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Abstract 

We use perturbation methods to compute optimal policy functions in simple continuous- 
and discrete-time aggregate growth models. We demonstrate that computing the kth degree 
Taylor expansion of the policy function around the steady state involves solving one 
quadratic equation and k ~ 1 linear equations. We also compute Padi: expansions, and 
show that both Taylor and Pad& expansions can provide excellent solutions far from the 
steady state. 
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0. Introduction 

The increasing use of dynamic models with optimizing agents has led to 
sophisticated qualitative analyses of economic problems; unfortunately, quantita- 
tive analysis has been limited by the lack of closed-form solutions. This problem 
often leads analysts to examine only special cases such as linear-quadratic ob- 
jectives with linear laws of motion. While these special cases may suffice (see 
Hansen and Sargent (1990) for a discussion of the large variety of economic 
problems which can be analyzed with linear models), in many cases they are 
inadequate for a robust analysis of interesting problems. 

Approximation methods offer an alternative to closed-form solutions. In this 
paper we examine perturbation, or asymptotic, approximation methods. The basic 

idea of asymptotic methods is to formulate a general problem, find a particular 
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case which has a known solution, and then use that particular case and its solution 
as a starting point for computing approximate solutions to nearby problems, where 
the approximations are derived using implicit function theorems. These methods 
are widely used in mathematical physics, particularly in quantum mechanics and 
general relativity theory, with much success. While economists have often used 
special versions of perturbation techniques, such as linearizing around a steady 
state, they have generally not exploited the full range and power of asymptotic 
techniques. 

The method we develop below strictly generalizes linearizing around the steady 
state. Linearization methods (or, at least, the valid ones) compute asymptotically 
valid linear approximations to the law of motion in the neighborhood of the steady 
state. The method we develop below generalizes this by computing a Taylor 
series expansion for the equilibrium law of motion which begins with the linear 
approximation but then goes on to add higher-order terms. Some have argued 
that this approach is impractical; in particular, in his World Congress survey of 
these methods, Marcet (1994) stated that ‘perturbation methods of order higher 
than one are considerably more complicated than the traditional linear-quadratic 
case.. .’ In this paper, we will demonstrate that the high-order terms in the Taylor 
expansions produced by perturbation methods are, in fact, easier to compute than 
the linear terms, as well as show that they substantially improve the global quality 
of the approximation. 

In this paper we shall outline asymptotic approximation techniques for deter- 
ministic one-sector aggregate growth problems. The technique calculates a local 
approximation to policy functions based on the steady state of the problem. Such 
steady states are generally the solution to a system of nonlinear algebraic equa- 
tions and are easily solved numerically even if they do not have closed-form 
solutions. We will use local information to calculate linear and higher-order ap- 
proximations for the equilibrium of the deterministic problem near the steady 
state. 

The result of this method is either a high-degree polynomial or a rational 
function which approximates the solution around a point. There are many rea- 
sons why these approximations may be valuable. First, if the implicit infinite 
series is a valid expression of equilibrium over a nonzero interval of some vari- 
able, then we have solved the model over that interval. Second, if the expansion 
is asymptotically valid, that is, the approximation error vanishes rapidly as the 
perturbation variable becomes zero, then we can determine the nature of equilib- 
rium for conditions sufficiently near the deterministic steady state. Third, even if 
the expansion is not asymptotically valid, experience indicates that they may be 
of value nonetheless in some numerical procedures, 

The purpose of this paper is to acquaint economists with the perturbation ap- 
proach for two simple, stable growth problems. The key point is that these calcu- 
lations are far simpler than earlier speculation predicted. In fact, in each of these 
problems, all calculations are linear except for one step, the linear approximation, 
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which involves solving a quadratic equation. The presence of a quadratic equa- 
tion is not surprising to anyone familiar with linearizing around a saddle-point 

stable steady state. The important fact is that calculating the higher-order terms 
of the Taylor expansions involves only linear equations. Since linear equations 
are generally considered to be easier than solving quadratic equations, there is 
no support for the contention that ‘perturbation methods of order higher than 
one are considerably more complicated’ than linear approximations; in fact, the 
higher-order terms are easier to compute. 

A Warning to the reader should be made at this point. The perturbation compu- 
tations below are strictly formal. Problem-specific sufficient conditions for conver- 
gence are available for some of the problems and are discussed in an extensive, 
but difficult, collection of mathematical papers (see Bensoussan and his refer- 
ences). It is not our intent to reproduce those mathematical developments.’ The 
purpose of this paper is to take an economic model of interest, and derive plau- 
sible fomral expansions which are known to be valid under some restrictions. 
We then test them using economically intuitive diagnostics to ascertain the qual- 

ity of the approximations. 
We find that these formal series do remarkably well in approximating dynamic 

equilibria. Since there is nothing special about the functional equations which 
describe optimal growth problems, we anticipate that this approach will yield 
good approximations for a wide variety of dynamic economic models.2 

1. Approximation methods based at a point 

Before deriving asymptotic expansions for a growth model, we will review 
basic approximation theory for functions of a single variable. There are two basic 
methods, Taylor series and Pad& expansions, to approximate a function using only 
information about the function at a specific point. These methods produce locally 
good approximations with little effort, and sometimes these methods produce 
approximations which are useful more globally. 

1. I. Taylor series approximution 

The most basic local approximation is described by Taylor’s Theorem: 

’ Since writing this paper, the authors became aware of Santos (1994) which reviews the relevant 

issues well. 

2 As this paper goes to press, the results of this paper are being generalized to growth models with 

nonseparable utility. uncertainty, elastic labor supply, taxation, heterogeneous agents, incomplete asset 

structures, and several capital stocks, and to dynamic games. See Judd (1991) for an early treatment 

of these issues. 
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Tuylor’s Theorem. If ,f E C”+’ [a, b] and .x,x0 E [a, b], then 

R,+,(x) = ; j-(x - t)” f (“+‘)(t) dt 
.Q 

= (1 -.~OP+‘),f(“+,)(o 
(n+ I)! ’ 

for sowe < between x und x0. 

A Taylor series approximation of ,f(x) based at x0 uses derivative informa- 
tion at xa to construct a polynomial approximation. It is valid to a high order 
in the neighborhood of x0. If ,f is analytic on [a, b] then this approximation 
is progressively better on [a, b] as n increases. Generally, this approximation is 
good only near x0 and decays rapidly away from x0. 

1.2. Rutionul upproxinzution 

Taylor series approximation constructs a polynomial to approximate a fimc- 
tion j’. An alternative approximation method is to use the same information to 

construct a rational function, i.e., a ratio of polynomials. Rational approximation 
based at a point is called Pad& Approximation. The (m,n) PadC approximant of 
,f at x0 is a rational function 

where p(x) and q(x) are polynomials, the degree of p is m, the degree of q, 
is n, and 

d” 
O=-(p-f’q)(xo), 

dxk 
k=O ,..., min. 

The polynomial p has m + 1 coefficients and q has n + 1 coefficients which must 
be fixed by these conditions. The m + II + 1 derivative conditions suffice since 
q(x0) can be taken to be 1; if q(x0) # 1 and q(x0) # 0, dividing both p(x) and 
q(x) by q(xo) will yield an equivalent fraction where the denominator is 1 at x0. 
One usually chooses m = II or m = n + 1. If f is increasing or decreasing in the 
neighborhood of x0, it is advisable to use m = n + 1 since the ratio will then be 
roughly proportional to x. 
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The problem of computing the coefficients of p and q is a linear problem. 
This follows from the fact that the conditions can be rewritten as q(xo) = 1 and 

pck)(xo) = (fq)‘“‘(xo), k = 0,. . . , ??I + n, 

which are all linear in the coefficients of p and q once the derivatives of f at x0 
are computed. The resulting system may be singular, which just implies a mul- 
tiplicity of solutions; in such cases, we reduce n, the degree of the denominator 
polynomial, and repeat the process. The resulting system of conditions is ‘usually’ 
nonsingular; in fact, it was always nonsingular in the cases we examined. 

The costs of the Taylor and Pade approximations (holding fixed the number of 
coefficients) are comparable. Both procedures have a fixed cost of computing the 
coefficients. On this score, Taylor approximations have less cost because both 
must compute the same derivatives of f but Pad& approximation requires the 
solution to a linear equation. The experience is that PadC approximants are better 
global approximants than Taylor series approximations, that is, the error grows 
less rapidly as we move away from x0. There are strong theorems confirming 
this for analytic functions; see Braess (1986) and Cuyt and Wuytack ( 1986). For 
this reason, computers typically use Pade approximants to compute trigonometric, 
exponential, and other functions. 

2. Continuous-time deterministic growth 

We will first look at a single-sector, single good, continuous-time optimal 
growth problem. If k is the capita1 stock and c is the rate of consumption, then 
the problem is 

max 
c(t) 

e-%(c) dt, 

/i = f(k) - c, 

where u(c) is the concave utility function and f(k) is the concave gross produc- 
tion function. This is a very simple problem, assuming an inelastic labor supply, 
separable utility, and no uncertainty. While these assumptions greatly simplify the 
calculations, they are not essential for our main points. Once we follow in detail 
the perturbation method for this simple problem, it is easy to program a sym- 
bolic language, such as Mathematics or Macsyma, to deal with the more complex 
cases. The focus on a single dimension does result in much less notational detail. 
We leave the problems of several dimensions for a future paper. 3 

3 Judd and Gaspar (1996) contains an introductory treatment of these extensions 
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The general Dynamic Programming equations for the value function, V(k), and 
policy function, C(k), are 

PV(k) = u(C(k)) + V’(k U(k) - C(k))> (1) 

0 = u’(C(k)) - V’(k). (2) 

It is well-known that this problem has a steady state, kss, and that it is defined 
by p = f’(kss). However, to get the perturbation analysis started, we will first 
show that Eqs. (1) and (2) can be used to derive the location of the steady state 
as well as its local behavior. Differentiate (1) with respect to k: 

pv’ = u’c’ + V”(f - C) + V’(f” - C’). (3) 

Since u’(C(k)) = V’(k), (3) implies 

pv’ = V”(f - C) + V’f’. (4) 

At the steady state, kss, ,f(kss) = C(k’“). Hence (4) implies that 

pV’(k=) = V”(k”“)(J’(kSS) - C(k=)) + V’(kss)f’(k”“) = V’(kss)f’(kSS). (5) 

Since V’ = u’ > 0, we have k”” defined by 

p = J”(k”“). (6) 

As we develop the approximation, we will use the familiar example of Cobb- 

Douglas production and homothetic utility functions to illustrate these techniques. 
If f‘(k) = Ak”, then f’(k) = Auk”-‘. So, (6) implies 

k”” = [p/(d)]1!(x-‘), 

If u(c) = c”y/( 1 + y), then U’(C) = cy. So, J’(kSS) = C(kss) implies 

C(k”‘) = A(kss)’ (8) 

and (1) implies that 

V(kss) = (AWW’+ 
(Y + l)P 

and (2) implies that 

(9) 

(10) V’(k=) = u’(C(k=)) = (A(kSS)“)7. 
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Our goal is to compute the Taylor series expansion of these functions around 

the steady state. Specifically, we want to compute the coefficients of the follow- 
ing: 

C(k) - C(P) + C’(k”“)(k - P) + C”(P)(, - kSS)*/2 + . t 

V(k) - V(k”“) + V’(k”“)(k - kss) + V”(k=)(k - k”‘)*/2 + . . 

We have so far computed k”“, V(kSS), C(ksS), f’(k”“), and V’(k”). We want to 
compute more information about V and C. We next move to C’(kss) and V”(kSs). 

At this point we must make a critical assumption: 

Assumption 1. V(k) and C(k) are Cm at k”“. 

This assumption is clearly excessive, but not unrealistic if we also assume 

that u(c) and f(k) are also C”. Assumption 1 can be proved for this problem 
with concave u and ,f‘ by extending the analysis in Judd (1985). Note that all 
we need is sufficient differentiability at the steady state. This indicates that these 
calculations are possibly valid even if there are kinks at points away from the 
steady state, a feature of some models with nonconcave production functions. 
With Assumption 1, we can proceed to compute the desired derivatives. 

We first differentiate (4) with respect to k, yielding 

p v” = v”‘( J‘ - C) + v”( f’ - c’ ) + v”f” + V’f”. 

We also differentiate (2) with respect to k: 

() = u”C’ - V”. 

At the steady state, f = C and p = f’. Hence, at k”“, (11) implies 

0 = - V’c’ + v”f’ + V’f”. 

Substituting (12) into (13) yields 

0 = - U”(C’)2 + U”C’f’ + V’f”. 

(11) 

(12) 

(13) 

(14) 

Hence C’(k”) must solve (14): 

c, = d’f lt (U”f’)2 + 4u” V’f” 

2u” 
(15) 

where we use the fact that p = f’(k”“) and u’(C(k)) = V’(k). Since u” < 0, (15) 
has two solutions. However one is negative. Since C’ >O is known, we choose 
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the positive root. For our choice of functional forms, u”(c) = gcy-’ and f”(k) = 
x( r - 1 )Ak”--2. So, since C(P) = f(P), 

C’(P)=; (1 +dl”‘“), (16) 

V”(P) is computed directly from (12). 
To demonstrate the ease with which higher-order terms can be calculated, we 

next move to C”(P) and P”“(P). Differentiate (11) and (12) with respect to k: 

pV”’ = V”“(f - C) + 2V”‘(f” - C’) + V”(j-” - C”) 

+ V”‘f” + 2 V”f” + V’j‘“‘, 
(17) 

0 = U”‘( C/)2 + J’C” - y”‘, (18) 

At k’“, f = C and p = J“. So (17) reduces to 

0 = 2 V”‘(f’ - C’) + 3 V”,f” - V”C” + V’j”“‘. (19) 

Look closely at (18) and (19). At k = k”“, we know that c= C(k”), which in 
turn implies that we know the steady-state values of u”‘, w”, C’, f”, f”, Y”, and 
j”“. The only unknowns in (18) and (19) are C”(k”“) and V”‘(P). In fact, we 
can write (18) and (19) as a linear system: 

(20) 

The determinant of the matrix in (20) is -2n”(f - C’) + If”, which is negative 
since (16) implies that J” CC’ at kss. Hence, (20) has a unique solution. Using 
(12) to eliminate Y”, (20) implies that the steady state values of C” and V”’ 
satisfy 

c,, = 2(p - C’)u”‘C’C + 3z!“C’,f”’ + U’f”’ 

u”(3C’ ~ 2p) 

and 

v,,, = .“‘C’C’C’ + 3U”C’f” + U’J”” 

3C’ - 2p 

In the case of u’(c) =c:’ and ,J’(k) =Akl, we have u”(c)=@-‘, u”‘(c)= 
Y(i’ _ 1 )r;‘Y2, and J“” = x(x - l)(a - 2),4kuP3. The solution for C” becomes 

c,, = 2(p - C’)(l; - l)C’C’C-’ + 34~ - I)Ak”-2C’ 

3C’ - 2p 

+ Ccc(x - l)(cc - 2)Ak”-3/1/ 

3C’-2p ’ 
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where k is the steady-state value, that is, the value such that Auk”-’ = p. If 

A = p/a, then the steady-state value for k is 1. 
Now we move to C”’ and Vc4). Differentiate (17) and (18) with respect to k: 

pP’ = lqf - C) + 3V(4’(f’ - C’) 

+ 3 v”‘(j”” - C”) + JP’(j”“’ _ C”‘) 

+ y(4)f’ + 3JP”j”” + 3 JP’f” + yy41, 

0 = u(4)(c’)3 + 3u”‘C’C” + U”C”’ _ y(4), 

(21) 

(22) 

At kss, (21) reduces to 

rJ = 3 P)(f’ - C’) + 3V”‘(f” - C”) + JP’(j”“’ _ C”‘) 

+ 3 J/“‘f“’ + 3 JP’f” + yy4,. (23) 

Again, in (22))(23) the only unknowns are C”’ and Y(4). Furthermore, 

(22))(23) is linear in these unknowns. A check of the linear system shows 
that, again, there is a unique solution for C”’ and Vc4). 

One could go on forever with these calculations. Note that after the first step 
the procedure is rather mechanical, since the later calculations are linear in nature. 
In particular, the general linear system is 

( u I, 

Y” _.,,lCl)) (vz))=(;:) 
for some forcing terms Al and AZ. Since --n~“(f“ - C’) + V”, the determinant, 
is always negative, the system is always determinate. 

The validity of this procedure, that is, a proof that C(k) is smooth and has the 
steady state derivatives computed above, can be demonstrated by a trivial exten- 
sion of the computation of C’ of C(k) in Judd (1985). The key fact is that the 
steady state is stable. The main issue, however, is how good this approximation 
is. We will address that below after we show how to apply this procedure to 
discrete-time problems. 

We should also point out that the optimal control nature of the problem 
examined above is not essential. Equilibrium models which do not solve op- 
timal control problems can also be analyzed with these methods. For example, if 
there were a constant tax on capital income, Z, then the steady-state capital stock 
satisfies functional equations similar to those above; see Judd (1985) for details 
and for a demonstration that C(k) is Cm when u and f are C”. Similarly, 
models with money in the utility or production functions could be analyzed with 
these perturbation methods. 
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3. Discrete-time growth 

We will next show how to apply these ideas to discrete-time problems. Again 
we take the simple optimal growth problem 

max 2 P’U(Ct), 
I=0 

k,,l =f’(k, - ct). 

In this formulation, we are assuming that I$ is the capital stock in hand at the 
beginning of period t, and that out of it must come today’s consumption, cI, with 
the remaining capital, kl - ct, used in production, and with the resulting output, 
f(kt - c,), serving as the beginning-of-period capital stock in period t + 1. 

The solution can be expressed as a policy function, C(k), satisfying the Euler 
equation 

u’(C(k)) = Pu’(C(f(k - C(k))))J”(k - C(k)). (24) 

At the steady state, kss, we have f(kss - C(kS”)) = kss, implying 

u’( C(k=)) = /h’( C(k”“))f’(kss - C(k”“)), (25) 

which in turn implies 

1 = /jJ“(k”” - C(kSS)) (26) 

which uniquely determines kss. Furthermore 

k”j = f(k”” _ C(kSS)). (27) 

Again, we assume that C has as many derivatives as necessary. Araujo and 
Scheinkman (1977) demonstrates this for locally stable steady states, such as this 
one. Taking the derivative of (24) with respect to k implies4 

u”(C(k))C’(k) = Pu”(C(f(k - C(k))))C’(f(k - C(k))) 

x f“(k - C(k))[ 1 - C’(k)]f’(k - C(k)) 

+ Bu’(C(f(k - C(k))))S”(k - C(k))[l - C’(k)]. (28) 

At k = k”‘, this reduces to (we will now drop all arguments) 

U”C’ = BU”C’f’( 1 - C’),f’ + /?u’J”‘( 1 - C’). (29) 

4 To help understand the expression, we use parentheses to denote function composition and brack- 
ets to denote a multiplicative factor, but for this expression only. 
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This is a quadratic equation with the solution 

If we take another derivative of (28) and set k = kss, we find 

U”C” + U”‘C’C’ = flU”‘(C’f”( 1 - C’))Zf + flU”C”(f’( 1 - C’))2f’ 

+ 2@‘c’J“( 1 - C’)2f” + flU’J”“( 1 - C’)2 

+ @‘f”( - c” ), (31) 

which is a linear equation in the unknown C”. This analysis can continue to 
compute higher order terms; however, it is clear that the discrete-time case has 
much greater algebraic complexity than the continuous-time case. We will stop 
with C”. 

We again point out that equilibrium with distortions, such as those which arise 
from the presence of money or taxes, can be analyzed using these perturbation 
methods. The key ingredient is having the equilibrium decision rules expressed 
as determinate solutions to well-behaved functional equations. 

4. Global quality of asymptotic approximations 

The ideas underlying the foregoing asymptotic methods validate only a local 
concept of approximation. For example, we can be confident about the asymptotic 
expansion of C(k) around the steady state only for a sufficiently small neigh- 
borhood of the steady state. We will next examine the global properties of the 
asymptotic expansions. In particular, we will try to determine the range over 
which the expansions are good. There are several reasons for this. If the asymp- 

totic expansions are good over a broad range, we may not need to use the much 
slower standard numerical procedures. Even if the expansions are good over only 
a small range, they may still serve as good initial guesses for standard numerical 
procedures and significantly improve their performance. 

We need to compute an index indicating how well the approximating series 
does at each value of k. We first discuss the discrete-time case. If the computed 
series was the exact solution, then the Euler equation, (24), would hold exactly. 
We will judge the quality of the approximation by how much the series fails 
in satisfying (24). We do not want to just calculate the error in (24) since that 
error depends on the units chosen for consumption and capital. However, we can 
rewrite (24) and define the Euler equation error as 

R(k) = 1 - @‘I-‘tB~‘Wtftk - Ctk))))f’tk - Ctk)))lCtk). (32) 
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This expresses the Euler equation error at k as a fraction of consumption at k 

under the consumption rule C(k). This expression is actually a residual, that is, 
the deviation from zero which occurs when we substitute the solution into the 
original operator equation. It is unit-free, and will serve as our error index for 

the discrete-time case. 
Once we have a candidate solution, we want to check its quality.’ A di- 

rect procedure is to check how much, if at all, the approximation violates the 
Euler equation. First we should understand what a deviation from zero means 
in economic terms. Consider (32). It is a difference, relative to C(k), between 
consumption at a capital stock k and what that consumption would be if an op- 
timizing agent knew that tomorrow he will use the consumption rule C, and that 
personal and aggregate wealth will both be f(k - C(k)). Therefore, our residual 
equation applied to the approximate solution is the one-period optimization error 
relative to current consumption. 

This approach to checking accuracy expresses the resulting errors in economic 
terms, essentially in terms of how irrational agents would be in using the approx- 
imate rule. If one found that this relative optimization error were about 0.1, then 
we would know that the approximation implies that agents make 10% errors in 
their period-to-period consumption decisions, a magnitude which few economists 
would find acceptable. However, if this index were 0.000001, then the approxi- 
mation implies that agents make only a $1 .OO mistake for every $1, 000, 000 they 
spend. Few economists would seriously argue that real-world agents do better 
than this. While such an approximation, C, may not be the mathematically exact 
equilibrium decision rule, it is hard to argue that it is unacceptable as a descrip- 
tion of human behavior. In fact, many would argue that it is as compelling a 
description of behavior as the exact mathematical solution to (24). 

The philosophy behind this accuracy check is that we should find an E such that 
our approximation is an a-equilibrium. The advantage of this approach is that our 
approximation to an exact equilibrium becomes reinterpreted as an approximate 

equilibrium. The disadvantage of focussing on E-equilibrium is the likely existence 
of an open set of such equilibria. However, as long as the problem is well- 
conditioned, something which can be numerically checked, that set is likely to 
be small, and even negligible for many purposes. 

‘Some might wonder just how accurate we need an approximation to be. In fact, Danthine et 

al. ( 1987) have argued that the lmear approximation computed in Magi11 (1977) is adequate for 

macroeconomic purposes. However, their tests concerned only a few economic variables such as 

consumption and output. In light of the results in Magill (1977) (and, more generally, in Bensoussan, 

1988), this is not surprising. The adequacy of the linear approximation is much less likely once 

one turns to other economic variables, such as risk premia, the term structure of interest rates, and 

their correlations since these variables involve higher-order properties of tastes and technology, as 

documented in Judd (1991). Therefore. we attempt to find approximations which are as accurate as 
possible given limitations on computer time and space. 
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This approach to checking accuracy can also be taken when evaluating the 
answers from standard numerical methods, as is done in Judd (1992). By using 
the same accuracy index, we can evaluate the asymptotic procedures and other 
approximation methods in a uniform way. 

The continuous-time case has a similar unit-free expression for the error. The 
true consumption policy function satisfies the differential equation 

(33) 

The right-hand side of (33), R(k), is unit-free, and is the continuous-time version 
of the residual function defined in (32). We will use it as our error index for the 
continuous-time case. 

In both the continuous- and discrete-time models examined above, the asymp- 
totic expansions do an excellent job over a wide range of capital stocks. We first 
consider the continuous-time deterministic model. To examine the global quality 
of the asymptotic approximation, we will take the computed power series and 
compute how well it solves the defining differential equation at various capital 
stocks. 

In Figs. l-4 we display the Euler equation errors for our approximations as- 
suming a Cobb-Douglas production function with capital share 0.25, and utility 
function c’+y/( 1 + y). M ore specifically, we plot the base 10 logarithm of the 
Euler equation error of our approximations against the capital stock. The pro- 
duction function was always adjusted so that the steady state is kss = 1. Since 
we are plotting the logarithm of the errors, we need to truncate the argument 
of the logarithm function in order to avoid overflow; hence, we actually plot 
log,,(lR(k)] + 10-15) against k. Therefore, the minimal value possible for the 
plot is - 15. We chose 7 = - 2.0 for both the discrete and continuous-time mod- 
els; the pictures for ;I E [- 10.0, -0.21 are similar. Fig. 1 displays the accuracy 
index for the Taylor approximations of degrees 1,5,10 and 15 in the continuous- 
time model, and Fig. 2 displays the Euler equation errors for the (3,2), (5,5) and 
(8,7) Pade approximations of the continuous-time model. In these figures, R(k) is 
defined by the right-hand side of (33). Figs. 3 and 4 display the accuracy index 
for order 1,5 and 10 Taylor and order (3,2) and (5,5) Pad& approximations for 
the discrete-time model. In Figs. 3-4, R(k) is defined by the right-hand side of 

(32). 
The results are very encouraging and equally good for both the continuous- 

and discrete-time cases. When the error is of the order of IO-l2 or less, we 
must regard it as being negligible since it is practically equal to the machine 
zero. Values of lop6 are also quite small since it indicates that the Euler equa- 
tion error is akin to an agent making a one dollar error per million dollars of 
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Fig. I. Residual for Taylor expansion of continuous-time model. 
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Fig. 2. Residual for Pade’ expansion of continuous-time model. 
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Fig. 3. Residual for Taylor expansion of discrete-time model 
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Fig. 4. Residual for Pade’ expansion of discrete-time model. 

consumption. By this logic, we will regard values for R(k) greater than lop4 to 
be unacceptable. 

First, note that the log residual error is minimal (equal to - 15) for capi- 
tal stocks near P” = 1 .OO, expressing the fact that the expansion is exact up to 
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round-off error at the steady state. Next, note that the Taylor series errors remain 
very small over a moderate range of capital stocks as we move away from the 
steady state, but takes off exponentially as k comes close to 0 or 2. This rapid 
deterioration is expected since only local information at the steady state is used. 
Furthermore, the singularity in ,f at k = 0 makes it impossible that the Taylor 
series for C(k) has a radius of convergence exceeding 1, which in turn implies 
that the Taylor series will likely deteriorate near k = 2. Third, the Euler equation 
errors fall quickly as we increase the number of terms used; at k = 0.5, each step 
from n = 5 to n = 10 to n = 15 reduced the error by a factor of nearly 100. Only 
for k far from the steady state did the errors not fall rapidly. 

The small errors indicate that we could make use of the asymptotic series in 
two ways. First, for capital stocks within 40% of the steady state, the errors 
for the n = 15 approximation are so small, of the order of machine error, that 
it should be a good approximation. In fact, the Euler equation errors associated 
with asymptotic series created using n derivatives are only slightly larger than 
the degree n polynomials generated by projection techniques in Judd (1992) in- 
dicating that the asymptotic series are almost as good as possible for a fixed 
degree of flexibility. Second, the errors at 0.3 and 1.8 indicate that the asymp- 
totic series may not be a good approximation over the interval [0.3, 1.81, but 
the norm of the error over that interval is small enough that one is confident 
that it is close to a solution. Therefore, it could be used as an initial guess 
for a standard numerical procedure, such as the projection method discussed 

above. 
Figs. 2 and 4 show that the Pad& expansions are even better. Near the steady 

state, the Pad& expansions are almost perfect, but they are excellent even when we 
move far away from the steady state. In fact, the errors of the (55) expansions 
over the interval [0.6,2.0] are quite small (less than 10p8) for both the discrete- 
and continuous-time cases. Also, the (5,s) and (8,7) PadC expansions do quite 
well even for capital stocks above 2.0, a region where the Taylor expansions are 
never useful. Although the Pad& approximation is a bit more costly to compute, 
it appears to be well worth the cost if one cares about capital stocks away from 
the steady state. 

These figures report only one case of ;’ and a. However, we computed these 

values for many other values of ‘/ E [- 10.0, -0.11, and for c( = 0.33, always find- 
ing the same results. 

We should note the speed of these procedures. First, Mathematics can be 
used to compute the coefficients of the, say, fifteenth-order asymptotic series in 
terms of ?/, LX, and any other structural parameter. This can be done on a personal 
computer, but only with large memory and efficient handling of the algebraic 
expressions. While this sounds inefficient, it is a fixed cost. One could then 
take the Mathematics-produced expressions for these Taylor series coefficients 
and write FORTRAN code to compute them for specific values of the structural 
parameters. 



K.L. Judd, S.-M. CuulJournul of’ Economic Dynamics and Control 21 (1997) 1025-1042 1041 

In fact, the simple structure of the algebra for the continuous-time model makes 
it possible to write a simple FORTRAN program for the coefficients; using it, 
we can compute the first 100 coefficients of the Taylor expansion for C(k) in a 
second on a Pentium. Since a linear equation in the unknown coefficients defines 
the Pad& expansion, that also takes little time to compute once we have the 
Taylor coefficients. Therefore, if one had to compute C(k) for several values 
of the structural parameters, such as in a comparative dynamic exercise or a 
maximum likelihood estimation, this procedure is efficient since it results in a 
low marginal cost per set of structural parameters of computing C(k).’ 

This example shows that high-order asymptotic expansions can be very accu- 
rate far away from the central point of the expansion, particularly when Pad& 
expansions are computed. This indicates that they may be competitive with stan- 
dard numerical procedures or useful in providing them with good initial points. 

We must admit that the solutions for these models are nearly linear, imply- 
ing that the higher-order adjustments are small in magnitude for this model and 
for these parameters. For many applications, linear approximations are proba- 
bly adequate for these cases. However, it is unlikely that such will be true of 
all possible applications and for most interesting models. In fact, one of the 
puzzles of this model is that the uncertainty version implies equity risk premia 
far smaller than we see empirically. Also, those who argue for asymmetries in the 
business cycle are essentially arguing that linear approximations are inadequate. 
One suspects that many interesting problems will need approximations beyond 
the linear term. The method described in this paper and its successors show that 
Taylor expansions are easy to compute despite the apparent belief otherwise, and 
that they can solve the key equations over nontrivial regions of the state space. 

5. Conclusions 

In this paper, we have demonstrated that standard perturbation methods can 
be used to find high-quality approximate solutions to both discrete- and con- 
tinuous-time aggregate growth problems. We have also demonstrated that these 
methods appear valid over a far greater range than the local theoretical properties 
indicate. In fact, they do almost as well as the solutions generated by projection 
methods, a standard, reliable, and rapid numerical procedure for solving these 
models. Other examples of these perturbation methods are in Judd ( 1991). Given 
the pervasive use of these methods in the physical sciences, one suspects that 
they can also be used quite extensively in economics, well beyond the simple 
examples discussed in this paper. 

6The reader can acquire these programs from the authors by sending a request to 

judd@hoover.stanford.edu. 
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