.

surprising. One would expect that if information acquisition is reduced so
would the informativeness of equilibrium prices. However, wealthier traders
in our model act more aggressively on their private information because they
have decreasing absolute risk aversion. While there are fewer informed traders,
their aggressive trading behavior impounds more information into prices, so
much so that it dominates the e!ect that reduced information acquisition has on
price informativeness. This intuition applies to the results in Fig. 5: although
reducing risk aversion reduces information acquisition, it increases the informa-
tiveness of equilibrium prices via the more aggressive behavior of the informed
traders.
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Fig. 4. The equilibrium proportion of informed traders, j, and the noisiness of equilibrium prices as
a function of the supply noise variance, p2

x
. The noisiness of equilibrium prices is measured by the

mean absolute deviation of the equilibrium price from the full-information price divided by the
equilibrium price. The equilibrium j is plotted in black and the noisiness of equilibrium prices is
plotted in gray. The base-case parameters are c"!3;="1; R"1.03; k"1; p2

S
"p2e"0.1; and

c"0.01.

Figs. 7A}D examine the e!ects of the underlying parameters of the model on
unconditional expected stock returns. This type of analysis is di$cult in the
standard exponential-normal models because normally distributed payo!s
allow negative prices in some states in which case expected returns are not well
de"ned. Several papers have tried to apply the exponential-normal model to
return data with considerable di$culty (e.g., Campbell and Kyle, 1993; Spiegel,
1998). In contrast, computing expected stock returns is a straightforward exer-
cise with our distributional assumptions. For the results in Fig. 7, we choose
a di!erent set of base-case parameters than in Figs. 1}6 to re#ect a stock market
index rather than individual stocks. The unconditional standard deviation of
stock returns in this calibration mimic the historical U.S. market average of
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Fig. 5. The equilibrium proportion of informed traders, j, and the noisiness of equilibrium prices as
a function of the risk aversion parameter, DcD. The noisiness of equilibrium prices is measured by the
mean absolute deviation of the equilibrium price from the full-information price divided by the
equilibrium price. The equilibrium j is plotted in black and the noisiness of equilibrium prices is
plotted in gray. The base-case parameters are="1; R"1.03; k"1; p2

S
"p2e"0.1; p2

x
"0.01; and

c"0.01.

20%/year. Furthermore, it is assumed that investors have a relative risk aver-
sion parameter of c"!1.5 and non-stock market wealth roughly twice their
stock market wealth.

Several interesting results emerge from our analysis. Our asymmetric in-
formation model predicts that the unconditional equity risk premium is increas-
ing in risk aversion, decreasing in wealth, increasing in the residual payo!
variance, and largely invariant to the liquidity trade variance. An increase in risk
aversion (and a decrease in wealth) reduces the aggregate risk tolerance in the
economy thereby increasing the equity risk premium. An increase in the residual
payo! variance increases the supply of risk in the economy thereby increasing
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Fig. 6. The equilibrium proportion of informed traders, j, and the noisiness of equilibrium prices as
a function of wealth, =. The noisiness of equilibrium prices is measured by the mean absolute
deviation of the equilibrium price from the full-information price divided by the equilibrium price.
The equilibrium j is plotted in black and the noisiness of equilibrium prices is plotted in gray. The
base-case parameters are c"!3; R"1.03; k"1; p2

S
"p2e"0.1; p2

x
"0.01; and c"0.01.

the equity risk premium (due to concave preferences). Liquidity trade variance
surprisingly has no meaningful impact on the unconditional equity risk pre-
mium. For a "xed level of information acquisition, an increase in liquidity trade
variance should increase the equity risk premium because it increases the supply
of risk. However, we know from Fig. 4 that an increase in p2

x
leads to an increase

in information acquisition (improving the equilibrium informativeness of stock
prices) which reduces total risk. In our analysis, these e!ects largely o!set each
other. Finally, our model predicts reasonable values for the unconditional
equity risk premium (roughly 6%) with risk aversion parameters of the order
c"!5.5 in contrast to the much higher risk aversion parameters required in
symmetric information models.
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Fig. 7. (A}D). The unconditional expected return on the stock as a function of (A) supply noise
variance, p2

x
; (B) residual payo! variance, p2e , holding p2

S
/p2e"1 "xed; (C) risk aversion, DcD; and (D)

wealth, =. The base-case parameters are c"!1.5; ="5; R"1.03; k"1; p2
S
"p2e"0.1;

p2
x
"0.01; and c"0.01.

4. Applications to soluble models

We now evaluate the accuracy of our methodology. Fortunately, there are
some numerically non-trivial cases where we know the solution. In this section,
we follow standard practice in the numerical literature and test our method by
applying it to problems where we know the true solution. This will give us some
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idea as to the accuracy of the procedure and its performance. We then develop
a methodology for checking the quality of approximate solutions in cases where
we do not know the true solution.

4.1. No-trade examples

If all traders have the same utility function and endowment then there will be
no trade (each trader will hold their endowment) in a rational expectations
equilibrium, regardless of the distribution of private information. Furthermore,
the equilibrium price will be the full-information price (see Milgrom and Stokey,
1982). Numerical calculation of the full information prices is a straightforward
calculation of marginal rates of substitution, involving only numerical integra-
tion which in this case, because of the smooth functions involved, will be very
accurate. While we may know these facts, the algorithm does not &know' these
facts and instead approaches the problem in the general way. Therefore, we can
check our algorithm on these cases.

We considered the following model covered by the Milgrom}Stokey theorem.
We assume that there is a group of traders endowed with private information
>I "ZI #e8 where ZI is the random stock payo! and e is signal noise which is
normally distributed with mean 0 and variance 0.1, and three groups of traders
who have no private information but can observe the equilibrium price. We
applied our algorithm to compute equilibrium for twenty cases covered by the
Milgrom}Stokey theorem with a wide variety of utility functions and returns.
By comparing it with the full information calculations, we found that this
method generated the correct prices and holding strategies to within at least
three and often four or "ve signi"cant digits when we used degree three
polynomials for the pricing and demand functions. We also found the correct
solution even if the initial guesses were poor, indicating the stability of the
method.

Table 1 displays a typical example of the no-trade result. In this example, all
traders have constant relative risk aversion (CRRA) preferences with parameter
c"!3 and the stock payo! is lognormally distributed, i.e. logZI is distributed
normal with mean 0.25 and variance 0.1. All traders are endowed with cash
wealth of 1.0 and 1

4
shares of the stock. Even though some traders are informed

and others not, there should be no trading under any conditions (i.e. they should
always hold their endowment) and equilibrium prices should equal the full
information price in each state.

The column in Table 1 labelled y denotes the realization of the signal
>measured in terms of the standard deviation. Thus, the value y"!1 implies
that the informed traders observe a signal which is one standard deviation below
the mean. The Computed price column denotes the equilibrium price in that
state, the Full-info price column denotes the equilibrium price in a hypothetical
economy in which all traders observed all the information directly, and the
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Table 1
No-trade example!

y Computed Full-info h
I

h
U

price price

!2 0.82022 0.82024 0.24995 0.25007
!1 1.02078 1.02079 0.25011 0.24995
0 1.26937 1.26936 0.24995 0.25000
1 1.57751 1.57751 0.24998 0.25004
2 1.95947 1.95947 0.25014 0.24988

!Table 1 demonstrates a typical example in which the Milgrom}Stokey (1982) no-trade theorem
holds. Prices and shareholdings are correct to roughly four signi"cant digits with cubic polynomial
approximation and 7-point quadrature rules.

h
I
and h

U
columns denote the shareholdings after trading for the informed group

and each of the three uninformed groups, respectively. Using complete, cubic
polynomial approximations for the price and demand functions and 7 quadra-
ture nodes for computing integrals we "nd that the projection method yields
a very accurate approximation of the true equilibrium. The computed price and
demand functions are correct to about 4 decimal places. This example is typical
over a wide range of tastes and information speci"cations. Since the combina-
tion of cubic polynomial approximations and 7-point product integration
formulas did so well here, we use them below in later examples.

4.2. Known asset demand example

DeMarzo and Skiadas (1998) derived closed-form expressions for asset de-
mands in competitive models with asymmetric information when traders have
identical, linear risk tolerance. These expressions hold regardless of the speci"c
distributional assumptions on returns and information, and for any rational
expectations prices, fully informative or not. In particular, they showed that if
traders have CRRA preferences with identical parameters of relative risk aver-
sion then (stochastic) asset demands are given by

hH
i
"A
=

i
#hM

i
p

=#hM p BhM ,
where p is the equilibrium price,=

i
is trader i's cash wealth, hM

i
is trader i's share

endowment,=,+
i
=

i
, and hM ,+

i
hM
i
"1.

This expression for asset demands is independent of private information but is
nonlinear in p and presents a useful benchmark for testing the quality of the
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Table 2
Known asset demand example"

y Computed h
I
!hH

I
h
U1

!hH
U1

h
U2

!hH
U2

price

!2 0.78945 !0.00001 0.00002 0.00000
!1 0.97742 0.00001 !0.00004 0.00002
0 1.20914 0.00000 0.00002 !0.00002
1 1.49507 0.00000 0.00002 !0.00001
2 1.84811 0.00001 !0.00017 0.00014

"Table 2 demonstrates an example in which asset demands are known exactly. The numerical
approximation is correct to four and "ve signi"cant digits.

approximate demand functions computed using our method. Table 2 demon-
strates the results of a model in which all traders have identical CRRA prefer-
ences with risk aversion parameter !4.5 but di!er in their information and
their cash and share endowments. As in our Milgrom}Stokey example above,
the log of the stock payo!, logZ, is distributed normal with mean 0.25 and
variance 0.1. There is one informed group of traders who observe >"Z#e
with e distributed normal with mean 0 and variance 0.1. There are two groups of
uninformed traders who only learn about Z via the equilibrium price. The
informed group is endowed with cash wealth of 1 and 0.4 shares of the stock, the
"rst uninformed group is endowed with cash wealth of 1 and 0.4 shares of the
stock, and the second uninformed group is endowed with zero cash wealth and
0.2 shares of stock. In the last three columns of Table 2 we compare the demands
in various states using cubic polynomial approximation, h

i
, to the closed-form

expression derived in DeMarzo and Skiadis, hH
i
, and "nd that our approximate

demand functions are correct to four and "ve signi"cant digits when computed
at numerous states.

4.3. Accuracy measures with bounded rationality interpretations

Even after we have computed a candidate solution to the system (5)}(7) we
cannot uncritically accept it. We saw above that the algorithm did well in some
cases where we knew the true solution. However, we want to be able to evaluate
the candidate solution in all cases, not just in those special cases where we know
the answer. Just because we have a solution to the system (5)}(7) does not mean
that it is a good approximation to the solution of the real problem, (1)}(3). For
example, it could be that we chose approximations of insu$cient #exibility, or
that the integration formulas are too imprecise; in either case it is unlikely that
our candidate is a good approximation to the true solution. We need tests to
indicate whether we can accept the solution to (5)}(7) or if we need to go back
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Table 3
log

10
projection errors

Approx.: 2 3 3
Quad. rule: 5 5 7
Projection: 5 6 7 5 6 7 5 6 7

c"!1.5 !6.19 !6.35 !6.91 !6.41 !7.12 !7.04 !6.53 !7.47 !7.15
c"!2.5 !5.81 !6.51 !6.38 !5.86 !6.16 !6.25 !6.08 !6.49 !6.52
c"!3.5 !5.23 !5.71 !5.80 !5.36 !5.72 !5.89 !5.52 !5.88 !6.01#

#Table 3 reports (log
10

) consumption errors, as a proportion of wealth, when projecting on
higher-order basis functions. Thus, an entry of !6 implies consumption errors of one-millionth
part of wealth.

and make di!erent choices for the quadrature formula and/or the approxima-
tion form.

We attack this problem by computing a measure of inaccuracy. Once we have
a candidate solution for the price and trading rules, we can ask how much better
could a trader do if he used more information than implicit in the equilibrium
conditions. Note that the equilibrium conditions force him to choose decision
rules which yield Euler equation residuals which are orthogonal to a restricted
set of test functions. If we think of the trader as being an econometrician, this
essentially allows him to do only a limited regression analysis of the data. Such
a trader could look at the data and use more projections than we use in (5)}(7).

To check the quality of our candidate equilibrium, we compute the wealth
equivalent of the Euler equation residual when projected in other directions.
This is the consumption error, that is, the di!erence, in consumption units,
between following the candidate equilibrium rule versus following a rule which
uses more information in making inferences from the price. We operationalize
this by taking the equilibrium law and subjecting it to a more re"ned regression
analysis and asking how much a trader will gain if he is allowed to use the better
inference rule. As Table 3 suggests, the Euler equation residual errors are very
small, approximately one in ten-thousand to one in one-hundred-thousand
parts of wealth, when projected in directions not used to approximate the
equilibrium. Moreover, the Euler equation errors give us clues about the
optimal number of basis functions and quadrature nodes to use in the approxi-
mation. We "nd that cubic approximation works extremely well, with little to be
gained by moving to quartic approximation. We also "nd that using twice as
many quadrature nodes in each dimension as the degree of approximation
works very well. Thus, for cubic approximation one should use 6 or 7 quadra-
ture nodes for each dimension of integration.

In this table we report log
10

consumption errors. Thus, a consumption error
of !6 implies that Euler equation residuals, when projected on polynomials
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not used in determining the equilibrium, are approximately one in one-millionth
part of wealth. We report consumption errors for several risk aversion para-
meters, degrees of polynomial approximation, and quadrature rules.

This procedure re#ects a bounded rationality attitude towards our calcu-
lations. If these computational methods produce a policy function with small
optimization errors, then that approximate policy function is as compelling
a description of behavior as the equilibrium policy function since it is unclear
why individuals would bother making the nontrivial e!ort to "nd the &true'
policy function if the gain is small. From this perspective, the challenge of
numerical economic modeling is not in "nding the perfectly accurate description
of the mathematical equilibrium, but in "nding the collection of behaviors which
are approximately rational.

The size of the errors in Table 3 should also be compared with the existing
standards of the published literature. Any numerical approximation involves
error, and we must make judgments about what constitutes an acceptably small
error. The errors in Table 3 are far smaller than the standards used currently.
For example, Heaton and Lucas (1996) develop a numerical method to compute
equilibria in dynamic symmetric information models and accept equilibria
where the demand and supply price di!er by up to one percent in each period.
The Euler equation errors reported in Table 3 are orders of magnitude smaller.
This analysis also shows that projection methods applied to asset pricing
models can produce approximations of high quality relative to other methods
in use.

5. Conclusions

In this paper we have shown how to compute approximate solutions to asset
market equilibrium with asymmetric information. We developed a numerical
methodology which can handle arbitrary tastes, return distributions, and asset
structures. We demonstrate the e!ectiveness of these methods by analyzing
a version of Grossman and Stiglitz (1980) in which traders have constant relative
risk aversion (CRRA) preferences and stock returns are lognormally distributed.
This combination of preferences and returns precludes closed-form solutions.
Our results demonstrates that the conclusions from the Grossman and Stiglitz
model are not robust to changes in the parametric assumptions.

The exercises in this paper are just a basic application of the method. The
speed and accuracy of these methods when applied to these simple problems
indicate that more complex problems are tractable. From our experience, it is
clear that this approach can produce robust analyses of many theoretical and
practical issues. In particular, these methods could be used to model the
informational role of other endogenous statistics, such as trading volume
(Bernardo and Judd, 1998). Since trading volume is not normally distributed, it
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is di$cult to "nd closed-form solutions to equilibrium because of the complex
distribution of payo!-relevant variables conditional on observed trading vol-
ume. Our methodology is ideally suited to examine the informational role of
trading volume because it does not require knowledge of the joint conditional
distribution but only requires the joint unconditional distribution of all random
variables.
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